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ABSTRACT
Background  Chronic obstructive pulmonary disease 
(COPD) is a heterogeneous group of lung conditions 
challenging to diagnose and treat. Identification of 
phenotypes of patients with lung function loss may allow 
early intervention and improve disease management. We 
characterised patients with the ‘fast decliner’ phenotype, 
determined its reproducibility and predicted lung function 
decline after COPD diagnosis.
Methods  A prospective 4 years observational study 
that applies machine learning tools to identify COPD 
phenotypes among 13 260 patients from the UK Royal 
College of General Practitioners and Surveillance Centre 
database. The phenotypes were identified prior to 
diagnosis (training data set), and their reproducibility was 
assessed after COPD diagnosis (validation data set).
Results  Three COPD phenotypes were identified, the most 
common of which was the ‘fast decliner’—characterised 
by patients of younger age with the lowest number of 
COPD exacerbations and better lung function—yet a 
fast decline in lung function with increasing number 
of exacerbations. The other two phenotypes were 
characterised by (a) patients with the highest prevalence 
of COPD severity and (b) patients of older age, mostly men 
and the highest prevalence of diabetes, cardiovascular 
comorbidities and hypertension. These phenotypes were 
reproduced in the validation data set with 80% accuracy. 
Gender, COPD severity and exacerbations were the most 
important risk factors for lung function decline in the most 
common phenotype.
Conclusions  In this study, three COPD phenotypes were 
identified prior to patients being diagnosed with COPD. 
The reproducibility of those phenotypes in a blind data set 
following COPD diagnosis suggests their generalisability 
among different populations.

INTRODUCTION
Chronic obstructive pulmonary disease 
(COPD) is a widespread group of lung 
diseases such as asthma, emphysema and 
chronic bronchitis that causes breathing 
difficulties as a result of fast lung function 
decline.1 Several studies2–5 have shown that 
common risk factors associated with lung 

function decline in patients with COPD 
are smoking,4 emphysema4 and severity of 
emphysema,3 as well COPD exacerbations2 5 
along with elevated blood eosinophil counts.2 
Kerkhof et al2 showed that patients with mild-
to-moderate COPD with a high burden of 
exacerbations and elevated blood eosinophils 
have significant mitigation of their lung func-
tion decline when treated with inhaled corti-
costeroids (ICS). Despite this finding suggests 
that early treatment may prevent further lung 
function loss, the full risk profile of those 
patients, and their projected lung function 
loss, remain key issues still largely unknown 
and underexplored in the present literature.

In this study, we aim to tackle these issues 
and provide a framework to improve the 
characterisation of patients with COPD and 
a fast decline in their lung function before 
diagnosis. In so doing, we develop several 
machine learning algorithms able to predict 
lung function decline after diagnosis. The 
implementation of this approach promises to 
allow medical practitioners with opportuni-
ties for early intervention and prevention of 
lung function loss.

Key messages

►► What are the characteristics of patients with chron-
ic obstructive pulmonary disease (COPD) and a fast 
decline in their lung function, and can they be repro-
duced in different populations?

►► In 13 260 patients with COPD, the ‘fast decliner’ 
was the most common phenotype, characterised by 
younger patients with lung function loss with an in-
creased number of COPD exacerbations.

►► The ‘fast decliner’ phenotype was reproduced in an 
unseen data set after COPD diagnosis. The most im-
portant risk factors for lung function decline were 
gender, COPD severity and exacerbations.

http://bmjopenrespres.bmj.com/
https://www.brit-thoracic.org.uk/
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjresp-2021-000980&domain=pdf&date_stamp=2021-010-28


2 Nikolaou V, et al. BMJ Open Resp Res 2021;8:e000980. doi:10.1136/bmjresp-2021-000980

Open access

METHODS
Study design
This study is a retrospective analysis of an observational 
cohort spanning through a 4 years period (2015–2018) 
among patients with COPD in the UK. Data were 
extracted from the Royal College of General Practitioners 
(RCGP) Research and Surveillance Centre (RSC) data-
base,6 7 which includes more than 5 million patients, and 
in which over 2 million records and 500 million prescrip-
tions (as of December 2017) are uploaded each week.8

Study population
Inclusion and exclusion criteria are shown in figure  1. 
The study included patients with a Read code9 for COPD 
diagnosis, older than 35 years, current or former smoker, 
without active asthma, with a forced expiratory volume 
in 1 s (FEV1) to forced vital capacity ratio (FEV1/FVC) 
of ≤0.7 (ie, the threshold for COPD diagnosis1) and 
who completed FEV1 records for four consecutive years. 
Specifically, we used FEV1 records in year 1 as a base-
line, followed-up by at least 3 years of FEV1 recordings. 
We excluded patients younger than 35, non-smokers (as 
this group may be misdiagnosed with COPD and to align 

with National Institute for Health and Care Excellence 
(NICE) guidelines,10 those with active asthma and FEV1/
FVC ratio of >0.7, as well as patients with less than 3 years 
of lung function (FEV1) values. Our inclusion and exclu-
sion criteria yielded a total of 13 260 patients.

Statistical analysis
To identify patients with underlying COPD phenotypes 
we split the cohort into two groups: (a) the training 
data set, consisting of patients with COPD registered to 
a general practitioner (GP) practice before the COPD 
diagnosis; and (b) the validation data set that includes 
patients with COPD registered after their COPD diag-
nosis (figure  2). Thus, patients in both data sets share 
similar COPD-related characteristics. We divided our 
sample according to the COPD diagnosis date, rather 
than randomly, to allow our algorithms to learn patterns 
in the data prior to COPD diagnosis (training data set) 
and classify patients in an unbiased, data-driven way into 
clusters (phenotypes). We then used those clusters learnt 
in the training data set to predict new clusters for patients 
after COPD diagnosis (validation data set) and assessed 
their agreement as described below in the ‘Cluster valida-
tion after diagnosis’ section. Similarly, we trained three 
different regression algorithms to predict lung func-
tion decline in the training data set. We assessed their 
performance in the validation data set as described in the 
‘Predictive models’ section.

Data reduction
The training data set was used to group patients of similar 
characteristics into distinct clusters (ie, COPD pheno-
types) using k-means cluster analysis (ie, a method that 
splits the data into mutually exclusive groups). To apply 
k-means clustering, we standardised 19 clinically relevant 

Figure 1  Flow chart of study cohort. COPD, chronic 
obstructive pulmonary disease; FEV1, forced expiratory 
volume in 1 s; FVC, forced vital capacity.

Figure 2  Main steps in phenotype identification before 
and after COPD diagnosis. COPD, chronic obstructive 
pulmonary disease; MCA, multiple correspondence 
analysis; RF, random forest.
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variables (sex, body mass index, smoking, COPD severity, 
COPD exacerbations, emphysema, diabetes, hyperten-
sion, coronary artery disease, acute myocardial infarc-
tion, congestive cardiac failure, anxiety, depression and 
six types of treatment) into uncorrelated ones of the same 
scale. In other words, prior to cluster analysis, we reduced 
the dimensionality of the data from the 19 selected vari-
ables to three uncorrelated components that explained 
the most variability of the data by using multiple corre-
spondence analysis (MCA)—the equivalent of principal 
components analysis for categorical data.11 Prior to this, 
we also imputed the missing values for the categorical 
variables of body mass index and COPD severity by using 
multivariate imputation by chained equations.12

Clustering
Given that the choice of clusters via k-means needs to 
be predetermined in advance, we began our clustering 
procedure by performing a hierarchical cluster analysis13 
which does not require a predetermined number of clus-
ters. We used the derived dendrogram to visually assess 
the optimal number of clusters (figure 3). This selection 
process implicates following the branch of the tree with 
the largest height (distance from top to bottom) and 
drawing a horizontal line (dashed line) across the other 
branches. The number of times in which the horizontal 
line intersects the branches determines the optimal 
number of clusters.

To confirm the number of clusters determined by the 
dendrogram’s visual inspection, we performed further 
statistical methods, namely the elbow14 and silhouette15 
methods. The elbow method measures how close subjects 
are within the same cluster by minimising heterogeneity 
(or maximising homogeneity): A lower within cluster 
variation indicates good compactness. The silhouette 
method measures how close a subject in one cluster is 
to subjects in neighbouring clusters by using the average 
silhouette width to measure the distance between clus-
ters. Here, the bigger the average silhouette width, the 
larger the distance between the clusters.

Next, we applied the k-means algorithm (figure  4) 
using different clusters (eg, from 1 to 10 clusters). The 
point beyond which a further reduction in the within 
the sum of squares (or increase in the average silhouette 
width) does not change the robustness (or separation) 

of clusters allowed us to determine the optimal number 
of clusters.

Intriguingly, the silhouette plots can also be used 
to determine the robustness of the clusters derived by 
using either the hierarchical or the k-means clustering 
method.16 In our sample, these outputs indicate that 
k-means should be the preferable clustering method rela-
tive to hierarchical clustering (figure 5). This is for two 
main reasons. First, the average silhouette width under 
the k-means algorithm (figure 5; bottom plot) was bigger 
than the one under the hierarchical algorithm (figure 5; 
top plot). Second, there were more subjects with nega-
tive silhouette widths under the hierarchical algorithm 
than the k-means clustering—especially for clusters 1 and 
3—suggesting that the latter method offers more stable 
clusters than the former.

Predictive models
We trained three regressors (decision tree, gradient 
boosting machine, linear regression) to predict lung 
function in the validation data set. We used FEV1 as the 
dependent variable, and the 19 variables used in the 
MCA step and age as predictors. Moreover, with the R 
library ‘caretEnsemble’,17 we constructed two ‘ensemble 
models’: a linear and a random forest (RF) ensemble of 
the above-mentioned regressors.

All algorithms were first trained and tested on 70% 
and 30% of the training data sets (ie, RF train and RF 

Figure 3  Inspecting the number of clusters using 
hierarchical analysis in the training data set.

Figure 4  Determining the optimal number of clusters in 
the training data set.

Figure 5  Silhouette plots to determine the optimal 
clustering method—hierarchical (top) and k-means 
(bottom).
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test; figure 2), respectively, for finely tuning —by using 
automated tuning with the R library ‘caret’17—of their 
parameters. They were then re-trained in the full training 
data set and tested to assess their final performance in 
the blind validation data set. This was done by calculating 
the root mean squared error (RMSE) and mean abso-
lute error (MAE). The former is the square root of the 
difference between observed and predicted values (ie, 
the prediction errors or residuals); it shows how far from 
the regression line the prediction errors are and is calcu-
lated as:

	﻿‍ RMSE =

√
N∑

i=1

(
xi−x̂i

)2

N ‍�
where ‍xi‍ and ‍xi‍ are the observed and predicted values, 

respectively.
The MAE is instead the MAE between observed and 

predicted values; it shows the magnitude of the predic-
tion errors and is calculated as:

	﻿‍ MAE =
∑n

i=1 |yi−xi|
n ‍�

where ‍yi‍ and ‍xi‍ are the predicted and observed values, 
respectively.

Finally, we calculated the effect of the most important 
predictors on lung function decline by means of the best 
performing model in the validation data set (ie, the one 
with the lowest RMSE and MAE values).

All statistical analyses were implemented with the statis-
tical software R.18

Patient and public involvement
Patients were not involved in the design, conduct, 
reporting or dissemination plans of this study.

RESULTS
Patient characteristics
Table  1 summarises the descriptive characteristics of 
patients registered with a GP before and after their COPD 
diagnosis at the baseline (first year of the study period).

When looking at the association between FEV1 and the 
number of COPD exacerbations before and after COPD 
diagnosis (figure  6), the decline in lung function with 
an increased number of exacerbations appears to be 
faster in the period prior to COPD diagnosis than after 
diagnosis. Thus, we examined whether a similar pattern 
existed among the phenotypes we derived, as well as the 
extent of such a decline.

Prior to COPD diagnosis
Table 2 presents the baseline characteristics of the three 
clusters of patients identified for the pre-COPD diagnosis 
period.

Phenotype A was characterised by a higher propor-
tion (one-third) of severe/very severe COPD (with 
severity being defined by the physician) and a higher 
number of COPD exacerbations; almost half of them 

had hypertension, and one-third were depressed. Almost 
all patients with this phenotype were treated with ICS 
and a combination of ICS and LABA (long-acting beta 
agonist) treatment, while a considerable proportion was 
treated with LAMA (long-acting antimuscarinic) and 
mucolytics. Phenotype B was characterised by patients of 
an older age, a higher male majority, as well as a higher 
proportion of overweight patients, a high prevalence of 
diabetes and cardiovascular comorbidities (hyperten-
sion, coronary artery disease, acute myocardial infarc-
tion, congestive cardiac failure) and depression, but the 
majority of them had moderate COPD severity. Almost 
half of the patients in this phenotype were treated with 
ICS and LAMA and one-third of them with an ICS and 
LAMA combination. Phenotype C was characterised by 
patients of a younger age, more than one-third of whom 
were overweight, but almost half of them had moderate 
COPD severity. Patients in this phenotype have the lowest 
number of COPD exacerbations and better lung (FEV1) 
function, yet almost half of them had hypertension and 
one-third of them had depression. The most frequent 
treatment of those patients was LAMA and mucolytics. 
The most noticeable patients’ characteristics for each of 
the three derived phenotypes are summarised in table 3.

When observing the association between lung func-
tion and number of COPD exacerbations (figure 7), the 
fastest decline in FEV1 was observed in patients of pheno-
type C: Those patients were also younger, suggesting that 
phenotype C can resemble the clinical features of the fast 
decliner phenotype.2–4

Clusters validation after diagnosis
To validate the cluster assignments derived prior to 
COPD diagnosis, we developed a RF model, that used 
the three clusters (derived by k-means clustering) as the 
dependent variable and the 19 categorical variables (sex, 
body mass index, smoking, COPD severity, COPD exac-
erbations, emphysema, diabetes, hypertension, coronary 
artery disease, acute myocardial infarction, congestive 
cardiac failure, anxiety, depression and six types of treat-
ment) and age, as independent variables.

The RF model was trained on a random sample of the 
training data set consisting 70% of the data (RF train 
data set; n=8037; figure 2) and tested on the remaining 
30% of the data (RF test data set; n=3445; figure 2) for 
internal validation.

To improve the RF model’s performance, we used a 
10-fold cross-validation method. This method involves 
splitting the data in 10 folds (samples): the first nine of 
them are used for training and one for testing. Then the 
next nine folds are used for training and 1 for testing and 
so forth until each one of the 10 folds has been used for 
testing. We further optimised the model’s performance 
by applying parameter tuning.19 This led to an (internal) 
accuracy of 99% for predicting the same clusters in the 
RF test data set.
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The very same model was then trained in the full 
training data set (both RF train and RF test) and tested to 
predict cluster assignments in the blind validation data set 
(figure 2). The predicted clusters were compared with those 
of the validation data set—derived with the same approach 

described above for the training data set, that is, data reduc-
tion and k-means clustering—using the Adjusted Rand 
Index20 and Jaccard Index21 for external clustering valida-
tion (ie, measuring the extent of agreement between clus-
ters derived by two different methods). Both indices showed 

Table 1  Baseline (year 1) demographic and clinical characteristics of patients before and after COPD diagnosis

Variables
Prior to COPD diagnosis
(n=11 482)

After COPD diagnosis
(n=1778)

Total
(n=13 260)

Age, mean (SD), years 69 (10) 70 (9) 69 (10)

Sex, male, no. (%) 6526 (57) 1029 (58) 7555 (57)

Body mass index, mean (SD), kg/m2 27 (6) 27 (6) 27 (6)

Body mass index, no. (%) with data 11 409 (99) 1759 (99) 13 168 (99)

 � Underweight 403 (3) 85 (5) 488 (4)

 � Normal weight 4066 (36) 643 (37) 4709 (36)

 � Overweight 4070 (36) 588 (33) 4658 (35)

 � Obese 2870 (25) 443 (25) 3313 (25)

Smoking status, no. (%)

 � Active smoker 4467 (39) 648 (36) 5115 (39)

 � Former smoker 7015 (61) 1130 (64) 8145 (61)

COPD severity, no. (%) with data 5859 (51) 925 (52) 6784 (51)

 � Mild 1957 (33) 293 (32) 2250 (33)

 � Moderate 2831 (48) 433 (47) 3264 (48)

 � Severe 975 (17) 177 (19) 1152 (17)

 � Very severe 96 (2) 22 (2) 118 (2)

COPD exacerbations in the past year, mean (SD) 0.3 (0.9) 0.5 (1.3) 0.3 (1.0)

COPD exacerbations in the past year, no. (%)

 � 0 9736 (85) 1395 (79) 11 131 (84)

 � 1 998 (8) 195 (11) 1193 (9)

 � 2 433 (4) 79 (4) 512 (4)

 � >2 315 (3) 109 (6) 424 (3)

Forced expiratory volume in 1 s, mean (SD), L 0.7 (0.2) 0.7 (0.2) 0.7 (0.2)

Emphysema, no. (%) 646 (6) 248 (14) 894 (7)

Diabetes, no. (%) 1771 (15) 280 (16) 2051 (16)

Hypertension, no. (%) 5317 (46) 823 (46) 6140 (46)

Coronary artery disease, no. (%) 675 (6) 106 (6) 781 (6)

Acute myocardial infarction, no. (%) 822 (7.) 144 (8) 966 (7)

Congestive cardiac failure, no. (%) 719 (6) 110 (6) 829 (6)

Anxiety, no. (%) 938 (8) 142 (8) 1080 (8)

Depression, no. (%) 3490 (30) 582 (33) 4072 (31)

Treatment, no. (%)

 � ICS 5082 (44) 1056 (59) 6138 (46)

 � ICS+LABA 4486 (39) 969 (55) 5455 (41)

 � LAMA 5363 (47) 985 (55) 6348 (48)

 � LABA 1101 (10) 147 (8) 1248 (9)

 � SAMA 581 (5) 100 (6) 681 (5)

 � Mucolytics 1028 (9) 231 (13) 1259 (10)

COPD, chronic obstructive pulmonary disease; ICS, inhaled corticosteroids; LABA, long-acting beta agonist; LAMA, long-acting 
antimuscarinic; SAMA, short-acting antimuscarinic.



6 Nikolaou V, et al. BMJ Open Resp Res 2021;8:e000980. doi:10.1136/bmjresp-2021-000980

Open access

an agreement of 80% between the predicted clusters using 
the RF model and the clusters derived using k-means clus-
tering in the validation data set.

Predicted lung function loss after diagnosis
Given the prevalence of phenotype C in the sample and 
the limited literature on the fast decliner phenotype at 
present, we can predict the lung function of patients with 
this phenotype by training three regressors (decision 
tree, gradient boosting machine and linear regression) 
and a linear ensemble of those regressors in the data set 
prior to COPD diagnosis (figure 8).

As shown in figure 8, the gradient boosting machine 
(gbm) performs better than the linear regression (gener-
alised linear model (glm)) (ie, it has the lowest RMSE 
value) and the decision tree (rpart). Moreover, the 
performance of those models combined through a linear 
model (linear ensemble; red dashed line) is as good as 
the gbm model.

We then combined those three models (gbm, glm, 
rpart) under a RF ensemble and assessed the perfor-
mance of all models after COPD diagnosis (table 4). We 
observe that the linear regression model performed as 
suitably as the gbm and the linear ensemble. In contrast, 
the rpart and the RF ensemble performed worst in the 
validation data set.

Additionally, we used a more conventional linear 
regression to calculate the effect of the most important 
predictors for lung function decline (table  5) in the 
training data set.

As shown in table 5, all of the above predictors explain 
95% of the model’s variance. The most important 
predictor—that explained 36% of the variance— was 
sex, which was associated with a decline in lung function 
of 0.066 L (or 66 mL) for male compared with female 
patients. The second most important predictor was 
COPD severity, which explained 18% of the variance—
where patients with moderate and severe COPD had a 
statistically significant lung function decline of 35 mL 
and 64 mL, respectively, compared with those with mild 
COPD. LAMA treatment was also associated with 37 mL 
decline in lung function as well an increased number of 

COPD exacerbations—ranged from 38 mL to 51 mL and 
78 mL for one, two and more than two exacerbations, 
respectively.

The least important predictors were smoking, diabetes 
and LABA treatment—which explained from 2% to 4% 
of the variance—and predicted a lung function decline 
ranging from 16 mL to 24 mL and 28 mL, respectively. 
Age, however was associated with a statistically signifi-
cant of 1.7 mL increase per year, which is not a surprising 
finding per se given that the fast decliner phenotype was 
characterised by better lung function in patients.

DISCUSSION
This study aimed to better characterise patients with 
COPD—in particular patients with the ‘fast decliner’ 
phenotype—by means of statistical and machine learning 
tools. Statistical methods, such as MCA11 and cluster anal-
ysis,13–15 are traditionally used in COPD research and 
beyond to reduce the dimensionality of the data into 
few uncorrelated variables that explain most of the vari-
ability and group subjects of similar characteristics into 
homogeneous and distinct clusters. These methods use 
all patients’ information by integrating demographics 
along with clinical and treatment characteristics. Due to 
COPD heterogeneity, this integration allows for better 
identification and characterisation of COPD phenotypes 
that extends beyond the typical clinical approach (ie, 
following the Global Obstructive Lung Disease Initia-
tive recommendations).22 Moreover, machine learning 
provides researchers and practitioners with rpart, RF and 
gbm models23 24 that can accommodate non-linear rela-
tionships.

Here, we applied these tools to go beyond the tradi-
tional analysis of demographic and clinical character-
istics of patients with COPD to predict lung function 
decline after their COPD diagnosis. The strengths of our 
approach consist (a) using a prospective longitudinal 
public data set, (b) a large sample size of 13 260 patients, 
(c) multiple imputations for handling missing values and 
(d) a choice of variables to be included in cluster analysis, 
as well the number of clusters, by combining data-driven 
methods with knowledge from the existing literature and 
clinical expertise.

The use of a large sample size allowed us to identify 
three distinct clusters (ie, phenotypes) of patients with 
different demographic, clinical and treatment charac-
teristics prior to COPD diagnosis able predict similar 
clusters of patients’ profiles post-diagnosis with an 80% 
agreement. This encouraging finding suggests that 
such phenotypes can be reproduced across different 
data sets and populations. Another advantage of using 
a large sample is the ability to split the training data set 
randomly (ie, prior to COPD diagnosis) into RF train and 
RF test subsets, train the RF model on the RF train data 
set and validate its predictions on the RF test data set—a 
process called internal validation. We further validated 
the phenotypes on the post COPD diagnosis data set to 

Figure 6  Association between lung function and number 
of COPD exacerbations before and after COPD diagnosis. 
COPD, chronic obstructive pulmonary disease; FEV1, 
forced expiratory volume in 1 s.
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predict cluster assignment and compare these with those 
derived by the k-means method.

Moreover, the 10-fold cross-validation used when 
training our models (ie, rpart, RF, gbm, linear regression 
and ensembles), along with the tuning of the models’ 

parameters, improves performance and avoids overfit-
ting—a phenomenon observed when the same model 
is used for both training and prediction without been 
tested (prior to prediction) on an unseen data set (whose 
observations did not contribute to its training.

Table 2  Baseline (year 1) phenotype characteristics prior to COPD diagnosis

Variables

Phenotype

A (n=4339) B (n=1040) C (n=6103)

Age, mean (SD), years 69 (9) 73 (8) 68 (10)

Sex, male, no. (%) 2456 (57) 799 (77) 3271 (54)

Body mass index, mean (SD), kg/m2 27 (6) 29 (5) 27 (5)

Body mass index, no. (%) with data 4311 (99) 1040 (100) 6058 (99)

 � Underweight 1618 (38) 220 (21) 2228 (37)

 � Normal weight 1029 (24) 381 (37) 1460 (24)

 � Overweight 1479 (34) 427 (41) 2164 (36)

 � Obese 185 (4) 12 (1) 206 (3)

Smoking status, no. (%)

 � Active smoker 1542 (36) 306 (29) 2619 (43)

 � Former smoker 2797 (64) 734 (71) 3484 (57)

COPD severity, no. (%) with data 2481 (57) 556 (54) 2822 (46)

 � Mild 587 (24) 174 (31) 1196 (42)

 � Moderate 1154 (46) 316 (57) 1361 (48)

 � Severe 666 (27) 62 (11) 247 (9)

 � Very severe 74 (3) 4 (1) 18 (1)

COPD exacerbations in the past year, mean (SD) 0.5 (1.2) 0.2 (0.7) 0.1 (0.8)

COPD exacerbations in the past year, no. (%)

 � 0 3323 (77) 899 (86) 5514 (90)

 � 1 497 (11) 85 (8) 416 (7)

 � 2 266 (6) 36 (4) 131 (2)

 � >2 253 (6) 20 (2) 42 (1)

Forced expiratory volume in 1 s, mean (SD), L 0.7 (0.2) 0.7 (0.2) 0.8 (0.2)

Emphysema, no. (%) 308 (7) 59 (6) 279 (5)

Diabetes, no. (%) 597 (14) 382 (37) 792 (13)

Hypertension, no. (%) 1948 (45) 703 (68) 2666 (44)

Coronary artery disease, no. (%) 33 (1) 617 (59) 25 (0.4)

Acute myocardial infarction, no. (%) 75 (2) 681 (66) 66 (1)

Congestive cardiac failure, no. (%) 223 (5) 304 (29) 192 (3)

Anxiety, no. (%) 319 (7) 101 (10) 518 (9)

Depression, no. (%) 1279 (30) 348 (34) 1863 (31)

Treatment, no. (%)

 � ICS 4290 (99) 408 (39) 384 (6)

 � ICS+LABA 4141 (95) 339 (33) 6 (0.1)

 � LAMA 3022 (70) 437 (42) 1904 (31)

 � LABA 227 (5) 92 (9) 780 (12.8)

 � SAMA 206 (5) 64(6) 311 (5)

 � Mucolytics 756 (17) 108 (10) 164 (23)

COPD, chronic obstructive pulmonary disease; ICS, inhaled corticosteroids; LABA, long-acting beta agonist; LAMA, long-acting 
antimuscarinic; SAMA, short-acting antimuscarinic.
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Finally, we ensembled the individual models (ie, rpart, 
RF, gbm, linear regression) by using either a linear or a 
RF regressor to boost their performance. We then used 
the model with the best performance (ie, the linear 
regression) to identify the most important risk factors for 
lung function decline in patients with the fast decliner 
phenotype. Two of those predictors—COPD severity 
and COPD exacerbations—projected a decline in lung 
function of more than 30 mL, which is constant with 
findings of similar studies.2 25Specifically, Kerkhof et al2 
used multilevel mixed-effects linear regression models 
to determine the association between annual exacerba-
tion rate following initiation of ICS therapy and FEV1 
decline. The authors also carried out a longitudinal 
study of a similar sample size to ours (n=12 178 patients 
with mild-to-moderate COPD) and found a decline in 
lung function of 19 mL/year for each exacerbation for 

patients with blood eosinophil counts equal to or greater 
than 350 cells/µL not on ICS and a reduced lung func-
tion loss that ranged from 4 mL/year to 15 mL/year for 
those treated with ICS. In his effort to explore the hetero-
geneity of COPD progression, Papi et al25 reported the 
variability in lung function decline from the Evaluation 
of COPD Longitudinally to Identify Predictive Surrogate 
End-point (ECLIPSE) cohort.4 In this 3-year prospec-
tive study, 38% and 31% of patients had a lung function 
decline of more than 40 mL/year and from 21 mL/
year to 40 mL/year, respectively; 23% had a 20 mL/year 
decrease to 20 mL/year increase in their lung function, 
while just 8% had more than 20 mL/year lung function 
increase. In our sample—patients with the fast decliner 
phenotype—we observed a decrease of more than 40 mL 
in lung function in men (54%), those with severe COPD 
(9%) and those with equal to or more than two COPD 

Table 3  Phenotypes’ characteristics prior to COPD diagnosis

Phenotype A Phenotype B Phenotype C

Highest prevalence of severe COPD Older age Younger age

Highest number of COPD 
exacerbations in the past year

Larger majority of males Overweight (one-third)

Hypertension (almost half) Overweight (almost half) Lowest number of COPD 
exacerbations in the past year

Depression (one-third) Highest prevalence of diabetes Better lung function

Most-treated overall Highest prevalence of cardiovascular comorbidities Hypertension (almost half)

 � ICS (nearly all) Hypertension (two-third) Depression (one-third)

 � ICS+LABA (nearly all) Coronary artery disease (more than half) Least-treated overall

 � LAMA (large majority) Acute myocardial infarction (more than half) LAMA (one-third)

 � Mucolytics Congestive cardiac failure (one-third) Mucolytics

 �  Depression (one-third)

 �  Intermediate level of treatment

 �  ICS (almost half)

 �  ICS+LABA (one-third)

 �  LAMA (almost half)

COPD, chronic obstructive pulmonary disease; ICS, inhaled corticosteroids; LABA, long-acting beta agonist; LAMA, long-acting 
antimuscarinic.;

Figure 7  Association between lung function and number 
of exacerbations by phenotype—prior to COPD diagnosis. 
COPD, chronic obstructive pulmonary disease; FEV1, 
forced expiratory volume in 1 s.

Figure 8  Models’ performance on training data set. 
The red dashed line shows the performance of the linear 
ensemble. RMSE, root mean squared error.
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exacerbations (3%); a decrease between 21 mL and 40 
mL was also observed in patients with moderate or very 
severe COPD (49%) as well in those with one COPD 
exacerbation (7%), diabetes (13%) and those on LAMA 
(31%) and LABA (13%) treatment. We also observed 
a decrease in lung function of 16 mL in active smokers 
(43%). Furthermore, in their 5-year prospective study, 
Nishimura et al3 classified patients with COPD into three 
phenotypes based on lung function loss: the fast decliners 
with a decline in lung function of 63±2 mL/year, the slow 
decliners of a 31±1 mL decline per year and the sustainers 
of a 2±1 mL/year decline in their lung function. The 
severity of emphysema was found to be independently 
associated with a rapid decline in lung function.

Limitations
There are several limitations in our study, which also repre-
sent important calls for future research. One limitation 

relates to the quality of the available data, given that the 
data were collected from different GP practices with not 
standardised measurement processes. As such, the accu-
racy of respiratory values (eg, FEV1) reported may vary 
across practices. Moreover, by including patients with at 
least 3 years of spirometry follow-ups may improve the reli-
ability of their lung function but could bias the results as 
patients with different follow-up times could be different. 
Another limitation is the lack of information on how the 
presence and/or the severity of emphysema was captured 
in our database. While the presence of emphysema in 
the RCGP and RSC database is recorded based on the 
clinician’s assessment,9 this is not sufficient to capture 
its severity. Had a severity score of emphysema, similar 
to the one calculated by Nishimura et al3—using a visual 
and computerised emphysema severity assessment—
was available, our algorithm would be more accurate to 
predict the change in lung function attributed to this risk 
factor. A third limitation is the lack of biomarkers from 
the RCGP database, such as the eosinophil count which is 
a significant predictor in lung function decline.2 Should 
biomarkers be used as predictors, our regressors would 
be more accurate to predict lung function in a blind data 
set. Our sample also lacks detailed treatment informa-
tion such as dosage and frequency of treatment intake. 
Should such information had added to our model, a GP 
could infer by what amount a treatment can be adjusted 
or how frequently should be taken to mitigate lung func-
tion loss. We, however believe that these are all important 
calls for future research and would be potentially tackled 
in the future by applying our models for prediction on 

Table 4  Models’ performance metrics on the validation 
data set

RMSE MAE

Decision tree 0.183 0.149

Gradient boosting machine 0.181 0.147

Linear regression 0.181 0.147

Linear ensemble* 0.181 0.147

Random forest ensemble* 0.188 0.152

*Ensemble of three models: decision tree, gradient boosting machine 
and linear regression.
MAE, mean absolute error; RMSE, root mean squared error.

Table 5  Risk factors for lung function decline prior to COPD diagnosis

Estimate 95% CI P value % variance

Sex, male* −0.066 −0.07 to −0.06 <0.001 36

COPD severity† 18

 � Moderate −0.035 −0.04 to −0.03 <0.001

 � Severe −0.064 −0.07 to −0.05 <0.001

 � Very severe −0.031 −0.06 to 0.002 0.075

LAMA, yes‡ −0.037 −0.04 to −0.03 <0.001 12

Age (years) 0.0017 0.001 to 0.002 <0.001 10

COPD exacerbations in the past year§ 9

 � 1 −0.038 −0.05 to −0.03 <0.001

 � 2 −0.051 −0.07 to −0.03 <0.001

 � >2 −0.078 −0.10 to −0.05 <0.001

LABA, yes‡ −0.028 −0.03 to −0.02 <0.001 4

Smoking¶ 4

 � Active smoker −0.016 −0.02 to −0.01 <0.001

Diabetes, yes‡ −0.024 −0.03 to −0.02 <0.001 2

*Reference group: Female.
†Reference group: Mild.
‡Reference group: No.
§Reference group: 0 exacerbations.
¶Reference group: Former smoker.
CI, Confidence Interval; COPD, chronic obstructive pulmonary disease; LABA, long-acting beta agonist; LAMA, long-acting antimuscarinic.
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other available COPD data sets, such as the Optimum 
Patients Care Research Database (OPCRD) database,26 
which also contains a proper assessment of emphysema 
severity and biomarker information.

Despite the above limitations, this work represents, to 
the best of our knowledge, the first study—among those 
studies that have implemented machine learning to 
identify clinically meaningful COPD phenotypes27—that 
fully characterises patients with COPD with a fast decline 
in their lung function as well as predicts lung function 
loss. This was achieved using regressors ranging from 
the conventional linear regression to the most advanced 
rpart, RF and gbm.

First, we used k-means clustering to identify three 
COPD phenotypes prior to diagnosis. Next, using a RF 
model, we showed that these phenotypes can be repro-
duced in a different blind data set (after COPD diagnosis) 
by achieving a high level of agreement (80%) between 
the predicted cluster assignments to those derived by 
k-means clustering.

Additionally, we trained three models (rpart, gbm and 
glm) on the data set prior to COPD diagnosis and vali-
dated them after diagnosis to predict lung function loss 
after diagnosis. We further developed two ensembles 
models using either a linear or a RF model to improve 
the performance in the blind validation data set. We 
found that the most advanced machine learning models 
were as good as the linear regression model. This led us 
to identify several risk factors to predict lung function 
loss in patients with the fast decliner phenotype. Similar 
models can be developed for the other two phenotypes, 
which are included in our future research agenda.

Moving forward, we anticipate that validations of our 
framework in non-UK populations may help further 
understand individual patient lung function profiles, 
improve treatment decision-making in patients with 
COPD with major lung function decline and prevent 
lung function loss at an early stage.
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