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Abstract

Biofilm infections are responsible for at least 65% of human bacterial infections. These biofilms 

are refractory to conventional antibiotics, leading to chronic infections and non-healing wounds. 

Plant-derived antibiotics (phytochemicals) are promising alternative antimicrobial treatments 

featuring antimicrobial properties. However, their poor solubility in aqueous media limits their 

application in treating biofilm infections. Phytochemicals were incorporated into cross-linked 

polymer nanocomposite ‘sponges’ for the treatment of bacterial biofilms. The results indicated 

encapsulating low log P phytochemicals effectively eliminated biofilms while demonstrating low 

cytotoxicity against mammalian fibroblast cells.
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Bacterial infection is a serious threat to public health with 2 million cases occurring each 

year in the US alone. Among these infections, at least 65% are associated with biofilm 

formation,1 often occurring on medical implants, mucus, or tissues, leading to chronic 

wounds.2–4 Biofilms are microcolonies of bacteria residing in an extracellular polymeric 

substances (EPS) matrix.5 The EPS serves as a physical barrier, preventing the interaction 

between antimicrobial agents and bacterial cells. The charged polymeric components 

and embedded enzymes deactivate antibiotics and retard their penetration throughout the 

matrix. Moreover, dormant bacteria inside biofilms possess more antibiotic-tolerance and/or 

resistance than regular bacteria.6–9 These mechanisms may act simultaneously, ending in 

failure of standard antibiotic treatments. Currently, chemical antibiofilm treatments include 

long-term use of high dosages of antibiotics, or combinations of antibiotics with different 

killing mechanisms.10 However, these strategies are costly and still inefficient.11

Phytochemicals are plant-derived oils that have emerged as a promising alternative to 

current antimicrobial agents.12, 13 Phytochemicals are secondary metabolites and are key 

components in the self-defense mechanism of plants against pathogenic microorganisms.14 

They can be effective against both planktonic and biofilm multidrug-resistant bacteria.15, 16 

However, poor solubility of phytochemicals in aqueous media limits their medical 

applications. This limitation can be addressed using delivery vehicles such as surfactants, 

nanoparticles or polymers.17–19 While these strategies improve the solubility of the 

phytochemicals, the resulting engineered materials often have hemolytic activity and/or 

limited stability.

Recently, we reported a polymer-stabilized carvacrol-in-water nanocomposite (NCs) as a 

therapeutic against bacterial biofilm.20 However, although carvacrol is generally recognized 

as safe (GRAS), it demonstrates cytotoxicity toward mammalian cells.21 We hypothesized 

that the toxicity and hence therapeutic effects of NCs could be tuned by changing 

the encapsulated phytochemicals. Herein, we report the antimicrobial properties and 
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cytotoxicity of NCs loaded with different active phytochemical ingredients. These NCs 

demonstrated improved antimicrobial activity against planktonic bacteria, with at least 

4-fold decrease in minimum inhibitory concentrations (MICs). In addition, we found that 

NCs loaded with less hydrophobic phytochemicals demonstrated more potent antibiofilm 

efficacy. Finally, we evaluated the cytotoxicity of NCs toward 3T3 fibroblast cells to 

test their potential as a wound infection therapeutic agent. The results revealed that NCs 

encapsulating phytochemicals with lower log P and no phenolic hydroxyl groups provide a 

viable treatment strategy for wound biofilm infections.

Results and Discussion

Generation and Characterization of Nanocomposites.

We recently reported that incorporating carvacrol into cross-linked poly(oxanorbornenimide) 

polymers (PONIs) improves emulsion stability and enhances antimicrobial properties. 

Briefly, PONI polymers were modified with guanidinium, maleimide, and 

tetraethyleneglycol monomethyl ether moieties (PONI-GMT). Tetraethyleneglycol 

monomethyl ether moieties increased amphiphilicity of the polymers so that PONIs and 

hydrophobic carvacrol would self-assemble into NCs. The cationic guanidinium group was 

used to increase interaction with the negatively charged bacterial membranes and EPS.22 

Finally, maleimide moieties on PONIs were used to stabilize the nanocomposites. These 

moieties can form cross-linked structure via maleimide-Michael addition reactions with the 

biodegradable crosslinker, dithiol-disulfide (DTDS), in carvacrol. (Scheme 1).23

We postulated that other phytochemicals could be stabilized in aqueous media using the NC 

platform. We chose eugenol,24 methyl eugenol,25 carvacrol,26 linalool,27 (+)-limonene,28 

p-cymene,29 and α-pinene30 for this study as they are liquid phytochemicals at room 

temperature and reported to demonstrate antimicrobial activity. These oils were first mixed 

with DTDS. Subsequently, the oil solution was emulsified into Milli-Q water containing 

PONI-GMT. During emulsification, PONI-GMT and the oil self-assemble, forming the NCs. 

These emulsions were defined as 100 v/v% and found to have size ranging from ~180 to 

~530 nm. (Table 1)

Antimicrobial Activity of NCs against Gram-negative Planktonic Bacteria.

We first evaluated the antimicrobial activity of these NCs against planktonic bacteria using 

clinical isolates of pathogenic Gram-negative bacterial strains including E. coli (CD2), P. 
aeruginosa (CD1006), and E. cloacae complex (CD1412). All NCs demonstrated inhibition 

of bacterial growth with MICs ranging from 2 – 8 v/v% (Table 2). In contrast, their bulk 

oil counterparts demonstrated less or no antibacterial activity, even though those solutions 

were prepared in 5 v/v% dimethyl sulfoxide (DMSO) aqueous solution. MICs of eugenol 

and carvacrol against all three Gram-negative bacteria were 4-fold or 8-fold higher than the 

nanocomposite counterpart, whereas limonene showed less antimicrobial activity towards 

all the strains we tested. None of the other oils showed inhibition of bacterial growth 

at the highest concentration used in this study. (Table 2) These results indicated that 

incorporating oils into cross-linked NCs improved their antimicrobial activity, even with 

oils lacking antimicrobial phenolic hydroxyl groups.31 This improvement may be attributed 
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to electrostatic interaction between positively charged NCs and negatively charged bacterial 

membrane.32, 33

Antimicrobial Activity of Nanocomposites against Gram-negative Bacterial Biofilms.

Next, we investigated the antimicrobial activity of these NCs to more refractory bacterial 

biofilms. As shown in Figure 1, these nanocomposites eradicated 90% of bacteria in the 

biofilms at concentrations ranging from 2 to 43 v/v%. We found that using amphiphilic 

polymers to deliver phytochemicals containing phenyl hydroxyl groups, such as eugenol 

and carvacrol, provided especially promising bacteria-combating capability against biofilms. 

Furthermore, we observed a trend that phytochemicals with lower log P demonstrated more 

potent antimicrobial activity against biofilms. Specifically, NCs loaded with eugenol (log 

P: 2.49) were able to kill 90% of bacteria in the biofilms at about 12 v/v%. Linalool (log 

P: 2.97) NCs demonstrated similar antimicrobial activity using higher concentrations, 26 

or 30 v/v%. NCs encapsulating phytochemicals with even higher log P, such as p-cymene 

(log P: 4.1) and α-pinene (log P: 4.83), were incapable of eradicating 90% of bacteria 

in CD2 and CD1006 biofilms, even with the highest concentration used in this study. 

Moreover, we performed crystal violet (CV) biofilm assay to evaluate the ability of NCs 

to reduce biofilm biomass. CD2, CD1006, and CD1412 biofilms were treated with NCs at 

MBEC90 (minimum biofilm eradication concentration for eradication of 90% of bacteria 

in the biofilm) or 48 v/v%. In general, NCs loaded with low log P oils were capable of 

removing biofilm biomass up to 70%. (Figure S6) In contrast, incorporating high log P oils 

into NCs were less effective in biofilm dispersal. In some cases, such as α-pinene NCs 

against CD1006 and CD2, these NCs even promoted the production of biomass. Similar 

hormetic-like responses were also observed in the treatments with 10 × MIC of colistin 

against CD1006 and CD2 biofilms.

We also prepared phytochemical solutions in 5 v/v% DMSO solutions to compare 

antibiofilm efficacy of bulk oils with the NCs. As shown in Figure 1, these oils 

demonstrated weak to moderate antimicrobial activity even at high concentrations. The 

results indicated that NC delivery also improved phytochemical antimicrobial activity for 

recalcitrant biofilms. Notably, this delivery strategy is potentially useful in targeting E. 
cloacae complex population in multi-species biofilm as P. aeruginosa and E. coli biofilms 

were less susceptible to NCs loaded with high log P phytochemicals.34

Antimicrobial Activity of Nanocomposites against Gram-positive Planktonic Bacteria and 
Their Biofilms.

Besides P. aeruginosa, S. aureus is also one of the most common bacteria isolated from 

chronic wounds.35–37 Therefore, we also evaluated the growth inhibition ability of NCs 

to planktonic clinical isolated methicillin-resistant S. aureus (CD489, MRSA). As before, 

MICs of NCs were lower than free phytochemicals. (Table 3) In addition, we found that 

more hydrophobic oils were less effective against CD489 even delivered using PONI-GMT.

Subsequently, we selected eugenol, linalool, methyl eugenol, and carvacrol NCs, which 

showed the highest antimicrobial activity, to test against S. aureus biofilms. As shown in 

Figure 2, after a three-hour treatment, eugenol, linalool, and carvacrol NCs eliminated 90% 
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of bacteria at 9.27, 37.9 and 3.55 v/v%, respectively. However, CD489 biofilm was not 

susceptible to methyl eugenol NCs. We also performed CV staining assay to CD489. These 

NCs demonstrated biofilm-dispersal ability while vancomycin promoted building biomass 

of the biofilm (Figure S6). These experiments demonstrated that eugenol, linalool and 

carvacrol NCs have broad-spectrum biofilm combating ability.

Cytotoxicity of NCs to 3T3 Fibroblast Cells.

Next, we evaluated the cytotoxicity of NCs towards fibroblast cells38 for assessing the 

potential utility of NCs for cutaneous wound biofilms. In this study, 3T3 fibroblast cell 

mono-layers were treated with NCs for 3 hours. Subsequently, cell viability was determined 

using Pierce LDH cytotoxicity assay. As shown in Figure 3, higher log P phytochemicals 

such as carvacrol, limonene, p-cymene, and α-pinene were more cytotoxic to 3T3 fibroblast 

cells. Cell viabilities were less than 50% at 8–16 v/v% after the treatment. In contrast, 

methyl eugenol and linalool were less cytotoxic as their concentrations to inhibit 50% 

fibroblast cell proliferations (GI50) were not detected in this study and 27.14 v/v%, 

respectively.

While eugenol had the lowest log P phytochemical in this study, it demonstrated strong 

cytotoxicity at higher concentrations (> 8 v/v%). This cytotoxicity was possibly due to the 

phenolic hydroxyl group in its structure.39 Other proposed mechanisms such as inhibition of 

Na+-K+-ATPase and mitochondrial damage were also reported.40–42 Similarly, the presence 

of phenolic hydroxyl group in carvacrol could contribute to its cytotoxicity. The combination 

of this functional group and carvacrol’s higher log P could lead to the highest cytotoxicity 

toward 3T3 fibroblast cells among the phytochemicals in this study. Consequently, using 

lower log P phytochemicals without a phenolic hydroxyl group potentially eliminated safety 

concerns of this therapeutic method.

Conclusion

In summary, we evaluated the antimicrobial activities and cytotoxicity of phytochemicals 

delivered using a cross-linked polymeric scaffold. In general, this delivery strategy 

dramatically improves their antimicrobial efficacy against both planktonic bacteria and 

biofilms. Specifically, phytochemicals with lower log P value are promising candidates 

for this delivery system. Moreover, encapsulating phytochemicals with lower log P and 

no phenolic hydroxyl groups provides particularly low cytotoxicity nanocomposites. Taken 

together, loading phytochemicals with the above-mentioned properties, such as linalool and 

methyl eugenol, into nanocomposites offers a promising direction to address wound biofilm 

infections.

Experimental section

All reagents/materials were purchased from Fisher Scientific as well as Sigma-Aldrich and 

used as received. Clinical isolated bacterial strains were obtained from the Cooley Dickson 

Hospital Microbiology Laboratory (Northampton, MA). NIH-3T3 cells (ATCC CRL-1658) 

were purchased from American Type Culture Collection (ATCC). Dulbecco’s Modified 
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Eagle’s Medium (DMEM, ATCC 30-2002) and fetal bovine serum (Fisher Scientific, 

SH3007103) were used in cell culture.

Preparation of NCs

Stock nanocomposite solutions were prepared in 600 μL Eppendorf tubes. To prepare the 

NCs emulsions, 3 μL of the selected phytochemical (containing 3 wt% DTDS) was added 

to 497 μL of Milli-Q H2O containing 6.04 μM of PONI-GMT and emulsified using an 

amalgamator for 50 s. The emulsions were allowed to rest overnight prior to use.

Determination of Minimum Inhibitory Concentration

Bacteria were cultured in Lysogeny broth at 37°C and 275 rpm until stationary phase. The 

cultures were then collected by centrifugation (7000 rpm, 5 min) and washed with 0.85% 

sodium chloride solution for three times. The bacteria culture was then resuspended in 

phosphate-buffered saline (PBS) to determine its OD600. OD600 of the solution was then 

diluted to 0.001 using M9 minimal media, giving a final bacterial concentration of 1 × 106 

CFU/mL. Afterwards, 50 μL of these solutions was added into a 96-well plate and mixed 

with 50 μL of NCs solutions. NCs solutions were serially diluted to give a concentration 

range of 0 – 32 v/v%. A growth control group was prepared containing only M9 and 

the bacterial solution. In addition, a sterile control group with only the growth medium 

was carried out at the same time. Cultures were performed in triplicates, and at least two 

independent experiments were repeated on different days. The MIC is defined as the lowest 

concentration of NCs that inhibits visible growth as observed with the unaided eye.

Biofilm Formation

Bacteria culture was prepared using the method described above. To prepare biofilm seeding 

solutions, bacteria except S. aureus were resuspended in M9 medium to reach OD600 of 0.1. 

S. aureus were resuspended in M9 medium containing 15 v/v% TSB to reach OD600 of 0.1. 

100 μL of the seeding solutions were added to each well of the 96-well plate. The plate was 

covered and incubated under static conditions at room temperature overnight.

NCs solutions were prepared with various concentrations ranging from 0 to 48 v/v%. 100 μL 

of these solutions was added into a 96-well plate. Subsequently, the plate was incubated at 

37°C under static condition. After 3 hours, the biofilms were washed with PBS three times, 

then 10 v/v% of alamarBlue cell viability reagent was added to each well, then incubated 

for 1 hour. Biofilm viability was determined by measuring fluorescence intensity (excitation: 

560 nm; emission: 590 nm). Readings from the wells containing 10 v/v% of alamarBlue cell 

viability reagent only were considered as the blank (Iblank), and readings from wells having 

untreated biofilms were used as growth control (Icontrol). Biofilm viability was calculated 

using the equation below:

Biofilm viability % = 100% ×
Isample − Iblank
Icontrol − Iblank
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Crystal Violet Assay for Biofilm Quantification

We followed a standard crystal violet staining protocol with minor modifications.43 Briefly, 

biofilms were prepared using the method described above. NCs solutions were prepared at 

calculated MBEC90 or 48 v/v%. 10 × MIC of antibiotic solutions were also prepared as 

controls. 100 μL of these solutions was added into a 96-well plate. Subsequently, the plate 

was incubated at 37°C under static condition. After 3 hours, the biofilms were washed with 

PBS three times, then 150 μL of a 0.1% crystal violet aqueous solution was added to each 

well. Then, the plate was incubated at room temperature for 15 minutes. Afterwards, the 

biofilms were wash with PBS four times to remove excess crystal violet. The 96-well plate 

was then allowed to air dry.

To quantify the biofilms, a 150 μL of 20:80 acetone/ethanol solution was added to each well. 

The 96-well plate was incubated at room temperature for 20 minutes. Subsequently, 125 μL 

of the solubilized CV solutions in each well were transferred to a new flat bottom 96-well 

plate. OD590 of the solutions were then measured using a plate reader.

3T3 Fibroblast Cell Viability Assay

A total of 20000 NIH 3T3 (ATCC CRL-1658) cells were cultured in Dulbecco’s modified 

Eagle medium (DMEM; ATCC 30-2002) with 10% bovine calf serum and 1% Penicillin­

Streptomycin at 37°C in a humidified atmosphere of 5% CO2 for 48 h. Then, DMEM 

media was removed and cells were washed once with PBS before addition of NCs prepared 

using pre-warmed media containing 10% serum. Cells were incubated for 3 h at 37°C 

under a humidified atmosphere of 5% CO2. Cell viability was determined using Pierce LDH 

cytotoxicity assay according to the manufacturer’s protocol.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Viabilities of CD2, CD1006, and CD1412 biofilms after a three-hour treatment with a) 

phytochemicals in 5 v/v% DMSO aqueous solution or b) NCs. This figure was illustrated 

using a 3-color limited mixing setting (blue: 0%, white: 100%, and red: 200%). Data points 

were averaged viability (n = 3) determined using Alamar Blue assay. Black bullets indicated 

MBEC90 if applicable.
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Figure 2. 
Viabilities of CD489 biofilms after a three-hour treatment with NCs. This figure was 

illustrated using a 3-color limited mixing setting (blue: 0%, white: 100%, and red: 200%). 

Data points were averaged viability (n = 3) determined using alamar-Blue assay. Black 

bullets indicated MBEC90 if applicable.
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Figure 3. 
Viabilities of 3T3 fibroblast cells after a three-hour treatment with NCs. This figure was 

illustrated using a 3-color limited mixing setting (blue: 0%, white: 100%, and red: 200%). 

Data points were averaged viability (n = 3) determined using LDH assay. Black bullets 

indicated GI50 if applicable.
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Scheme 1. 
a) Preparation of NCs loaded with different phytochemicals. DTDS, the biodegradable 

crosslinker, was dissolved in the selected phytochemical. This resulting oil solution was then 

emulsified into water in the presence of PONI-GMT to form cross-linked polymer-stabilized 

nanocomposites. This delivery strategy demonstrated improved antimicrobial activity against 

bacterial biofilms; b) Chemical structure of PONI-GMT; c) Chemical structure of DTDS; d) 

Cross-linked structure of NCs.
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Table 3

MICs (v/v%) against CD489.

Treatment
a Phytochemical Nanocomposites

CD489 (S. aureus, MRSA)

Eugenol 16 4

Linalool >32 16

Methyl eugenol 16 8

Carvacrol 32 4

p-cymene >32 >32

(+)-limonene >32 >32

α-pinene >32 32

Vancomycin 0.5 mg/L --

a
Bacteria were treated with phytochemical dissolved in 5 v/v% DMSO aqueous solution or NCs. Vancomycin was used as control. MIC 

experiments were performed using 15:85 TSB/M9 medium.
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