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Intronic polyadenylation (IpA) usually leads to changes in the coding region of anmRNA, and its implication in diseases has

been recognized, although at its very beginning status. Conveniently and accurately identifying IpA is of great importance

for further evaluating its biological significance. Here, we developed IPAFinder, a bioinformatic method for the de novo

identification of intronic poly(A) sites and their dynamic changes from standard RNA-seq data. Applying IPAFinder to

256 pan-cancer tumor/normal pairs across six tumor types, we discovered 490 recurrent dynamically changed IpA events,

some of which are novel and derived from cancer-associated genes such as TSC1, SPERD2, and CCND2. Furthermore, IPAFinder

revealed that IpA could be regulated by factors related to splicing and m6A modification. In summary, IPAFinder enables

the global discovery and characterization of biologically regulated IpA with standard RNA-seq data and should reveal the

biological significance of IpA in various processes.

[Supplemental material is available for this article.]

Alternative polyadenylation (APA) of mRNA is a widespread phe-
nomenon in diverse species, serving as an important contributor
to transcriptome diversity (Elkon et al. 2013; Tian and Manley
2017). There are different types of APA based on the location of
the polyadenylation (pA) site in anmRNA, such as 3′ untranslated
region APA (UTR-APA), coding region APA (CR-APA), and intronic
polyadenylation (IpA) (Tian andManley 2017). UTR-APA changes
the length of 3′ UTR, thereby altering RNA stability, translation ef-
ficiency, RNA localization, or even protein localization (Elkon et al.
2013; Berkovits and Mayr 2015; Tian and Manley 2017). Both
CR-APA and IpA introduce a premature termination signal and
lead to changes in either the coding sequence or the 3′ UTR of
the corresponding mRNA (Tian et al. 2007). Although UTR-APA
is widespread and involved in diverse biological processes (Mayr
and Bartel 2009; Chen et al. 2018), CR-APA and IpA are less prev-
alent and their biological functions are not well understood.
Recent studies have begun to highlight the biological significance
of IpA. For example, IpA diversifies immune cell proteomes via loss
of the C-terminal domain (Singh et al. 2018). Cancer cells use ab-
errant intronic pA sitesmore frequently than normal cells, and the
partial loss of function of tumor suppressor genes (TSGs) caused by
IpA can contribute crucially to tumorigenesis (Lee et al. 2018).
Intronic polyadenylation of Pdgfra produces a truncated protein
that inhibits PDGF signaling and protects mice from fibrosis
(Mueller et al. 2016). CDK12 suppresses IpA as a mode of regulat-
ing DNA repair genes, which is conserved in human tumors that
contain loss-of-function CDK12 mutations (Dubbury et al.

2018). These lines of evidence suggest that genome-wide IpA reg-
ulation may play a previously underestimated role in diverse bio-
logical processes and pathological conditions.

Conveniently and accurately identifying genome-wide IpA is
of great importance for further evaluating its biological signifi-
cance and regulatorymechanism. Although direct 3′-end sequenc-
ing of mRNA has provided invaluable insight into the global
landscape of APA including IpA (Shepard et al. 2011; Hoque
et al. 2013; Ni et al. 2013), it has not yet been widely adopted as
a routine study strategy, and consequently the availability of
such data is currently limited. Conversely, standard RNA-seq has
been used in a variety of physiological and pathological condi-
tions, and the amount of related data has increased exponentially
in the last decade. Some methods such as DaPars (Xia et al. 2014)
and QAPA (Ha et al. 2018) that use RNA-seq data to identify
UTR-APA have also been established. However, there is a strong
need for a bioinformatic method to de novo identify IpA and its
dynamic changes using standard RNA-seq data.

Tomeet this demand, we developed a novel bioinformatic al-
gorithm called IPAFinder to identify intronic pA sites and directly
infer dynamically changed IpA events by comparative analysis on
standard RNA-seq data from different conditions.

Results

IPAFinder identifies dynamically changed IpA events

IPAFinder performs de novo identification and quantification of
IpA events, without the need for any prior poly(A) site annotation.
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IpA events are usually classified into two groups: composite termi-
nal exon IpA (or composite IpA) and skipped terminal exon IpA (or
skipped IpA) (Supplemental Fig. S1A; Tian et al. 2007). Assuming
that there is an intronic poly(A) site (IPA site) used in a given in-
tron, IPAFindermodels the normalized RNA-seq read coverage pro-
files at single-nucleotide resolution and identifies the drop in
coverage to infer the potential IPA site, as reflected by the lowest
ratio of the sum of mean squared error (MSE) in the upstream
and downstream segments split by breakpoint and the MSE com-
puted for the entire intron region (RatioMSE) (Fig. 1A; for details,
see Methods). Such a strategy could detect composite IpA. To

detect skipped IpA (or splicing-coupled IpA), IPAFinder recognizes
cryptic 3′ splice sites by junction-spanning reads and concatenates
the preceding exon to the potential terminal exon (Supplemental
Fig. S1B). IPAFinder can also exclude alternative splicing events
such as alternative 5′ splice site and cryptic exon activation using
junction-spanning reads to remove potential false-positive events
when identifying IpA. Finally, the difference in IpA usage between
different conditions can be quantified as changes in the intronic
poly(A) site usage index (ΔIPUI), which can identify dynamically
changed IpA events. For example, IPAFinder identified ELP5 with
an increased usage of a composite IPA site in two lung cancer types
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Figure 1. Overview of the IPAFinder algorithm and evaluation of its performance. (A) Schematic diagram of IPAFinder in detecting composite terminal
exon IpA event. Intronic poly(A) site is determined based on the expected drop in read coverage downstream from the predicted poly(A) site. Alternative
splicing events are excluded by recognizing junction-spanning reads. (B,C) Two examples of IPAFinder-identified dynamically changed IpA events from
TCGA RNA-seq data. IpA usage of the ELP5 gene (B, composite IPA site) and ANOS1 gene (C, skipped IPA site) is increased in both lung squamous cell car-
cinoma (LUSC) and lung adenocarcinoma (LUAD) compared with that in matched normal tissues. Sample IDs are shown at the top right corner of the cor-
responding RNA-seq density plot. IPA site is indicated by a red arrow. (D) Performance of IPAFinder in detecting differentially used IPA sites in terms of
sensitivity and precision. The number of TPs, FPs, and predefined true differentially used IPA sites (Ps) are used to calculate sensitivity (TP/P) and precision
(TP/[TP + FP]). For each coverage level, we repeated 10 times to calculate the mean value of sensitivity and precision. For samples without replicates, two
methods, including a bootstrapping-based method and Fisher’s exact test–based method, were assessed. (E) Venn diagram comparison of the number of
recurrent up-regulated IpA events identified by IPAFinder and those by 3′-seq using the same data from CLL and immune cell samples. (F) An example of
dynamically changed IpA events (PDXDC1) between CLL samples and normal B cells detected by IPAFinder, which was absent in 3′-seq.
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compared with that in matched normal tissues (Fig. 1B). In addi-
tion, ANOS1 showed dynamic changes of splicing-coupled IpA in
lung cancers (Fig. 1C). The canonical polyadenylation signal
(PAS) AAUAAA exists upstream of both IPA sites (Supplemental
Fig. S2), which supports the authenticity of these intronic pA sites
identified by IPAFinder.

Evaluation of IPAFinder using simulated RNA-seq data

and experimental 3′-seq data

To assess the performance of IPAFinder, we first used simulated
RNA-seq data to test whether IPAFinder could accurately infer
intronic poly(A) sites. We created simulated data of 5000 genes,
of which 500 had a composite IPA site, 500 had a skipped IPA
site, 500 had a retained intron, 500 had an alternative 5′ splice
site, and the others were negative controls. IPAFinder could recov-
er ∼80% and ∼90% IPA sites at a sequencing coverage of 40× and
60×, respectively (Supplemental Fig. S3A). Furthermore,
IPAFinder could exclude the interference of alternative splicing
events such as alternative 5′ splice site and intron retention
(Supplemental Fig. S3B). Next, we evaluated the ability of
IPAFinder to detect dynamically changed IpA events. We simulat-
ed 3000 genes with different coverage in two conditions. Among
these genes, 500 had increasing usage of IPA sites (ΔIPUI > 0.1),
500 had decreasing usage of IPA sites (ΔIPUI <−0.1), and 2000
served as negative controls (|ΔIPUI| < 0.1). If a predicted differen-
tially used IPA site is within 100 bp of a predefined differentially
used IPA site, then the prediction is considered as a true positive
(TP); otherwise, it is considered a false positive (FP). For replicated
samples, IPAFinder could recover ∼80% differentially used IPA
sites at a sequencing coverage of 40× with a high precision (Fig.
1D). The performance of IPAFinder improved with the increase
of sequencing depth (Fig. 1D). For samples without replicates, we
used two methods including a bootstrapping-based method and
Fisher’s exact test–based method to statistically assess the signifi-
cance of difference for each IpA event between two conditions.
As shown, these two methods had comparable sensitivity, but
the Fisher’s exact test–based method had better precision (Fig.
1D). These results indicate that IPAFinder can infer and quantify
IPA sites across a very broad range of RNA-seq coverage levels.

Next, we compared IPAFinder-identified IpA events with
those found by 3′-seq. We analyzed 3′-seq and standard RNA-seq
data of normal and malignant B cells from patients with chronic
lymphocytic leukemia (CLL) (Lee et al. 2018). In their original
analysis, the investigators identified 330 recurrent up-regulated
IpA events through 3′-seq analysis, followed by validation with
standard RNA-seq. Inversely, we first predicted recurrent up-regu-
lated IpA events by applying IPAFinder to RNA-seq data, and
then used 3′-seq data to validate the results. IPAFinder inferred
306 recurrent up-regulated IpA events in malignant B cells com-
pared with those in normal ones, ∼84% (256) of which were also
found by the original analysis (Fig. 1E; Supplemental Fig. S4A). A
heatmap of these 256 IpA events also showed an overall increase
of IPA site usage in CLL samples, as reflected by lower MSE ratios
and higher IPUI values (Supplemental Fig. S4B), consistent with
the results reported by 3′-seq (Lee et al. 2018). These data support
the overall agreement between the IPAFinder results based on
RNA-seq and those based on 3′-seq. We then undertook a close in-
spection of those IpA events not overlapping between IPAFinder
and the original study (Lee et al. 2018). For IpA events specifically
identified by IPAFinder, we found that some genes did have up-
regulated IpA usage in malignant B cells, as exemplified by

PDXDC1 (Fig. 1F). The presence of a noncanonical poly(A) signal
AAUACA, a PAS variant ranking eighth among 18 known PASs
(Gruber et al. 2016; Ha et al. 2018), was observed upstream of
the predicted intronic pA site (Supplemental Fig. S5A,B). In addi-
tion, a clear drop in RNA-seq coverage at the pA site, which has
been used for IpA validation (Singh et al. 2018), was observed in
PDXDC1. The reduced usage of downstream exons of the intronic
pA site in PDXDC1was also detected in both CLL samples (Fig. 1F)
and other cancer types such as LUAD and LUSC (Supplemental Fig.
S5C–E). These lines of evidence combined to support the existence
and potential regulation of an IpA event in PDXDC1. For IpA
events specifically identified by 3′-seq, we found example genes,
such as SPTBN1, which had significantly up-regulated IpA usage
detected by 3′-seq but did not have significantly higher coverage
in the upstream region of the intronic pA site compared with
that in the downstream region (Supplemental Fig. S4C). As such,
IPAFinder could not detect it easily. Based on these results, we con-
clude that IPAFinder can reliably detect dynamic changes of IpA
events between different conditions using standard RNA-seq
resources.

IPAFinder identifies the global landscape of dynamic

IpA across tumor types

A previous study showed that IpA could inactivate tumor suppres-
sor genes via the up-regulation of truncated mRNAs and proteins
and thus contribute to tumorigenesis in CLL (Lee et al. 2018).
However, it remains unclear how common IpA-mediated up-regu-
lation of truncated mRNAs is in cancers. To examine whether it
also occurs in other cancer types, we use The Cancer Genome
Atlas (TCGA) database (which archives thousands of RNA-seq
data derived from multiple cancer types but lacks the 3′ end
sequencing data) for IpA analysis. We focused our analysis on six
tumor types—namely, lung adenocarcinoma (LUAD), lung squa-
mous cell carcinoma (LUSC), head and neck squamous cell carci-
noma (HNSC), prostate adenocarcinoma (PRAD), uterine corpus
endometrioid carcinoma (UCEC), and bladder urothelial carcino-
ma (BLCA), each of which has at least 19 tumor/normal pairs
(Supplemental Table S1).We identified 130–285 genes with signif-
icantly and recurrently (occurrence rate > 10%) changed IpA
events for each tumor type and found a total of 490 nonredundant
IpA events across the six tumor types (Fig. 2A; Supplemental Fig.
S6A,B; Supplemental Data S1). Furthermore, 56% of the 490
dynamically changed IpA events occurred in at least two tumor
types (Supplemental Fig. S6C), which indicates the presence of
mechanisms potentially acting in concert in IpA regulation across
tumor types. Consistent with the phenomenon in CLL, global up-
regulation of intronic polyadenylation was also prevalent in all six
cancer types (Fig. 2A). For IPAFinder-identified intronic pA sites,
45.5% are within 50 nt of the annotated ones compiled from
RefSeq, UCSC, Ensembl, and PolyASite 2.0 (Fig. 2B; Herrmann
et al. 2020). There is an ∼25-fold enrichment of annotated pA sites
in IPAFinder predictions compared with the level in random
controls. Enrichment of the canonical poly(A) signal AATAAA in
the ±50 bp flanking sequences of IPAFinder-identified intronic
pA sites (Fig. 2C) further supported the reliability of our method
in discovering IpA in the pan-cancer data sets (Bailey et al. 2009).

As mentioned above, intronic polyadenylation tends to dis-
rupt the coding region of anmRNA at different degrees depending
on the location at which it occurs.We thus evaluated the impact of
IpA on gene expression by computing the fraction of retained cod-
ing regions for each IpA isoform relative to the full-length
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annotated coding regions. An overrepresentation of IpA isoforms
that lose the majority of their coding regions was observed (Fig.
2D). The remaining IpA isoforms showed a relatively uniform dis-
tribution along the coding region (Fig. 2D).We found that introns
with splicing-coupled IpA events were longer than those with
composite IpA or no IpA events (Fig. 2E), consistent with the pre-
vious finding that a large intron size is a determining factor for IpA
events (Tian et al. 2007). A typical example is the AUH gene with a
splicing-coupled IpA event occurring in an extremely long intron
(Fig. 2F). These results indicate that IPAFinder can reveal the over-
all landscape of IpA in six cancer types.

Cancer-associated genes are regulated by intronic

polyadenylation

To evaluate the relevance of dysregulated IpA events during cancer
development, we performed domain analysis and survival analysis
on IpA-generated truncated proteins.We found that IpA events oc-

curring at different positions of coding regions all had the possibil-
ity of generating truncated proteins with important functional
impacts. The first example is TSC1, which is required to interact
with and stabilize TSC2 as the TSC1-TSC2 complex, and the GAP
domain on TSC2 hydrolyzes Rheb-GTP to Rheb-GDP, thereby in-
hibiting the activation of mTOR kinase (Garami et al. 2003;
Inoki et al. 2003; Chong-Kopera et al. 2006). We found that
TSC1 IpA was significantly up-regulated in LUAD, LUSC, and
HNSC compared with that in normal tissues (Fig. 3A,B). The IpA
isoform of TSC1 was predicted to generate a truncated protein
that loses theC-terminal coiled-coil domain (Fig. 3E), which is nec-
essary for heterodimerizing with TSC2 (van Slegtenhorst et al.
1998; Yang et al. 2021). Thus, the IpA-derived truncated protein
may fail to form a functional TSC1/2 complex and lead to the ab-
errant activation of mTOR kinase. To test this possibility, we tran-
siently cotransfected human HEK293T cells with full-length or
IpA-truncated HA-tagged TSC1 and FLAG-tagged TSC2. Then, we
performed immunoblot analysis to assess the phosphorylation of
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Figure 2. IPAFinder reveals the global landscape of IpA events across six TCGA tumor types. (A) IPAFinder discovers prevalent up-regulation of IpA events
across six tumor types. The upper histogram shows the number of dynamically changed IpA events per tumor. The lower heatmap shows IpA events (rows)
undergoing up-regulation (red) or down-regulation (blue) in each of the 256 tumors (columns) compared with the levels in matched normal tissues across
six tumor types. (B) Bar plots showing the percentages of IPAFinder-predicted breakpoints (left) and the randomly selected positions (right) that overlap
with annotated intronic pA sites (RefSeq, UCSC, Ensembl, PolyASite 2.0). The P-value was calculated by t-test using 100× bootstrapping of data. (C)
MEME identifies the enrichment of the canonical poly(A) signal AATAAA in the ±50 bp region around IPAFinder-inferred IPA sites. The corresponding ge-
nomic sequences (from human reference sequence hg38) serve as input. (D) The distribution of the retained coding region fraction (resulting from IpA
usage) of the annotated longest coding region (CDR). (E) Box plot for lengths of introns with skipped IpA, composite IpA, and introns without IpA.
The P-value was calculated based on a two-sided Wilcoxon rank-sum test. (F ) AUH as an example to display skipped IPA sites with increased usage in
two types of cancer (LUAD and HNSC) located in an extremely long intron. Sample IDs are shown at the top right corner of the corresponding RNA-
seq density plot.
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Figure 3. IpA generates truncated proteins with important functional impacts. (A) RNA-seq density plots showing that TSC1 has increased IpA usage in
lung cancers. Numbers on the y-axis indicate RNA-seq read coverage. Sample IDs are shown at the top right corner of the corresponding RNA-seq density
plot. (B) Box plots showing that TSC1 has significantly higher IpA usage in LUAD, LUSC, and HNSC tumors. The P-valuewas calculated based on a two-sided
Wilcoxon rank-sum test. (C) Immunoblot analysis of S6 phosphorylation in HEK293T cells with overexpression of the IpA and full-length (FL) isoform of
TSC1. Successful expression of HA-tagged IpA and full-length isoforms of TSC1 was confirmed by western blot using anti-HA and anti-FLAG antibodies
(left). Both total S6 protein and its phosphorylated form (P-S6) were also quantified by western blot (right). ACTB was used as an internal control.
Negative control (NC) means a sample without FLAG-TSC2-WT, HA-TSC1-FL, and HA-TSC1-IpA. (∗∗∗) P-value < 0.001, t-test. (D) Kaplan–Meier curves
of overall survival for two HNSC tumor groups stratified by the IpA usage of TSC1. The P-value was calculated using the log-rank test. (E) Diagrams showing
the domain information of full-length and IpA-generated truncated proteins, with known domains shown in green. The numbers of retained and novel
amino acids (aa) and amino acids of full-length proteins are given. The position of the important residue Thr280 of CCND2 is denoted by a short blue
line (p.Thr280). (F) RNA-seq density plots showing that SPRED2 has increased IpA usage in lung cancers. (G) CCK-8 assay showing that IpA-truncated
SPRED2 fails to inhibit cell proliferation in NCI-H520 cells. (∗∗∗) P-value < 0.001, t-test. (H) RNA-seq density plots showing that CCND2 has increased IpA
usage in lung cancers.
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S6, an indicator of mTOR kinase activation. Compared with full-
length TSC1-expressing cells, IpA-truncated TSC1 failed to inhibit
the phosphorylation of S6 (Fig. 3C), which indicates that the trun-
cated protein templated by the IpA isoform of TSC1 has impaired
function compared with its full-length version. Furthermore,
HNSC patients with higher IpA usage in TSC1were found to be as-
sociated with worse survival (Fig. 3D), which was consistent with
previous studies indicating that Tsc1 inactivation could promote
tumor progression in mice (Kladney et al. 2010; Sun et al. 2015).
The second example is the SPRED2 gene. SPRED2 inhibits the
MAP kinase pathway by suppressing the phosphorylation and ac-
tivation of RAF, in which both EVH-1 and SPR domains are essen-
tial (Wakioka et al. 2001; Nobuhisa et al. 2004). SPRED2 increased
the usage of intronic poly(A) sites in multiple cancers (LUAD,
LUSC, and HNSC) and thus produced more truncated transcripts
with low coding potential (resulting in noncoding RNA as predict-
ed by three different algorithms) (Fig. 3E,F; Supplemental Figs.
S7A, S8). Experimental validation showed that the truncated tran-
script of SPRED2 did not produce any protein in both HEK293T
andHeLa cells (Supplemental Fig. S7B). Consistent with this, over-
expression of the IpA isoform of SPRED2 failed to inhibit cell pro-
liferation, whereas the full-length version of SPRED2 did so in the
human lung cancer cell line NCI-H520 (Fig. 3G). HNSC patients
with higher IpA usage in SPRED2 were also associated with worse
survival (Supplemental Fig. S8C). The third example is CCND2,
which encodes cyclin D2. Cyclin D2 has been widely implicated
in cell-cycle transition and cellular transformation, and its overex-
pression is highly correlated with poor prognosis in various can-
cers (Takano et al. 1999, 2000). IPAFinder identified that CCND2
frequently used IpA to produce a new protein isoform in LUAD,
LUSC, and HNSC (Fig. 3H; Supplemental Fig. S9A–C). This IpA iso-
form loses the 3′ UTR miRNA repression sites (Mayr and Bartel
2009; Yang et al. 2020) as well as the important residue Thr280
(Fig. 3E), which can be phosphorylated by GSK3B and render cy-
clin D2 susceptible to ubiquitin–proteasome-mediated degrada-
tion (Mirzaa et al. 2014). Thus, increased IpA usage in CCND2
likely causes resistance to protein degradation, which results in
CCND2 accumulating to promote cell-cycle progression. In line
with this, the presence of CCND2 IpA was associated with worse
survival in LUSC (Supplemental Fig. S9D). These three examples
show that IPAFinder can identify functional IpA regulation in can-
cer-related genes.

Intronic polyadenylation can be influenced by factors related

to splicing and m6A modification

The fidelity of RNA splicing is regulated by an orchestration of
splicing enhancers and repressors, andmultiple RNA-binding pro-
teins (RBPs) can protect the transcriptome from the aberrant exo-
nization of transposable elements (Zarnack et al. 2013; Attig et al.
2018) and modulate cleavage and polyadenylation at poly(A) sites
where they bind (Licatalosi et al. 2008; Hilgers et al. 2012).
Applying IPAFinder to published RNA-seq data sets generated
from concurrent knockdown of PTBP1 and PTBP2 (Gueroussov
et al. 2015), two splicing factors preferentially binding to CU re-
peats (Oberstrass et al. 2005), we found that PTBP1/2 deficiency re-
sulted inmanymore up-regulated IpA events than down-regulated
ones, consistent with the findings of PTBP1/2 in repressing cryptic
exons in the original study (Fig. 4A,B). Sequence analysis con-
firmed the presence of adjacent CU microsatellites around these
activating poly(A) sites (Fig. 4C), which suggests the direct binding
of PTBP1/2. We also tested another RBP heterogeneous nuclear ri-

bonucleoprotein C (HNRNPC), which has been reported to modu-
late the processing of pre-mRNA 3′-ends (Gruber et al. 2016).
Applying IPAFinder to RNA-seq data sets of HEK293T cells ob-
tained upon the knockdown of this protein (Liu et al. 2015), we
found that the loss of HNRNPC also led to the widespread up-
regulation of IpA events, and the majority (72.1%) were skipped
IpA events (Fig. 4D,E). Sequence analysis of themajor IpA isoforms
showed that the density of (U)5 tracts, reported to be the binding
site for HNRNPC (König et al. 2010), was markedly higher around
cryptic 3′ splice sites whose usage increased uponHNRNPC knock-
down compared with those without apparent changes in usage
(Fig. 4F; Supplemental Fig. S10). Experimental validation support-
ed the up-regulation of IpA events upon knockdown of these RBPs
(Supplemental Fig. S11). Altogether, these results show that
PTBP1/2 and HNRNPC can protect pre-mRNAs from premature
cleavage and polyadenylation by inhibiting the usage of IPA sites.

To explore other factors regulating intronic polyadenylation,
we next applied IPAFinder to RNA-seq data derived from samples
with the knockdown of relevant RBPs. U2AF1 and U2AF2 are
two auxiliary factors for U2 small nuclear RNA, which bind to
the AG dinucleotide and polypyrimidine tract of the 3′ splice
site, respectively, to facilitate splice site recognition (Zamore
et al. 1992;Wuet al. 1999).Multiple studies have reported links be-
tween splicing and 3′-end processing (Kyburz et al. 2006; Millevoi
et al. 2006). Thus, we explored whether these two splicing factors
could impact intronic pA site usage by analyzing our custom-made
RNA-seq data derived from human foreskin fibroblasts (HFFs) with
the knockdown of U2AF1 or U2AF2. We found that depletion of
U2AF1 or U2AF2 globally increased the usage of intronic pA sites
(Fig. 5A–D), consistent with a previous analysis of 3′-seq data
showing that the knockdown of U2af2 in mouse C2C12 myoblast
cells led to the overall up-regulation of IpA events (Li et al. 2015).
For skipped IPA sites with increased usage upon the knockdown of
U2AF1 orU2AF2, the splicing strength of their cryptic 3′ splice sites
was significantly weaker than that of downstream 3′ splice sites
(Supplemental Fig. S12A). Furthermore, intronic pA sites with in-
creased usage showed considerable overlap between U2AF1-KD
and U2AF2-KD samples (Supplemental Fig. S12B,C), suggesting
the potential coordination of these two factors in regulating IpA.
In line with the similarity in IpA level changes between U2AF1-
KD and U2AF2-KD samples, we also found that both U2AF1-KD
and U2AF2-KD could lead to senescence-associated phenotypes
at the cellular level (Supplemental Fig. S13; Yao et al. 2020).
Although the causal relationship between IpA and senescence de-
serves further investigation, we did reveal that U2AF1 and U2AF2
have a genome-wide effect on intronic poly(A) site selection.

N6-methyladenosine (m6A) has been identified as the most
abundant modification that ubiquitously occurs in eukaryotic
mRNAs and affects multiple aspects of mRNA metabolism includ-
ing alternative splicing (Yang et al. 2018). However, whether fac-
tors related to m6A modification affect IpA is unclear. Applying
IPAFinder to RNA-seq data derived from HeLa cells deficient in
YTHDC1, the only known m6A reader in the nucleus that has
been reported to regulate splicing (Xiao et al. 2016), we found
that YTHDC1 deficiency led to increased IPA site usage (Fig. 5E).
Furthermore, IPA sites with increased usage upon YTHDC1 knock-
down had considerable overlap with those upon SRSF3 knock-
down (Supplemental Fig. S14), consistent with previous findings
that YTHDC1 and SRSF3 interact with each other to regulate
mRNA splicing and 3′ UTR length (Xiao et al. 2016; Kasowitz
et al. 2018). In addition, analyzing RNA-seq data derived from
HEK293T cells deficient in METTL3, a methyltransferase
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implicated in placing m6A on RNA (S ́ledz ́ and Jinek 2016), we
found that the loss of METTL3 also changed the IPA site usage,
but the numbers of up-regulated or down-regulated IpA events
were relatively equal (Fig. 5G). Example genes with changed IpA
usage upon knockdown of either YTHDC1 or METTL3 are shown
(Fig. 5F,H). However, it should be kept in mind that it is currently
unclear whether the regulation is directly mediated by m6A mod-
ification, which warrants further investigation. These results indi-
cate that IpA events have a complex regulatory system, and
IPAFinder is a valuable tool capable of discovering IpA events
from RNA-seq data sets of varied sources, which would also facili-
tate screening for regulators involved in IpA determination.

Comparison of methods for analyzing IpA

IPAFinder was inspired by DaPars, which identifies the breakpoint
that can best explain the localized read-density change to perform
de novo identification and quantification of dynamic UTR-APA
eventsusing standardRNA-seq (Xia et al. 2014).However, IpA iden-
tification is more complicated than UTR-APA and could be inter-
fered with by at least three events, including cryptic exon
activation, alternative5′ splice site, and intron retention. IPAFinder

uses BAM format as the input file, which
contains splice junction information,
and considers most of the interference
factors to improve the identification of
IpA events (Supplemental Fig. S15). We
also compared IPAFinder with APAlyzer,
which analyzes intronic polyadenylation
by using RNA-seq data based on known
poly(A) sites (such as those annotated in
the PolyA_DB database) (Wang et al.
2018; Wang and Tian 2020). Applying
APAlyzer to RNA-seq data sets obtained
upon HNRNPC-KD, we observed wide-
spread usage changes of intronic poly(A)
sites according to their suggested cutoff
(P-value< 0.05, using t-test for signifi-
cance analysis) (Supplemental Fig.
S16A). Intronic poly(A) sites with in-
creased usage upon HNRNPC-KD ana-
lyzed by IPAFinder and APAlyzer had
considerable overlap (Fig. 6A). However,
IPAFinder could identify dynamic IPA
sites that were not annotated by the Poly-
A_DB database, as exemplified by the IPA
sitesofRAD52andPTBP2 inHNRNPC-KD
condition (Fig. 6B). IPAFinder could infer
upstream splice sites by recognizing junc-
tion reads and quantify the usage of cor-
responding skipped IPA sites accurately,
as exemplified by the gene PPP1R12C
(Fig. 6B). Sequence analysis showed that
(U)5 tracts existed in the flanking region
of these three IPAsites (Fig. 6C),which in-
dicated the direct binding of HNRNPC
(König et al. 2010). Although IPAFinder
and APAlyzer have different criteria for
calling differential IpA events, they have
a relatively consistent trend in quantify-
ing the usage of IPA sites (Supplemental
Fig. S16 B,C). Overall, IPAFinder is a spe-

cialized tool for de novo IpA analysis that is distinct from existing
methods such asAPAlyzer.Different tools have their own strengths
andweaknesses (Supplemental Table S2), andusersmayneed to ap-
ply multiple programs in their research to obtain comprehensive
and complementary results.

Discussion

In this study, we developed IPAFinder, a method for the de novo
identification of intronic poly(A) sites and dynamically changed
IpA events from standard RNA-seq data. Multiple lines of evidence
support the reliability of IPAFinder. Applying IPAFinder to 256
pan-cancer tumor/normal pairs across six tumor types archived
in TCGA revealed 490 recurrently changed IpA events, among
which there were genes with novel IpA regulation, such as TSC1,
SPERD2, and CCND2. Furthermore, genes harboring dynamic
IpA events were found being enriched in TSGs but not in the on-
cogenes (Supplemental Fig. S17A). In additional tumor samples
(without matched normal tissues), we also found well-known
TSGs (NF1, PTEN, and CDH1) with increased IPA site usage (Sup-
plemental Fig. S17B). Thus, IPAFinder should help to reveal poten-
tial IpA events playing roles in diverse physiological and
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Figure 4. PTBP1/2 and HNRNPC inhibit the usage of IPA sites. (A) Scatterplot of IPUI value reflecting
the relative IpA usage before and after concurrent knockdown of PTBP1 and PTBP2 (PTBP1/2-KD) in
HEK293 cells. Red and blue dots represent genes with increased and decreased IpA usage upon knock-
down of PTBP1/2, respectively. (B) Representative examples of IpA events repressed by PTBP1/2. Both the
skipped IpA event (top) and the composite IpA event (bottom) are shown. (C ) Sequences flanking exam-
ple IPA sites repressed by PTBP1/2 have CU repeats (red) and poly(A) signals (blue). Five genes with a
skipped terminal exon (top) and five genes with a composite terminal exon (bottom) are shown. The first
bases of skipped terminal exons are denoted by enlarged characters. (D) Scatterplot of IPUI value reflect-
ing the relative IpA usage before and after knockdown of HNRNPC (HNRNPC-KD) in HEK293T cells. Red
and blue dots represent genes with increased and decreased IpA usage in HNRNPC-KD cells, respectively.
(E) Representative examples of HNRNPC-repressed IpA events. (F) Sequences flanking example IPA sites
repressed by HNRNPC have (U)5 tracts (red) and poly(A) signals (blue).
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pathological processes by exploiting the huge amount of standard
RNA-seq data.

RNA-seq data tend to have coverage biases that are more
predominant in untranslated region, and we can observe this
phenomenon in both real and simulated RNA-seq data
(Supplemental Fig. S18). Many well-developed methods (such as
DaPars, APAtrap, and PAQR) (Xia et al. 2014; Gruber et al. 2018;

Ye et al. 2018), which de novo infer inter-
nal poly(A) sites in 3′ UTR from standard
RNA-seq data, are based on theMSEmod-
el, regardless of potential coverage bias in
3′ UTR. It is difficult todetect poly(A) sites
from RNA-seq data at single-nucleotide
precision, thus some degree of flexibility
(e.g., 100 nt for IPAFinder) is used to
match predicted poly(A) sites to the an-
notated ones (Supplemental Fig. S3).
Although 3′-end sequencing strategies
such as 3′-seq coupled with dedicated
bioinformatic pipelines can identify IPA
sites and detect changes in IPA site usage
between different conditions, they are
less extensively used in diverse biological
processes than standard RNA-seq. In ad-
dition, standard RNA-seq has multiple
advantages in detecting intronic pA sites
comparedwith 3′-seq: (1) RNA-seq covers
the whole gene body and thus junction
reads can be used to distinguish skipped
IPA sites from composite IPA sites; and
(2) the use of RNA-seq to infer IPA sites
can avoid the interference of internal
priming according to continuous up-
stream read coverage for composite IPA
sites and junction-spanning reads for
skipped IPA sites.

U1 snRNP can protect pre-mRNAs
from drastic premature termination
by cleavage and polyadenylation at cryp-
tic polyadenylation signals in introns
(Kaida et al. 2010; Berg et al. 2012).
Applying IPAFinder to publicly availa-
ble RNA-seq data derived from HeLa
cells upon treatment of U1 Antisense
Morpholino Oligonucleotide (AMO)
(Oh et al. 2017), which has been shown
to pair efficiently with U1 snRNA and
thereby functionally inhibit U1 snRNP,
we found that U1 AMO treatment global-
ly increased the usage of IPA sites
(Supplemental Fig. S19). These data sup-
port the ability of IPAFinder in detecting
the usage changes of cryptic IPA sites.

We also compared a bootstrapping-
based method with a Fisher’s exact test–
based method by analyzing RNA-seq
data set obtained by knockdown of
HNRPNC (merge two replicates as one
sample). The bootstrapping-based meth-
od identified 197 significantly up-regu-
lated IpA events, whereas the Fisher’s
exact test–based method identified 279

up-regulated IpA events; up-regulated IpA events identified by
these two methods had considerable overlap (Supplemental Fig.
S20A). Furthermore, we found that the bootstrapping-basedmeth-
od is sensitive to IpA events whose usage difference is relatively
large (Supplemental Fig. S20B), as exemplified by IpA events of
genes ZCCHC4 and VPS4B (Supplemental Fig. S20C). By compar-
ingwith up-regulated IpA events identified by theDEXSeqmethod
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Figure 5. IPAFinder reveals that intronic polyadenylation can be influenced by factors related to splic-
ing and m6A modification. (A,C,E,G) Scatterplot of IPUI values reflecting the relative IpA usage in cells
with knockdown (KD) of U2AF1 (A, in HFF cell), U2AF2 (C, in HFF cell), YTHDC1 (E, in HeLa cell), or
METTL3 (G, in HEK293T cell). Red and blue dots represent genes with increased and decreased IpA usage
upon knockdown of corresponding genes. (B,D,F,H) Representative RNA-seq density plots for genes with
significantly increased IpA usage upon knockdown of U2AF1 (B), U2AF2 (D), YTHDC1 (F ), orMETTL3 (H).
Each knockdown condition has two IpA examples: the composite terminal exon IpA (top) and the skipped
terminal exon IpA (bottom).
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on replicated samples (Anders et al. 2012), we found that the
Fisher’s exact test–basedmethod could identify more up-regulated
IpA events supported by the DEXSeq method than the bootstrap-
ping-based method (174 vs. 118). Up-regulated IpA events identi-
fied by the Fisher’s exact test–based method have higher fraction
supported by the DEXSeq method than those identified by the
bootstrapping-basedmethod (62.4% vs. 59.9%). Thus, for samples
without replicates between two conditions, users could try both
these two statistical methods in their research to obtain compre-
hensive and complementary results.

In conclusion, the IPAFinder method should open up a new
avenue for discovering IpA events and changes in their usage in
numerous biological processes using standard RNA-seq data. This
should help to reveal the functional roles of IpA in diverse
conditions.

Methods

IPAFinder algorithm

IPAFinder performs de novo identification and quantification of
dynamically changed IpA events between two conditions, regard-
less of any prior poly(A) site annotation. Assuming that there is an
intronic pA site used in a given intron, there will be a significant
drop in RNA-seq read coverage because of polyadenylation pro-
cessing. Thus, IPAFindermodels the normalized RNA-seq read cov-
erage at single-nucleotide resolution and progressively segments
the intron region into two regions with distinct mean coverage.
This enables inference of the potential intronic poly(A) site, where
the squared deviation decreases most from the mean coverage of
the intron when dividing the segment into two regions compared
with considering it as a single segment. IPAFinder separately calcu-
lates the MSE of read coverage for upstream (MSEu) and down-
stream (MSEd) segments split by every point in the intron region
and compares the sum of MSEu and MSEd (MSEu+MSEd) with the
MSE computed for the entire intron region (MSEe). The ratio of
the sum of MSEu and MSEd to MSEe is defined as RatioMSE (Fig.
1A) and, if the lowest value of RatioMSE≤0.5, a cutoff used to infer
internal poly(A) site in 3′ UTR by a previous study (Gruber et al.
2018), the corresponding breakpoint is considered as a potential
intronic poly(A) site. In addition, the mean coverage in the up-
stream region of the candidate poly(A) site must be higher than
that in the downstream region. Alternative splicing events such

as alternative 5′ splice site may also
have similar segmentation breakpoints,
so we exclude those breakpoints where
there are splice sites supported by junc-
tion-spanning reads around them. If the
given intron has no composite terminal
exon IpA event, IPAFinder next searches
for whether it has a skipped terminal
exon IpA event (Supplemental Fig. S1B).
We regard a splice site in an internal in-
tron as a cryptic 3′ splice site if it is sup-
ported by more than 10 splice junction
reads or >10% of upstream 5′ splice site
junction reads. Then, we concatenate
the preceding exon to this potential
skipped terminal exon and identify the
best segmentation breakpoint in the
newly formed narrowed intron region,
as performed for the composite terminal
exon. Alternative splicing events such as
cryptic exon activation are also excluded

by recognizing junction-spanning reads.
IPAFinder could also detect multiple IPA sites in a single in-

tron. IPAFinder first infers the breakpoint with the lowest
RatioMSE in the entire intron region. If there is an alternative
intronic poly(A) site in the inferred terminal exon, another drop
in RNA-seq read coverage inside the terminal exonwill be observed.
Similarly, the alternative used pA site allows the best segmentation
of the terminal exon into upstream and downstream regions with
distinct coverage. Therefore, IPAFinder can infer its location by cal-
culating the ratio of MSE recursively (Supplemental Fig. S21A). The
alternative intronic poly(A) sites of SPRED2 are identified in such a
strategy (Supplemental Fig. S21B,C).

Once the intronic poly(A) sites have been identified, library
size-normalized expression levels and relative usage of IPA sites
are calculated. We define the intronic poly(A) site usage index
(IPUI) to quantify the relative IpA usage for sample j as follows:

IPUI = Ej
IPA

Ej
IPA + Ej

FL

= Ej
IPA

Ej
CPE

, (1)

where Ej
IPA, Ej

FL, and Ej
CPE are the estimated expression levels of IpA

isoform, full-length isoform, and constitutive preceding exon lo-
cated upstream of the IPA site for a given sample ( j), respectively.
In principle, Ej

CPE is equal to the sumof Ej
IPA and Ej

FL (Supplemental
Fig. S22).

For samples with replicates, to detect differential usage of IpA
isoform between two conditions, we examined the difference in
relative usage of terminal exon inferred by IPAFinder. We applied
DEXSeq tomodel the read counts of all exons across conditions by
negative binomial distribution and tested for the significance of an
interaction term between exon and condition (Supplemental Fig.
S23; Anders et al. 2012). We defined an IpA isoform to be signifi-
cantly differentially used if its corresponding terminal exon usage
is significantly different between two conditions (FDR-adjusted
P-value<0.05) and the difference of IPA site usage is more than
0.1 (|ΔIPUI| > 0.1).

For samples without replicates, such as paired tumor-normal
samples fromTCGA, we used Fisher’s exact test to infer differential
usage of IpA isoform between conditions, which is a similar ap-
proach taken by previous methods for detecting 3′ UTR-APA
events (Xia et al. 2014; Guvenek and Tian 2018). We defined an
IpA isoform to be significantly differentially used if its FDR-adjust-
ed P-value<0.05 and |ΔIPUI| > 0.1.

BA

C

Figure 6. Comparison between IPAFinder and APAlyzer. (A) Venn diagram illustrating the overlap of
up-regulated IpA events upon HNRNPC-KD identified by IPAFinder and APAlyzer, respectively. (B)
Representative RNA-seq tracks for genes with increased IpA usage inferred by IPAFinder but not
APAlyzer. (C) Sequence flanking three IPA sites shown in B have (U)5 tract (red) and poly(A) signal
(blue). The first bases of skipped terminal exons are denoted by enlarged characters.
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Wealso provided a bootstrapping-basedmethod to statistically
assess the significance of difference for each IpA event between two
samples without replicates, which is inspired by the significance
analysis of alternative polyadenylation (SAAP) method (Li et al.
2015). Briefly, for an IpA event from two comparing samples, IPUI
was first calculated and was called observed IPUI. Then we sampled
reads based on the assumption that the relative abundance of each
IpA isoform was the same in two samples. Sampling was performed
m times (default m=20) to obtain mean and standard deviation of
IPUI, which were then used to convert observed IPUI to Z-score.
False discovery rate (FDR) andQ-valuewere calculatedby comparing
observed Z (Zo) of IPUI and expected Z (Ze) of IPUI for a given Z cut-
off value (Zc). The Q-value for an IpA event x is the FDR using the
absolute value of its Zo (Zox) as Zc. We used Q-value<0.05 and
|ΔIPUI| > 0.1 to select significantly differential IpA events.Weupdat-
ed our pipeline inGitHub to indicatewhich option the users should
choose for samples with or without replicates.

Data download

All the TCGA RNA-seq BAM files for tumor and matched normal
samples were obtained from the Genomic Data Commons (GDC)
Data Portal (https://portal.gdc.cancer.gov/). Here, we processed
LUAD, LUSC, HNSC, UCEC, BLCA, and PRAD cancers. Other pub-
licly available raw sequencing data of 3′-seq and RNA-seq, including
those derived fromnormal immune cells (Singh et al. 2018) andma-
lignant B cells (Lee et al. 2018) from patients with chronic lympho-
cytic leukemia (CLL) (Gene Expression Omnibus [GEO; https://
www.ncbi.nlm.nih.gov/geo/] accession numbers GSE111310
and GSE111793), PTBP1/2 knockdown in HEK293 cells (GEO:
GSE69656) (Gueroussov et al. 2015), HNRNPC knockdown and
METTL3 knockdown in HEK293T cells (GEO: GSE56010) (Liu
et al. 2015), YTHDC1 knockdown and SRSF3 knockdown in HeLa
cells (GEO: GSE71095) (Xiao et al. 2016),U2AF1 knockdown inHFF
cells (BioProject [https://www.ncbi.nlm.nih.gov/bioproject] acces-
sion number PRJNA565612) (Yao et al. 2020), and U1 inhibition
in HeLa cells (GEO: GSE135140) (So et al. 2019), were obtained
from NCBI.

RNA-seq and 3′-seq data analyses

Among the raw paired-end reads obtained from RNA-seq experi-
ments, low-quality reads were filtered out, followed by alignment
to the human reference genome sequence (UCSC hg38 assembly)
using STAR (Dobin et al. 2013) with the default settings. Analysis
of the 3′-seq data was performed as described previously (Singh
et al. 2018). The peaks were assigned to RefSeq-annotated genes
(downloadedon January 1, 2020). Isoformswith an expressed level
of at least three transcripts permillionmapped reads (TPM) and us-
age of at least 0.1 in at least one sample were used for subsequent
analyses. We only analyzed IpA isoforms of protein-coding genes.

Benchmarking of IPAFinder using simulated RNA-seq data

We first generated a synthetic RNA-seq data set to assess the perfor-
mance of IPAFinder to infer intronic poly(A) sites from standard
RNA-seq data. To simulate the different coverage levels, baseline
coverage for each gene was uniformly sampled between 20× and
80×. An “n×” coverage means that an exonic genomic locus is cov-
ered by n reads on average. The usage of IpA isoform or alternative
splicing isoform was uniformly sampled from a usage range
(40%–60%). We also evaluated the ability of IPAFinder to detect
dynamically changed IpA events at different levels of sequencing
coverage between two conditions. IPUI values for each gene were
randomly sampled until the conditions outlinedweremet. For sam-
ples with replicates, three replicates per condition were generated

using negative binomial distribution. The R package polyester was
applied to simulate paired-end 100-nt reads from the human ge-
nome (hg38) with the default parameters (Frazee et al. 2015). We
provided the full-length transcript structure for IPAFinder to infer
and quantify IPA sites based on the synthetic RNA-seq data set.

Comparison between IPAFinder-analyzed RNA-seq

and custom-analyzed 3′-seq
A total of 330 recurrent CLL-IpA events were obtained from the
data sets of Lee et al. (2018). When IPAFinder was applied to
RNA-seq data, an IpA isoform was considered as a recurrently up-
regulated IpA isoform if it had significant up-regulation in at least
three malignant B cell samples (11 samples in total) compared
with the level in normal immune cell samples. With this criterion,
we obtained 306 recurrently up-regulated IpA events. A lower
RatioMSE value means that there is a better coverage segmentation
point in the given intron region. Thus, CLL samples with a larger
number of CLL-IpA events as reported by the original publication
(including CLL4, CLL7, CLL11, and CLL12) have more low
RatioMSE values than samples with a smaller number of CLL-IpA
events or normal samples (Supplemental Fig. S4B), which suggests
that RatioMSE is a rational index for identifying potential intronic
poly(A) sites. Furthermore, CLL samples with a larger number of
CLL-IpA events have higher IPUI (Supplemental Fig. S4B), consis-
tent with previous results (Lee et al. 2018), which indicates that
IPUI is also a rational index for quantifying IpA isoform usage.

Motif frequency analysis

The genomic sequences (from the human reference sequence
hg38) of 200 nt upstream of and downstream from the cryptic 3′

splice sites were used for motif analysis. The frequency of
HNRNPC binding motif (U)5 tracts was calculated by counting
the number of (U)5 motifs (smoothened by ±5 nt centered on
the position of interest) along these specified annotation features.

Clinical significance analysis of IpA usage

We obtained clinical information including overall survival time
of patients from the GDC data portal (https://portal.gdc.cancer
.gov/). A log-rank test andKaplan–Meier survival analysis were per-
formed to identity the association between intronic pA site usage
and overall survival. For the gene TSC1, groups with high and
low IpA usage were separately used for a survival plot by splitting
the ordered IPUI with an equal number of samples in each group.
For the gene CCND2, patients whose CCND2 IpA usage is greater
than 0.1were grouped into patients withCCND2 IpA. All statistical
analyses were performed in R (v.3.5.1) (R Core Team 2018).

RT-PCR validation of up-regulated IpA isoforms upon

knockdown of RBPs

Endogenous PTBP1 and HNRNPC were knocked down using
pLKO.1-puro lentiviral vector-based shRNAs (Sigma-Aldrich).
HEK293T cells were transduced in six-well plates using
Lipofectamine 2000 (Invitrogen). Virus was produced using the
helper plasmids VSVG and gag/pol. After infection over 36 h,
the cells were selected with puromycin (2.5 μg/mL) for 2 d and
the surviving cells were cultured for two more days and then col-
lected for RT-PCR analysis.

Total RNA was extracted with TRIzol reagent (Invitrogen) ac-
cording to themanufacturer’s instruction. RNAwas reversely tran-
scribed using the FastKing RT Kit (with gDNase; Tiangen). Twenty
microliters cDNA product was diluted fivefold and 2 µL diluted
cDNA was used as the template for each semiquantitative RT-
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PCR reaction. We used a typical reaction containing 500 nM for-
ward and reverse primers for individual isoforms. The PCR reaction
products were analyzed by gel electrophoresis. Primers are listed in
Supplemental Table S3.

Vector construction

The full-lengthTSC1, TSC2, and SPRED2mRNAwas amplified from
HEK293T cDNA. Plasmids for the expression of full length of HA-
TSC1 (ENSG00000165699, 1164aa), FLAG-TSC2 (ENSG0000010
3197, 1807aa), and HA-SPRED2 (ENSG00000198369, 418aa) were
constructed by cloning full-length CDS of TSC1, TSC2, and SPRED2
into thepRK5vectorwith either FLAGorHA tag at theirN terminus.
TSC1 IpA was PCR-amplified from two fragments. Fragment 1 was
amplified from HEK293T cDNA and corresponds to amino acids
1–421, whereas fragment 2 was amplified from genomic DNA of
HEK293T and corresponds to intronic sequence upstreampredicted
IPA site.

To construct the pCDH-SPRED2 plasmid, full-length CDS of
SPRED2 cloned from HEK293T cDNA was inserted into the pCDH-
CMV-MCS-T2Apuro plasmid using EcoRI/BamHI restriction sites.
SPRED2 IpA was also PCR-amplified from two fragments. Fragment
1was amplified fromHEK293T cDNA and corresponds to amino ac-
ids 1–68, whereas fragment 2was amplified fromgenomicDNAand
corresponds to intronic sequence upstream predicted IPA site. The
integrity of all constructs was confirmed by Sanger sequencing.

Western blotting

Cells were rinsed with PBS and lysed in cold RIPA buffer (25 mM
Tris at pH 7.6, 150mMNaCl, 1%NP-40, 1% sodiumdeoxycholate,
0.1% SDS) containing freshly added Protease and Phosphatase
Inhibitor Cocktail, EDTA-free (Thermo Fisher Scientific). Cell ly-
sates were incubated on ice for 10 min, and centrifuged at
14,000g for 15 min at 4°C. The supernatant was collected and
the protein concentration was determined by Bicinchoninic Acid
(BCA) assay (Beyotime). A total of 20 μg protein per sample was re-
solved by 10% SDS-PAGE, followed by transfer to a PVDF mem-
brane with pore size 0.2 μm (Millipore) for immunoblotting.
Quantification was performed by densitometry using ImageJ soft-
ware, and ACTB served as internal control.

The following primary antibodies were used: anti-ACTB (pro-
teintech HRP-60008, 1:2000), Anti-phospho-S6 ribosomal protein
(Cell Signaling Technology 2215S, 1:2000), Anti-S6 ribosomal
protein (Cell Signaling Technology 2217S, 1:2000), anti HA-Tag
(ABclonal AE008, 1:2000), and Mouse anti DDDDK-Tag
(ABclonal AE005, 1:2000). The secondary antibodies used includ-
ed HRP Goat Anti-Rabbit IgG (H+L) (ABclonal AS014, 1:5000)
and HRP Goat Anti-Mouse IgG (H+L) (ABclonal AS003, 1:5000).

Cell proliferation assay

Cells were counted and seeded in 96-well plates with 2000 cells per
well and four replicates for each time point. Cell Counting Kit-8
(CCK-8) reagent (Dojindo) was diluted with medium according
to the manufacturer’s protocol and then added to each testing
well. Then, cells were incubated for another 2 h at 37°C, and
then the absorbance of each well was measured at 450 nm by a
microplate reader (Bio-Rad).

Data access

The IPAFinder method is freely available at GitHub (https://github
.com/ZhaozzReal/IPAFinder) and as Supplemental Code. The
U2AF2-KDRNA-seq data generated in this study have been submit-
ted to the NCBI BioProject database (https://www.ncbi.nlm.nih
.gov/bioproject/) under accession number PRJNA660570.
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