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Abstract

Introduction: Drug safety research asks causal questions but relies on observational data. 

Confounding bias threatens the reliability of studies using such data. The successful control of 

confounding requires knowledge of variables called confounders affecting both the exposure and 

outcome of interest. Causal knowledge of dynamic biological systems is complex and challenging. 

Fortunately, computable knowledge mined from the literature may hold clues about confounders. 

In this paper, we tested the hypothesis that incorporating literature-derived confounders can 

improve causal inference from observational data.

Methods: We introduce two methods (semantic vector-based and string-based confounder 

search) that query literature-derived information for confounder candidates to control, using 

SemMedDB, a database of computable knowledge mined from the biomedical literature. 

These methods search SemMedDB for confounders by applying semantic constraint search for 

indications treated by the drug (exposure), that are also known to cause the adverse event 

(outcome). We then include the literature-derived confounder candidates in statistical and causal 

models derived from free-text clinical notes. For evaluation, we use a reference dataset widely 

used in drug safety containing labeled pairwise relationships between drugs and adverse events 
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and attempt to rediscover these relationships from a corpus of 2.2M NLP-processed free-text 

clinical notes. We employ standard adjustment and causal inference procedures to predict and 

estimate causal effects by informing the models with varying numbers of literature-derived 

confounders and instantiating the exposure, outcome, and confounder variables in the models with 

dichotomous EHR-derived data. Finally, we compare the results from applying these procedures 

with naive measures of association (χ2 and reporting odds ratio) and with each other.

Results and Conclusions: We found semantic vector-based search to be superior to string

based search at reducing confounding bias. However, the effect of including more rather than 

fewer literature-derived confounders was inconclusive. We recommend using targeted learning 

estimation methods that can address treatment-confounder feedback, where confounders that also 

behave as intermediate variables, and engaging subject-matter experts to adjudicate the handling 

of problematic confounders.

Keywords

Confounding bias; Confounder selection; Causal inference; Electronic health records; 
Pharmacovigilance

1. Introduction

This paper introduces a framework for automating causal inference from observational 

data by exploiting computable knowledge mined from the literature. Observational data, or 

data collected in non-randomized settings, contain a wealth of information for biomedical 

research. Such data are vital in settings where randomized controlled trials are infeasible, 

such as is the case with drug safety research.

A primary goal of drug safety (or pharmacovigilance) research is to prioritize associations 

empirically to the extent that drug / adverse event associations may be causal or 

stochastically determinative in nature. Associations that are more likely to be genuinely 

causative should be prioritized for review. Unfortunately, confounding, endemic to such 

data, can induce misleading, non-causal associations. While the research question defines 

the exposure and outcome variables, the decision of which covariates to adjust for falls 

to the investigator. Classical criteria mandate for the inclusion of all covariates correlating 

significantly with the exposure and the outcome [1]. Unfortunately, such an approach can 

introduce covariates that amplify bias rather than reduce it [2, 3, 4].

Recently, to address the issue of problematic covariates, researchers have enumerated 

criteria for identifying adjustment sets emphasizing the role of causal knowledge for 

identifying covariates to reduce bias [5]. Unfortunately, since such expertise cannot scale 

to all available human knowledge, it is infeasible to rely solely on human experts. 

Consequently, the problem of how to access causal knowledge has been noted as an open 

research question [6]. Fortunately, knowledge resources and methods exist that could be 

useful for guiding the selection of confounders. The Semantic MEDLINE database, or 

SemMedDB, is one such resource [7]. The information in SemMedDB consists of pairs of 

biomedical entities, or concepts, connected by normalized predicates, e.g., “aspirin TREATS 

headache.” We introduce and test methodological variants that combine computable 
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knowledge with observational data. Our methods query literature-derived computable 

knowledge to identify confounder candidates for incorporation into statistical and graphical 

causal models. The idea is to use existing knowledge from previous discoveries to catalyze 

causal inference and discovery from observational data. We then use these models to 

perform statistical and causal inference from data extracted from a corpus of EHR-derived 

free-text clinical narratives.

The purpose of this research is to investigate the extent to which computable knowledge 

may be useful for informing causal inference. To that end, we introduce and test two 

methods for accessing background knowledge to help reduce confounding bias: string-based 

and semantic vector-based search. These methods are qualitatively distinct in how they 

store, represent, and retrieve information. We also explore whether or not knowledge 

representation affects performance, given how concepts are prioritized by the confounder 

search methods in search results. We also ask how varying the amount of literature

derived information affects bias reduction. Finally, we compare using effect estimates from 

literature-informed causal models with traditional logistic regression adjustment procedures.

2. Background

With nearly half of the US population having been prescribed a prescription drug in any 

given month, the vast number of drug exposures drives the high prevalence of adverse 

events [8]. The annual financial cost of adverse event-related morbidity in the United 

States was estimated at 528.4 billion in 2016 alone [9], while another study noted that 

16.88% of hospitalized patients experience an adverse drug reaction [10]. An adverse 

drug reaction is defined as an “appreciably harmful or unpleasant reaction, resulting from 

an intervention related to the use of a medical product” [11], and is distinguished from 

other adverse events by the demonstration of a causal link to a drug. The discipline 

that helps adjudicate causal links between drugs and harmful side-effects is known as 

pharmacovigilance. Pharmacovigilance encompasses the development of procedures for 

collecting, summarizing, monitoring, detecting, and reviewing associations between drug 

exposures and health outcomes in general and adverse events in particular [12]. Causal links 

are established by the gradual accretion of evidence from observational data and by the 

relative strength of mechanistic explanations justifying biological plausibility [13].

In medicine, randomized controlled trials (RCTs) are widely considered to be the 

gold standard for establishing causal links [14]. However, in research areas such 

as pharmacovigilance, the relevance of RCTs is limited most pertinently by ethical 

considerations but further by the size, cost, and short duration of such studies [14, 15]. 

Accordingly, to prioritize drug safety signals for review after regulatory approval of new 

drugs, regulatory bodies such as the Food and Drug Administration in the United States and 

the European Medicines Agency in the European Union must rely mainly on the quality 

of the inferences drawn from empirical data from non-randomized sources. The traditional 

primary data source for pharmacovigilance research has been spontaneous reporting systems 

such as the U.S. Food and Drug Administration (FDA) Adverse Event Reporting System 

(FAERS) [16, 17]. Spontaneous reporting systems’ data are aggregated from input from 

patients, clinicians, and pharmaceutical companies. Unfortunately, these data present critical 
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deficiencies, including lack of context, missing data, and no population-level denominator to 

estimate the prevalence of any association [18, 19]. Consequently, there is a pressing need 

to advance methods that can more reliably detect adverse drug reactions from observational 

data.

To address the shortcomings of spontaneous reporting systems, researchers have turned to 

other sources of empirical evidence such as social media [20, 21], claims [22, 23], and HER 

data [24, 25, 26, 27], the focus of the present study. The FDA’s ongoing Sentinel Initiative 

facilitates the federated search of structured data from EHR across the United States [28]. 

However, structured data may only provide an incomplete picture. Data embedded in 

unstructured free-text clinical narratives in EHR systems contain a wealth of contextual 

information concerning routine clinical practice often absent from the fixed content fields in 

structured data [29]. The embedded contextual information may include “temporal relations, 

severity and degree modifiers, causal connections, clinical explanations, and rationale” [30].

The reliability of analytic conclusions from such data is highly sensitive to the quality of the 

assumptions used to analyze them [31, 32], including assumptions concerning how to adjust 

for sources of systematic bias. The focus of the present study is on confounding bias, though 

other forms of systematic bias exist [3].

In randomized experiments, confounding control is built-in by design. However, in studies 

using observational data, variables of interest are subject to sources of influence outside 

investigator control. In this setting, the investigator must identify variables for which to 

control by analysis.

A confounder is a type of variable that is relative to the hypothesis under study that 

influences both the likelihood of the exposure and the outcome (Figure 1) [33]. Confounding 

bias is induced when both the exposure and outcome of interest share a common cause that 

is not controlled analytically.

If it were possible to infer which biomedical entities, or concepts, might also refer to 

particular variables for which to control, i.e., confounders, it would be possible to facilitate 

automated discovery from non-randomized settings from observational data [34].

Clearly, substantive, extra-statistical a priori subject-specific knowledge is critical for 

reliable causal inference [5, 32]. Since it has not been clear how to access contextually 

relevant causal knowledge automatically, many approaches for inferring causality have 

been developed to evade the requirement of subject-specific knowledge. For example, the 

approach described in [35] employs meta-analytic techniques by combining different data 

sources (EHR data with FAERS) with the idea that such combination cancels out bias from 

individual sources of data. Other approaches impute a pseudo-variable to absorb residual 

confounding between measured variables [36, 37, 38].

However, our ongoing research’s focus assumes the existence of computable knowledge 

mined from the literature to help select covariates to facilitate causal inference. Computable 

knowledge mined from the biomedical literature in the form of machine readable concept

relation-concept semantic predications could be useful for identifying relevant biomedical 
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concepts such as confounders given a drug exposure and a health outcome of interest. 

This paper’s primary contribution is the description of how standard epidemiological 

definitions can be used to map concepts in literature-derived computable knowledge to 

observed, measured variables in free-text clinical narrative data derived from EHR relevant 

for controlling confounding bias.

2.1. Components of a causal inference toolkit

In the next section, we introduce background material vital to understanding our methods 

in terms of the essential components and procedures. Figure 2 illustrates our toolkit’s 

components for leveraging background knowledge from the literature to catalyze causal 

inference.

2.1.1. Causal inference—The field of causal inference concerns itself with the 

development of methods for estimating causal parameters of interest. Note that in the 

causal inference literature, the exposure is often referred to as the “treatment,” and we shall 

use both terms interchangeably (also, treated and untreated can stand in for exposed and 

unexposed).

A common goal of causal inference is to estimate the average treatment effect (ATE). The 

ATE represents an expectation (or population-level average, or mean) quantifying the extent 

to which an intervention (such as a drug exposure) would affect an outcome of interest 

(such as an adverse event), given two cohorts (one exposed and the other unexposed) with 

similar characteristics. Causal inference is achieved by calculating the mean difference in 

potential outcomes across exposed and unexposed subgroups with similar pre-exposure 

characteristics, or confounders. The do(.) operator first introduced by Pearl was invented to 

complement conventional mathematical notation to denote such an operation [34].

For a binary (non-dose-dependent) treatment A with effect Y, ATE can be estimated as a 

contrast between two levels: the exposed and unexposed groups given observed confounders 

W. The lowercase a denotes the variable being fixed to set value, where a = 1 for exposed 

and a = 0 for unexposed. (Henceforth, we shall refer to drug exposures and treatments 

interchangeably.) The ATE (henceforth denoted Δ) is expressed as the following equation:

E[Y |do(A)] = E[Y |a = 1, W ] − E[Y |a = 0, W ] (1)

This equation defines the adjusted treatment effect, and adjusts for confounders W. 

However, in order for Equation 1 to estimate causal effects reliably, these confounders 

must first be identified. Consequently, the next important task is to determine the features or 

variables W for which to adjust.

To identify confounders, causal theory has introduced the notion of backdoor paths or 

paths that point into the exposure, resulting in a mixture of both the confounder’s and the 

exposure’s effects. The backdoor-criterion stipulates that causal inference is possible if a set 

of covariates W can be found that block all “backdoor” paths from A to Y. If so, then bias 

from confounding can be reduced or eliminated [34].
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In the next section, we discuss computable knowledge resources and the methods that 

can reason over large volumes of computable knowledge extracted from the published 

biomedical literature to provide convenient access to identify contextually relevant 

knowledge.

2.1.2. Literature-based discovery—The objective of literature-based discovery 

research (henceforth, LBD) is to reveal meaningful but implicit connections between 

biomedical entities of interest in the published literature [39, 40, 41]. The late Don Swanson 

pioneered LBD in his seminal work, discovering the potential of fish oil to treat Raynaud’s 

syndrome [42], an example we will return to below. Much early work in LBD focused 

on investigating the strength of association between concepts and exploiting insights from 

information retrieval into concept co-occurrence patterns. However, concept co-occurrence 

alone can produce more hypotheses than it is possible to review.

To further constrain the results returned by LBD systems, researchers have developed 

ways to exploit information concerning the nature of the relationships between biomedical 

concepts. Revisiting Swanson’s original example with fish oil, researchers noticed that it 

was useful to pay attention not only to concepts themselves but to information concerning 

relationships between concepts [43, 44]. For example, certain drug concepts are known to 

treat diseases, and so the drug and the disease are related through a TREATS relationship. 

Other drug exposures may be known as causal agents of the adverse events in the 

published literature, and thus be related via the CAUSES predicate, i.e., Vioxx CAUSES 

acute_myocardial_infarction.

To demonstrate how such knowledge can be useful, consider the example of Raynaud’s 

disease, from Don Swanson’s work [42]. Raynaud’s is a circulatory disorder manifesting in 

skin discoloration affecting the extremities. Blood viscosity (loosely defined as “thickness” 

or “stickiness”) is implicated as a mechanism in Raynaud’s, [42, 45], with increasing 
viscosity in cold conditions thought to impede circulation to the peripheral extremities 

causing them to appear white or blue, the primary symptom of Raynaud’s. Swanson 

noticed that fish oil could have the effect of decreasing blood viscosity, thus leading to 

his therapeutic hypothesis that fish oil can treat Raynaud’s by countering the mechanisms 

of Raynaud’s. Extrapolating from Swanson’s example, researchers paid attention to how 

concepts were related to each other (e.g., A increases B, B decreases C in the example 

above), and were able to manually extrapolate useful patterns, called discovery patterns, that 

could generate biologically plausible hypotheses for novel therapies [46, 43]. Discovery 

patterns define semantic constraints for identifying concepts related to each other in 

particular ways [46].

We conjecture that standard epidemiological definitions for confounding may be translated 

into discovery patterns for identifying concepts describing confounders for which to adjust 

to enhance inference from observational data by reducing confounding bias.

2.1.3. SemMedDB - a causal knowledge resource—SemMedDB is a knowledge 

database deployed extensively in biomedical research and developed at the US National 

Library of Medicine. The knowledge contained in SemMedDB consists of subject-predicate
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object triples (or predications) extracted from titles and abstracts in MEDLINE [47] 

using the SemRep biomedical NLP system [47, 48, 49]. SemRep can be thought of as a 

machine reading utility for transforming biomedical literature into computable knowledge. 

Employing a rule-based syntactic parser enriched with domain knowledge, SemRep first 

uses the high precision MetaMap [50] (e.g.,estimated at 83% in [48]) biomedical concept 

tagger to recognize biomedical entities (or concepts) in the Unified Medical Language 

System (UMLS). The UMLS is a compendium of codes and terms for representing concepts 

across many health and biomedical domains used to enable semantic processing and 

translation across terminologies [51].

Next, SemRep categorizes how the recognized concepts are associated given a fixed set 

of normalized, pre-specified predicates (with thirty core predicate types) corresponding to 

relations of biomedical interest, e.g., CAUSES, PREDISPOSES, TREATS, PREVENTS, 

STIMULATES, INHIBITS, AFFECTS [51, 48]. For example, the predication “ibuprofen 

TREATS inflammation_disorder” was extracted by SemRep from the source text: 

“Ibuprofen has gained widespread acceptance for the treatment of rheumatoid arthritis 

and other inflammatory disorders.” In the next subsection, we describe a knowledge 

representation scheme for accessing computable knowledge extracted from the literature.

2.1.4. Predication-based Semantic Indexing (PSI)—Predication-based semantic 

indexing, or PSI, defines a scheme for encoding and performing approximate inference over 

large volumes of computable knowledge [52]. The basic premise of distributional semantics 

is that terms that appear in similar contexts tend to have similar meanings [53].

By encoding the contexts in which terms appear, methods of distributional semantics 

provide a natural way to extrapolate semantics automatically from a corpus. PSI’s approach 

to distributional semantics derives from the Random Indexing (RI) paradigm, wherein a 

semantic vector for each term is created as the (possibly weighted) sum of randomly 

instantiated vectors - which we will refer to as elemental vectors as they are not altered 

during training - representing the contexts in which it occurs. [54, 55]. To adapt the 

RI approach for encoding concept-relation-concept triples extracted from the literature 

by SemRep, PSI adopts an approach that is characteristic of a class of representational 

frameworks collectively known as vector-symbolic architectures [56, 57, 58], or VSAs. 

VSAs were developed in response to a debate (with one side forcefully articulated in 

[59]) concerning the ability to represent hierarchical structures in connectionist models of 

cognition.

In RI, elemental vectors of high dimensionality (of dimensionality ≥ 1000), with a small 

number of non-zero values (≥ 10) which are set to either +1 or −1 at random, are generated 

for each context (where a context might represent a document or the presence of some 

other term in proximity to the term to be represented). The resulting vectors have a high 

probability of being approximately orthogonal, ensuring that each context has a distinct 

pattern that acts as a fingerprint for it. Alternatively, and as is the case with the current 

research, high-dimensional binary vectors (of dimensionality ≥ 10000 bits) can be employed 

as a unit of representation. In this case, vectors are initialized with an equal number of 0s 

and 1s, assigned randomly. While these vectors are not sparse in the “mostly zero” sense, 
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they retain the desirable property of approximate orthogonality [60], with orthogonality 

defined as a hamming distance of half the vector dimensionality.

VSAs provide an additional mechanism for encoding structured information by using what 

is known as a “binding operator”, a nomenclature that suggests its application as a means 

to bind variables to values within the connectionist representational paradigm. The binding 

operator is an invertible operator that combines two vector representations a and b, to form 

a third c that is dissimilar to its component vectors. As this operation is invertible, a can 

be recovered from c using b, and vice-versa. Thus, through the invertibility property of the 

binding operation, a value can be recovered from a variable to which it is bound, thereby 

facilitating retrieval from the encoded computable knowledge.

PSI is implemented in the open-source and publicly available Semantic Vectors package 

written in Java [61], and in the context of SemMedDB is applied to concepts which are 

defined by normalized biomedical entities in the UMLS hierarchy, rather than the original 

terms as encountered in the biomedical source text.

The resulting models have been applied to a range of biomedical problems (as reviewed in 

[62]). PSI accepts semantic predications as input and transforms that input into a searchable 

vector space that may then be used as a search engine to retrieve confounders. Next, we 

describe how PSI spaces are built and introduce semantic vector algebra, a convenient 

shorthand to describe the training processes of PSI spaces and to compose useful queries 

over the resulting PSI spaces.

Training a PSI space: The process for training PSI begins by making an elemental 

vector, denoted E(.), for each unique concept and each unique relation, in the corpus. PSI 

constructs semantic vectors, denoted S(.), by superposing, denoted +=, the bound product 

of the elemental vectors of each relation and concept with which it co-occurs. The binding 

operation, denoted ⊗ is invertible, and its inverse, called ‘release,’ is denoted ⊘. PSI 

encodes the semantic predication “aspirin TREATS headaches” like so:

S(aspirin) + = E(TREATS) ⊗ E headaches (2)

Note that for directional predications, the inverse predicate is also encoded. For a predicate 

like “TREATS,” the meaning would be “TREATED BY,” here denoted TREATSINV, thus:

S headaches + = E TREATSINV ⊗ E(aspirin) (3)

However, no such representation is made for predicates lacking “direction” such as 

COEXISTS_WITH and ASSOCIATED_WITH. These predicates are their own inverse.

After a PSI model has been trained, the resulting PSI space may be searched. As we explain 

below, the process of querying the PSI space reverses the operations used in the training 

procedure.
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Querying a PSI space: PSI can perform approximate inference over the knowledge it 

has encoded after a semantic space has been constructed from the semantic predications. 

The Semantic Vectors package [63, 64] implements a VSA-based query language that 

facilitates queries to the resulting vector space, which underlies the EpiphaNet system for 

literature-based discovery [65].

The Semantic Vectors query language provides a calculus for using vector algebra to 

perform logical inference over the computable knowledge contained within the vector space, 

enabling discovery pattern-based search. It provides a functional implementation of the 

binding and superposition operators used in VSAs. However, in this implementation it 

is important to note that binding and release are equivalent (⊗ == ⊘), and as such are 

both represented with the symbol ⊗ (this follows from the use of pairwise XOR as a self

invertible binding operator in binary vector based PSI implementations). In this calculus, 

P(.) denotes an elemental predicate vector (while, as mentioned earlier, S(.) and E(.) denote 

a semantic vector or elemental vectors for a concept, respectively). We demonstrate the 

application of this syntax using an example composite PSI query for searching for concepts 

treated by the anti-diabetic drug rosiglitazone, that also causes heart attacks.

S(rosiglitazone) ⊗ P (TREATS) +
S(AMI) ⊗ P CAUSESINV

In the above PSI query, the syntax denotes a binding (or release - ⊗) operation between 

the semantic vector of rosiglitazone with the predicate vector (of the predicate TREATS). 

The resulting bound product S(rosiglitazone) ⊗ P(TREATS) is a vector that we would 

anticipate being similar to the elemental (random index) vectors for the terms representing 

such entities. In the next component of the query, the semantic vector for acute myocardial 

infarction (abbreviated “AMI”) is bound to the predicate vector for CAUSESINV that 

can be read as “is caused by.” We would expect entities of interest to have elemental 

vector representations similar to this bound product. The similarity between these vector 

representations is a natural consequence of the following steps that occur during training of 

the model, with diabetes mellitus (DM) as an example of an entity that meets the desired 

constraints:

S(rosiglitazone) + = P (TREATS) ⊗ E(DM) (4)

S(AMI) + = E CAUSESINV ⊗ E(DM) (5)

The binding operator used in the current implementation of PSI (pairwise exclusive or XOR 

with binary vectors as the base representation) is its own inverse, so we would expect 

E(DM) to be similar to both S(rosiglitazone) ⊗ P(TREATS) and S(AMI) ⊗ P(CAUSESINV) 

at the conclusion of the training process.

Recall that the semantic vector derives the meaning for each concept from the contexts 

(other terms and predicates) in which it has appeared. Concepts occuring in similar contexts, 
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and therefore vector representations, will tend to have similar meanings. Concepts with 

similar meanings have similar vectors because semantic vectors (S) are initially zero vectors 

but accumulate representational information during the training. After training, the semantic 

vectors represent the superposition (accomplished by counting the number of set and unset 

bits added to the semantic vector during the training, and taking a majority vote with 

ties split at random) of the bound products of the elemental (E) and predicate (P) vectors 

representing the other concepts they occur with in semantic predications.

For the current research, the concepts that score most highly would ideally be confounders 

(common causes of both the drug exposure and the adverse event (outcome)). The next 

set of concepts in order of rank would be either upstream of the exposure or the outcome. 

Concepts that follow would be, to varying degrees, irrelevant.

Combining knowledge with data: PSI can also be used to generate discovery patterns 

automatically [66, 67]. Using Semantic Vectors syntax, we can both query the search space 

using discovery patterns, and generate discovery patterns from sets of paired cue terms [67, 

66, 68]. In [66], PSI was used to recapitulate the discovery pattern manually constructed 

in [43]. While generating patterns automatically for this work, we observed that certain of 

these discovery patterns generated by PSI produced results suggestive of potential common 

causes of both the exposure and outcome - in other words, confounder candidates.

We noticed that a recurring discovery pattern is given a drug and an outcome was TREATS 

+ COEXISTS_WITH, which suggests that rather than causing an outcome, a drug may 

treat a related comorbidity. (Furthermore, were it not for the related comorbidity, the patient 

would likely not have received the treatment, justifying the causal interpretation of the 

confounder “causing” the exposure).

Covariates (confounder candidates) that lie along the path of an inferred discovery pattern 

can be retrieved by constructing queries using the same Semantic Vectors syntax, as 

illustrated by the example confounders identified in Table 1 from querying a PSI space 

for concepts that relate to the (drug) allopurinol and adverse event (AE) acute liver failure in 

particular ways. Note that the first two confounder discovery patterns (which have only one 

predicate) in Table 1 only retrieve concepts that are causally related to the outcome.

In previous work [26], we tested the extent to which literature-derived confounders could 

be used to accurately distinguish known causally related drug/adverse event pairs from 

other drug/event pairs with no known causal relationship by adjusting statistical models 

(multiple variable logistic regression) of data embedded in free-text clinical narrative [26]. 

Using the discovery patterns enumerated in Table 1, our goal was to see if including 

literature-derived covariates suggestive of confounding could reduce bias in data derived 

from free-text clinical narratives extracted from a large (de-identified) corpus of EHR 

data. For methodological evaluation, we used a publicly available reference dataset [69], 

containing labeled drug/adverse event pairs, including negative control pairs for which no 

relationship is known to exist. Next, we integrated up to ten literature-derived covariates into 

statistical models of EHR data using multiple logistic regression [26]. We used the top ten 

ranked confounders from PSI as a heuristic, because the top ten results generally made sense 
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to subject-matter experts upon inspection. However, quality degraded in many cases after 

that rank.

We defined performance as our methodological variants’ ability to discriminate genuine 

causal associations from non-causal associations as labeled in the reference dataset. We 

measured performance by building literature-informed models instantiated with EHR data 

and comparing the performance of models informed by literature-derived confounders with 

that of naive estimates of association (e.g., reporting odds ratio and χ2). To summarize 

performance quantitatively, we calculated Area under the ROC (AUROC) from the ranked 

order of exposure coefficients from the literature-informed logistic regression models, and 

compared these with their χ2 baselines. Including literature-identified covariates resulted in 

a modest overall performance improvement of +.03 AUROC, depending on the statistical 

power of the available evidence used as input. A key finding was that the dual predicate 

discovery pattern TREATS+COEXISTS_WITH provided the most substantial performance 

improvement compared with single predicate discovery patterns. We reasoned that the dual 

predicate discovery pattern was better able to reduce confounding in the aggregate because 

it captures more information about both the exposure and outcome mechanisms, whereas 

single predicate discovery patterns only captured information about outcome mechanisms. 

This finding guides the choice of discovery patterns we have used in subsequent work, 

including the present paper.

In a follow-up study employing the same reference dataset and EHR-derived data, we 

again used PSI to identify causally relevant confounders to populate graphical causal 

models and inform causal discovery using causal structure learning methods [70]. Graphical 

causal models represent variables as nodes and causal relationships as directed edges. We 

hypothesized that the structure learning algorithm would predict fewer causal edges in light 

of the literature-derived confounders for the negative controls than for the reference dataset’s 

positive control relationships. We used the causal semantics of the predicates to orient the 

directed edges in causal graphs. We used the TREATS+CAUSESINV discovery pattern to 

identify indications that are treated by the exposures and that were also noted to cause the 

adverse drug reactions. We picked TREATS+CAUSESINV since drugs that are prescribed 

for an indication would likely not be taken were it not for the indication for which they were 

prescribed. The top-ranked literature-derived confounder candidates were then incorporated 

into graphical causal models. To learn graph structure, we employed the Fast Greedy 

Equivalence Search algorithm (FGeS) [71] implemented in the TETRAD causal discovery 

system [72, 73] with default algorithm hyperparameters. FGeS is a causal structure learning 

algorithm that works by stochastically adding and subtracting edges until the graph’s fit for 

the observed data is optimized. Each drug/adverse event pair was given a score determined 

by the ratio of causal edges between the exposure and the outcome in the presence of all 

possible unique perturbations of five literature-derived confounders. Improvements in the 

order of +0.08 AUROC over baselines were noted from this experiment.

2.2. The aim of the present study

The present study documents our framework’s current stage of evolution for using 

computable knowledge extracted from the literature to facilitate more reliable causal 
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inference from observational clinical data by reducing confounding bias. In our previous 

work, what was not clear is the extent to which the representation scheme affected the 

quality of the confounders and subsequently the performance of models. To probe this and 

other questions, we tested the following hypotheses:

• [H1]: that (overall) literature-informed models will reduce confounding bias in 

models of EHR-derived observational data and thereby improve causal inference 

from these data; [premise: incorporating confounders into models should reduce 
confounding bias compared to naive measures of association]

• [H2]: that incorporating more literature-derived confounders will improve 

performance over models with fewer such confounders; [premise: models with 
more confounders should perform better since models with fewer confounders 
may result in omitted variable bias]; and

• [H3]: that semantic vector-based discovery pattern confounder search (which 

compactly encode a vast array of information) will improve upon string-based 

search [premise: a compact representation incorporating global knowledge of 
causal mechanisms should better prioritize information].

This paper builds upon an active research program for performing inference across large 

volumes of knowledge, though our goal is slightly different in that we are leveraging 

inference to infer relationships to better interpret data. This paper’s primary contributions 

are to highlight how background knowledge can be used to 1.) elucidate specific 

confounding factors and 2.) facilitate causal inference from observational clinical data in 

a practical setting - that of drug safety from real-world data.

3. Materials and Methods

3.1. Extracting and representing clinical narrative

We used data available from previous projects to benchmark the performance of the new 

approaches. Following IRB approval and a data usage agreement, we obtained permission 

to use the same data as in our prior studies [26, 70] from the University of Texas Health 

Science Center clinical data warehouse [74, 75]. These data included a large random sample 

of 2.2 million free-text clinical narratives recorded during outpatient encounters involving 

approximately 364,000 individual patients during the years 2004 and 2012 in the Houston 

metropolitan area.

To reveal data in the clinical narratives for downstream analysis, unstructured information 

embedded in the free-text narrative part of the HER was converted to a structured 

format. Accurate named entity recognition (NER) is necessary for causal inference because 

inference requires data representations faithful to the source information. Clinical texts 

are known to have unique characteristics (e.g., frequent acronyms and abbreviations) that 

require extensive knowledge to disambiguate. Special tools are needed to process such 

information to take advantage of the particular characteristics of clinical language. Such 

issues motivate the development of clinical NER systems such as the well-regarded Medical 

Language Extraction and Encoding (or MedLEE, for short) clinical natural language 

processing (NLP) system. We pre-processed the free-text narratives using MedLEE.
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The original decision to use MedLEE was motivated by its performance characteristics 

described in the literature (see for example [76]), and the fact that internal evaluations 

conducted with a locally constructed reference set established that MedLEE had the best 

“out-the-box” performance across a range of clinical NLP tools that were publicly available 

at the time.

At the time the NLP extraction from the EHR was performed, MedLEE was the state-of-the

art tool for this task [77, 76, 78]. MedLEE can identify clinical concepts accurately from 

clinical notes, with a recall of 0.77 and a precision of 0.89 [77]. In another more recent study 

from 2017, MedLEE was used to detect early signs and symptoms of multiple sclerosis 

from clinical notes with an AUROC of 0.90 [0.87–0.93], sensitivity of 0.75 [0.66–0.82], and 

specificity of 0.91 [0.87–0.93] [79].

MedLEE encodes each concept it recognizes with a concept unique identifier (CUI) in the 

UMLS in a structured machine readable output format [80, 51].

To complete the unstructured data’s transformation into a structured (rectangular) dataset, 

we needed to extract document level concept co-occurrence statistics from the MedLEE 

output. To achieve this, we used the Apache Lucene [81] text indexing engine to create 

an index containing the normalized concepts mined from the MedLEE-processed clinical 

notes. We then queried the index for each concept identified in the MedLEE output, 

extracted document-by-concept binary arrays for each concept, and stored the resulting 

binary arrays in compressed files stored locally on disk. These binary arrays represent 

whether a concept was mentioned in a particular document. We compiled rectangular 

matrices by appending the resulting binary arrays (representing the presence [1] or absence 

[0] of a concept mentions) as our primary source of empirical data with which to test our 

inference procedures and instantiate our models.

3.2. Reference dataset

We used the popular reference dataset compiled by the Observational Medical Outcomes 

Partnership (OMOP) for performing a methodological evaluation of novel drug safety 

methods [69]. The OMOP reference dataset includes 399 drug/adverse event pairs for four 

clinically important adverse events.

Since the OMOP reference dataset was originally published (in 2014), varying degrees of 

accumulating evidence have cast doubt on specific drug/adverse event pairs’ negative control 

status. Hauben et al. published a list of mislabeled false negatives in the reference dataset 

[82] of negative control drug/adverse event pairs that have been implicated in adverse events 

from case reports, the literature, and pre-clinical studies. Correcting for the mislabeled 

false negatives noted by Hauben reduced the number of pairs for comparative evaluation. 

The number of pairs was reduced still further by factoring in limitations of the available 

empirical evidence.

Not all of the drug/adverse event pairs were well represented in the available data. We 

established inclusion criteria for which drug/adverse event pairs and covariates to include 

in our analysis by considering the implications of Peduzzi et al. [83] for the statistical 
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power of the available EHR data. These authors studied the relationship between “events 

per variable” on type I and type II errors and the accuracy of variance [83]. The authors 

found that variables with fewer than ten events per variable are more likely to be biased. As 

per Peduzzi’s study, we constrained which biomedical entities or concepts (drug exposures, 

adverse events, or confounders) to those that occurred at least ten times. We have reported 

the number of drug/adverse event pairs that were compared in Table 2 (in parentheses), 

along with the number of drug/adverse event pairs in the original reference dataset (not in 

parentheses).

To consolidate evidence that otherwise may have been diluted across synonyms, we used the 

UMLS meta-thesaurus to map between synonyms of the adverse events and applied RxNorm 

mapping for synonym expansion at the clinical drug ingredient level. RxNorm provides a 

mapping from normalized names of drugs to codes used in the vocabularies of commonly 

used in standard clinical, pharmacological, and biomedical database applications [84]. For 

example, Ibuprofen’s generic concept is encoded with a UMLS concept unique identifier 

(CUI) string of C0020740, while the specific concept that refers to a brand-name instance 

of Advil Ibuprofen Caplets is C0305170. We then applied these mappings to the EHR data 

by using RxNorm to map from the more specific concept to the generic identifier at the 

pharmaceutical ingredient level.

Preparing SemMedDB—We downloaded and imported the latest release (at the time, 

version 40) of SemMedDB into a local instance of the MySQL relational database 

system. This version contains 97,972,561 semantic predications extracted from 29,137,782 

MEDLINE titles and abstracts.

We performed several operations upon it to tailor the information it contains for the 

requirements of this study. For example, if a treatment is known to cause an adverse event, 

physicians may avoid that treatment to eliminate the potential for undesirable outcomes. To 

emulate what knowledgewas publicly available when the reference dataset was published 

(2013), we excluded predicates deriving from publications after December 31st, 2012. We 

also removed concepts that occur ≥ 500,000 times or were considered uninformative, e.g., 

patients, Rattus norvegicus.

3.3. Searching SemMedDB for confounders

We developed and compared two variant methods for identifying a set of confounder 

candidates by searching computable knowledge mined from the literature (SemMedDB). 

Both methods apply semantic constraint search using the TREATS + CAUSESINV discovery 

pattern but rely on distinct knowledge representation frameworks, which we refer to 

henceforth as “string-based” and “semantic vector-based.”

3.3.1. String-based confounder search—Our first method is implemented in 

structured query language (SQL) and directly queries the predications table of the 

SemMedDB relational database. Each query takes a drug and an adverse event (called “focal 

concepts”) and applies the TREATS+CAUSESINV discovery pattern search. The SQL query 

consists of two sub-queries - the first to obtain indications of the drug TREATS and the 
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second to obtain the indications that also cause the adverse event. The result set should 

contain a list of confounder candidates that fulfill both of these semantic constraints.

To find the best subset of confounders, we developed a score to rank the confounders by 

the strength of their support as confounders in the literature. To score confounders, we 

calculated the product of the counts for each confounder given the number of citations 

from each arm of the discovery pattern query (the TREATS arm and the CAUSESINV arm). 

Results were next ranked in descending order of this product score. To screen out potential 

errors from machine reading, concepts with less than two mentions were excluded from the 

result set.

3.3.2. Semantic vector-based confounder search—Our second method transforms 

SemMedDB using PSI, the distributional representation scheme introduced earlier, that 

facilitates vector algebra inference (for “vector-based” confounder search). Using the 

truncated version of SemMedDB described above as input, we derived a binary PSI space 

with 32,000 dimensions (in bits). We used inverse document frequency weighting to adjust 

for frequently occurring but uninformative predications and removed generic terms with 

little discriminative meaning (included in Appendix A).

3.4. Additional confounder candidate filtering procedures

We conservatively mapped between the reference dataset and concepts from the UMLS 

and between observed variables represented in the EHR data and knowledge represented 

by concepts in the905 UMLS. Confounder candidates were only incorporated into models if 

they appeared in the EHR data at least ten times with both the exposure and the outcome 

variables (following the heuristic of Peduzzi et al. [83]). Additional filters and criteria 

were applied for the inclusion of confounder candidates in the models. For instance, we 

identified highly frequent but uninformative stopwords such as “disease” and “gene” (see 

Appendix A). We also excluded concepts that were synonyms of the drug exposure and 

adverse event, as these terms arise from search procedures, sometimes either from machine 

reading errors or the confounder search procedure itself. The exclusion of synonymous 

concepts was achieved by checking to see if the confounder candidate’s preferred name 

in the UMLS matched with the strings representing the drug exposures and adverse event 

outcomes. Confounders were excluded if they matched either the exposure or the outcome.

To evaluate the effect of adding different amounts of literature-derived confounders, we 

applied two thresholds on the number of confounders: a lower threshold of five and an upper 

threshold of ten. In the next paragraphs, we have explained our reasoning for why we chose 

these thresholds.

String-based search can only yield results that match strings from user input. In contrast, the 

continuous nature of the underlying vector-based knowledge representation determines that 

all of the entities represented in that vector space are related to varying degrees.

To limit the number of search results, there are two primary methods: by either applying 

an arbitrary cut-off from the distributional statistics or applying a threshold that limits 

the number of search results. The first method for narrowing search results operates by 
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setting a cut-off on the number of standard deviations required to be included in the search 

results given the mean similarity scores from the PSI query. In our internal evaluations, 

we attempted to use a threshold of 2.5 standard deviations to constrain the number of 

confounders. However, we found that this approach had detrimental effects, including 1.) 

uneven quality of results (standard deviation was not sufficient in some cases to screen 

out irrelevant noise); 2.) inconsistent numbers of results at that threshold (sometimes many 

quality confounders, other times, PSI would filter out seemingly relevant confounders). 

That is, working with statistical thresholds proved difficult as the utility of this threshold 

varied depending on the query. Accordingly, we chose not to use a standard deviation based 

threshold, and reverted to the second method for limiting results.

For our research problem, we were left with a heuristic strategy for how to compare 

the effect of not only different search and representation strategies (string-based vs. 

semantic vector-based confounder search) and modeling methods but testing the effects 

of incorporating different amounts of information, i.e., numbers of literature-derived 

confounders.

In our previous experience using the literature to identify confounder candidates, we 

observed that roughly the first ten concepts returned from our confounder search were 

medically meaningful. Hence, we picked ten for the upper threshold. To simulate omitted 

variable bias, we divided ten in half to arrive at the lower threshold of five confounders. 

Thus, there is a reasonable expectation that roughly comparable numbers of valid 

confounder candidates can be identified within these thresholds from either string-based 

and semantic vector-based confounder search can be integrated into the models.

3.5. Assembling models from knowledge and data

As input, concept-by-observation matrices were constructed for each drug/adverse event in 

the reference dataset for which we possessed sufficient data. The input matrices for each 

drug/adverse event pair consist of columns representing the drug exposure, adverse event 

outcome, and confounder concepts (where the confounder concepts have been identified 

using one of the confounder search methods described above), while each row represents the 

presence or absence of concept mentions extracted from the narratives in clinical notes.

3.5.1. Literature-informed regression modeling—We applied off-the-shelf multiple 

variable logistic regression to the EHR data, adjusting for the literature-derived confounders, 

where Y = outcome (the adverse event), A = exposure (drug), W = the set of confounders, 

with the Greek letters {α}, {β}, and {γ} representing the intercept, the regression 

coefficients of the exposure and the covariates, respectively:

logit{prob(Y = 1)} = α + βA + ∑
i = 1

k
γW i (6)

In this paper, we use logistic regression as a comparator method to the exact causal inference 

method introduced in the next subsection. Logistic regression provides “guardrails” on more 

advanced methods since regression usually does a decent job at adjustment and provides 
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a predictive check on the adjustments. For further discussion on the relationship between 

causal effect estimation and regression coefficients, see Chapter 6 in [85].

3.5.2. Literature-informed graphical causal modeling—To construct graphical 

causal models, we used the bnlearn R package [86]. The bnlearn package allows the user to 

incorporate variables and define the relationships between variables. We exploited structural 

information from the literature to create “white lists” (lists of required edges) and “black 

lists” (lists of prohibited edges) to orient those edges. The white lists contain mandatory 

labeled edges between each of the confounders and the drug and adverse event, while black 

lists forbid effects from causing drug exposures.

To learn dependency relationships additional to those identified from the literature, we 

applied the Max-Min Hill-Climbing (MMHC) algorithm, first described by Tsamardinos et 

al. [87] and implemented in bnlearn [86] with default hyperparameter settings. MMHC is 

a hybrid structure learning algorithm that first uses a constraint-based-based search to learn 

the dependency structure from data and then orients the edges of the graph using the a 

score-based search algorithm that finds a structure that best fits the data and background 

knowledge by optimizing a criterion score. We used the Bayesian Information Criterion 

score described in [88]. Next, we applied the maximum likelihood estimation (MLE) 

procedure within bnlearn to find the configuration of weights associated with each edge 

in the graph given the data and the graph structure. These weights quantify the strength of 

the dependencies between variables. Once the structure and the weights have been learned, 

the model is ready to answer questions of interest.

To estimate causal effects, we applied the classic exact inference procedure known as the 

junction tree algorithm, as implemented with default settings in the R package gRain [89]. 

The junction tree algorithm efficiently computes posterior probabilities by transforming the 

DAG into a tree structure. The resulting tree structure then propagates updated values using 

the sum-product method across the graph. In our use case, the end goal of updating values is 

to compute the potential outcomes at different levels of exposure.

The junction tree method is reasonably efficient because the graph is sparse (unsaturated), 

and all calculations are local. Next, we query the resulting object by telling it to “listen” to 

the adverse event node in the graph, and by fixing the value of the exposure/treatment to “1” 

and then to “0,” and then subtracting the difference to obtain the ATE (Δ) (see Equation 1). 

More details about the junction tree algorithm’s derivation may be found in [90, 91].

3.6. Overview of the evaluation framework

The steps of our modeling and evaluation framework are outlined below and illustrated in 

Figure 3:

1. Query the literature for confounders using either string-based or semantic vector

based literature search.

2. Determine the eligibility for the inclusion of each confounder candidate in the 

order of its retrieval. Test each confounder for at least ten co-mentions with 

both the drug and the adverse event using the clinical data and stop testing 
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after obtaining the thresholds of five or ten confounding variable candidates, or 

until reaching the end of the list of the confounder candidates, if less than the 

thresholds, when using string-based search.

3. Build statistical and graphical causal models incorporating varying numbers of 

literature-derived confounders to predict and estimate causal effects from the 

EHR-derived empirical data.

We evaluated the performance of our modeling procedures by comparing the relative 

performance of naive measures of association (ROR, and χ2) with statistical and causal 

models informed by the literature and instantiated with EHR-derived data. The EHR 

data encode concept mentions with discrete dichotomous (binary) variables. We used the 

reference dataset labels as ground truth.

Different drug/adverse event pairs can be expected to have a range of effect sizes, with 

the true effect sizes of interest (as one might collect under randomization) ranging across 

varying intervals. Two following two assumptions underlie our methodological comparison:

• ASSUMPTION I: the causal effect estimates and adjusted measures of 

association should be greater in magnitude for true positive drug/adverse event 

pairs than the causal effect estimates and adjusted measures of association for 

negative drug/adverse event pairs in the reference dataset; and

• ASSUMPTION II: the effect estimates and adjusted measures of association of 

the negative controls should approach zero.

Working under the above assumptions, we measured performance by calculating Area under 

the Curve of the receiver-operating characteristic (AUROCs), Area under the Precision and 

Recall Curve (AUPRC), and Mean Average Precision at K (MAP-K) from the ranked 

ordering of the following statistics: baselines: [χ2, reporting odds ratio (ROR)] and 

modeling scores: the coefficients from performing multiple logistic regression (β) and 

average treatment effects (ATE) from the graphical causal models (Δ).

To evaluate our literature-informed confounding variable identification framework, we 

aggregated performance statistics across the following methodological variants:

• more (literature-derived) information vs. less

• string-based vs. semantic vector-based search

Finally, to obtain insight into overall performance, we needed to consolidate performance 

statistics across adverse event types, albeit at the expense of fine detail since each adverse 

event has a different underlying prevalence and other unique characteristics. To calculate 

global summary scores, we normalized the scores by transposing them onto a similar scale. 

We weighted the scores (whether β or Δ) for each adverse event type by computing the 

proportion of the total number of pairs contributed to the total score from each adverse event 

type and then multiplied the individual scores for each drug / adverse event pair by that 

proportion. The weighted scores were then compiled into overall weighted metrics.
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3.7. Software infrastructure

The PostgreSQL relational database system and various R statistical packages were used 

to analyze this study’s data. The list below enumerates that software packages used for 

this study: R base version 3.6, gRain version 1.3–3: exact causal inference [89], ggpubr 
version 0.4.0.999 for boxplots, RPostgreSQL version 0.6–2: library for R connectivity with 

Postgres relational database, pROC version 1.16.1: ROC curves, PRROC: Precision-Recall 

curves, tidyverse version 1.3.0: data manipulation [92], and bnlearn version 4.5: graphical 

modeling and parameter estimation [93, 86]. We also used Semantic Vectors version 5.9 [63, 

64] (running Oracle Java 1.8.0_231).

The software and more extensive information and models developed for this paper are 

publicly available on the causalSemantics GitHub repository. The Material on GitHub 

includes Receiver-Operator Characteristic (ROC) and Precision-Recall curves along with the 

data tables, box plots comparing the various procedures, sample visualizations of the causal 

graphical models, and confounder sets for the drug/adverse event pairs from the reference 

dataset.

4. Results

We begin by enumerating high-level statistics and then proceed to tease out the strengths 

and weaknesses based on what the metrics are telling us about each of the methodological 

variants, we break down the results from comparing our modeling procedures in terms of 

each performance metric. Then we will consider in the discussion the implications for our 

hypotheses and future work and conclude with the lessons learned.

The prevalence of each adverse event in our EHR data was as follows: acute kidney failure: 

4,847; acute liver failure: 28,217; acute myocardial infarction: 54,550; and gastrointestinal 

hemorrhage: 59,695.

We analyzed the number of confounders from string-based search per drug / adverse event 

pair in the reference dataset. The mean number of confounders per pair was ten, and the 

median was approximately seven. The minimum was 0, and the maximum was 121.

Tables 3, 4, and 5 show the results for various performance metrics providing different 

perspectives (AUROC, AUPRC, and MAP-K, respectively) on performance. The AUROC 

in Table 3 provides a global assessment of classifier performance irrespective of the 

classification threshold, while AUPRC in Table 4 is preferred with imbalanced reference 

datasets [94]. Table 5 presents MAP-K, which considers the top-ranked results, and is 

arguably the most important metric for practical purposes.

Although the subset of the reference dataset we analyzed was only moderately imbalanced 

overall, the class imbalance for each particular adverse event ranged from approximately 

balanced (acute kidney failure - with ten positive cases and eleven negative control drug/

adverse event pairs) to strongly imbalanced (acute liver failure - with forty-three positive 

cases and eleven negative control drug/adverse event pairs). Note that because of class 
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imbalance where there are more positive event pairs than negative, we refrain from giving 

equal weight to the performance of acute liver failure, though we report it in the results.

AUROC

As shown in Table 3, the spectrum of performance was broad. The methodological variant 

that performed well the most consistently was “βpsi
5 ” (or the variant using up to five semantic 

vector-based confounders with multiple logistic regression), followed by “Δpsi
5 ” (or the 

variant using up to 5 semantic-vector-based confounders calculating the ATE), as shown in 

Figure 4 illustrating unweighted overall AUROCs. Improvement over the baseline was most 

consistent for gastrointestinal hemorrhage. Vector-based models bested string-based models. 

More vs. fewer confounders was a draw. Logistic regression estimation performed better 

than ATE. We included the scores from acute liver failure in Figure 4 because the overall 

class imbalance was extreme; there were 88 positive cases and 75 negative controls, as per 

Table 2.

AUPRC

AUPRC is preferred in analyzing classification problems where the classes are not well 

balanced between positive and negative labels. AUPRC scores range from 0.0 being the 

worst to 1.0 being the best, unlike AUROC scores, which usually range from 0.5 to 1.0. 

Acute kidney failure had the most improvement in the AUPRC metric with confounding 

adjustment. Δpsi
5  performed well the most consistently. Vector-based models bested string

based models. More vs. fewer confounders was a draw. ATE performed better than Logistic 

regression.

MAP-K

As one might anticipate with methods intended to correct for false positives induced by 

an otherwise unmeasured confounding effect, consistent performance improvements with 

adjustment are found with the MAP-K metric, which measures the accuracy of the top

ranked (most strongly predicted) results. Arguably, MAP-K is the most important metric 

for prioritizing signals, the primary application focus of this paper. The importance of 

MAP-K is apparent when comparing overall performance between the best baseline and 

best-adjusted models, with improvements of 0.05 and 0.1 with k=10 and 25, respectively. 

The best performance was observed with the Δpsi
5  models, which scored the highest MAP-K 

with k=25. Vector-based models bested string-based models. More vs. fewer confounders 

was a draw. ATE performed better than Logistic regression.

Performance Summary

While performance differs across metrics, adjustment using the literature-derived 

confounders improved predictive and causal inference performance over naive baselines 

of association across all four adverse events. There were substantive improvements for 

particular adverse events, with increases in AUROC of 0.1 and 0.2 over the best baseline 

model with the best-adjusted models for gastrointestinal hemorrhage and acute kidney 

failure, respectively, and smaller but consistent improvements in AUPRC where best 
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performance was always attained by one of the adjusted models. considering the class 

imbalances of each condition and the importance of MAP-K, The best performance was 

most frequently attained by Δpsi
5  models. In general, semantic vectors-based models bested 

string-based models, fewer confounders bested more (though not always, particularly using 

the MAP-K metric), and Δ bested β estimates.

5. Discussion

[H1]: Does literature-informed modeling reduce bias?

In most cases, the adjusted models show performance improvements over the unadjusted 

baseline measures of association. While there was a substantial reduction of bias, there was 

room for improvement. The overall improvement was consistent with but not significantly 

better than that from previous work [26, 70].

We analyzed the distribution of the Δs and βs across the methodological variants. Across all 

adverse events, the mean Δs for the positive controls were higher than for the negative 

controls in the reference dataset. For example, for Δpsi
10 , the mean Δ for the negative 

controls was 0.03 (for reference, the mean Δ of the positive controls was 0.05). An ideal 

deconfounding method would reduce the Δs for the negative controls to zero. This was not 

the case with certain cases, where the mean adjusted scores for the positive cases were lower 

than the negative controls, thus violating ASSUMPTION II mentioned earlier. We explore 

this issue in more detail below.

[H2]: Does adding more literature-derived confounders versus fewer improve 
performance?

For two out of three metrics, as per Tables 4 and 5 (remembering that acute liver failure 

is problematic in its level of class imbalance towards the positive), many of the high

performing methodological variants were those with five literature-derived confounders, 

though that was not always the case. From the standpoint of causal theory, what may 

be happening is that the additional confounder candidates at the higher threshold are 

introducing overcontrol bias [95] and in other cases the additional confounders address 

omitted variable bias, resulting in better performance [96]. Thus, the extent to which adding 

more literature-derived confounders is inconclusive, and likely depends on the particular 

local causal structure and quality of data in each case.

[H3]: Which confounder search method (string-based versus semantic vector-based) 
results in better performing models?

We can observe interesting patterns comparing the individual adverse drug reaction 

summary results of string-based or semantic vector-based confounder search.

With few exceptions, models informed with confounders from semantic vector-based 

confounder search performed better than models informed with confounders from string

based confounder search. We expected the string-based search’s conservative nature to 

result in missing coverage of many drug/adverse event pairs. In many cases, this suspicion 

was confirmed when no confounders were available after screening out synonyms of the 
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exposure and outcome and stopword-like concepts for the biomedical domain, e.g., patients, 

therapeutic procedure, Rattus norvegicus).

It is clear that how knowledge is represented and organized can affect measures of topical 

relevancy, which in turn affect the specific set of confounder candidates retrieved by a 

query. The question of how the representation of knowledge affects model performance is 

an important one. It also follows that the quality of the confounders affects the ability of the 

method to reduce confounding.

The present paper partially lends supportive evidence for what Vanderweele calls the 

disjunctive cause criterion, or DCC [97, 5]. The DCC is a criterion for selecting covariates 

for which to adjust and recommends selecting known determinants of either the exposure 

or the outcome, or both. Arguably, a major factor bolstering the performance of semantic 

vector-based search is the proportion of cue concept (drug or exposure) contexts occupied by 

the target (confounder) concept in the underlying knowledge representation.

To the extent that PSI can pick either determinants of the exposure or the outcome or both, 

our framework is a step toward implementing the DCC for (partially)-automated causal 

inference. In contrast to the relatively brittle Boolean confounder search used with string 

matching, the Hamming distance metric used to measure the similarity between vector space 

representations is continuous in nature, permitting partial match when only one of the two 

constraints is met.

To extrapolate from our results, a key factor bolstering the performance of semantic 

vector-based search lies in its knowledge representation. The advantage of using semantic 

vector-based search over string-based search is analogous to the advantages offered by 

Salton’s original vector space model as an alternative to Boolean retrieval when it was first 

introduced [98, 99].

Recall that the median count of confounders per drug/adverse event pair in the reference 

dataset (from string-based search) was approximately seven. This means that string-based 

search was limited by whether or not it could find an exact match in SemMedDB.

The finding of improved performance is perhaps not surprising, given the development 

effort that has improved PSI’s ability to perform approximate reasoning over large bodies 

of knowledge. One explanation for why semantic vector-based confounder search performed 

better than string-based search is that semantic vector-based search can better integrate 

relevant information more flexibly: because semantic vector-based search quantifies results 

on a continuous scale, unlike the exact matching underlying the basis of string-based 

search. Another explanation for why semantic vector-based search usually performs better 

than string-based search is that semantic vectors are normalized. Normalization prevents 

frequently occurring concepts from dominating the result set.

All aside, a possible research direction would be to combine the results of both string-based 

and semantic vectors-based confounder candidates for adjustment or simply to use explicit 

co-occurrence as a constraint on semantic vector search.
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In brief, string-based search takes a verbatim interpretation of the request and provides 

results as specified by the query (“what the user says they want”), whereas semantic vector

based search applies vector algebra to infer in a sense what the user truly needs.

Comparing estimation methods—Literature-derived computable knowledge was found 

to be useful for informing causal inference (as implicated by the performance metrics). (Δs) 

from the graphical causal models bested Logistic regression models (βs).

To connect prediction and causal inference (estimation), a less biased estimate of the 

drug effect is likely to lead to better prediction performance. While prediction and 

causal inference tasks are closely related, they are not the same: prediction optimizes by 

minimizing variance, whereas the objective of causal inference problems is to reduce or 

eliminate bias. Nevertheless, using regression with known confounders as regressors is 

a traditional way of performing causal inference, where the β in Equation 6 has been 

interpreted as the causal effect [100, 101, 102].

Causal graph example—We have included a sample graph in Figure 5. This figure 

provides a sample of the structure and content expressively modeled by the literature

informed graphical causal graph formalism and instantiated with EHR-derived observational 

clinical data from free-text clinical narratives. Noting the centrality of asthma in the graph, 

we searched the literature to find that asthma as an indication is associated with a two-fold 

increased risk of AMI. While inactive asthma did not increase the risk of AMI, individuals 

with active asthma had a higher odds of AMI than those without asthma (adjusted OR: 3.18; 

95% CI: 1.57 – 6.44) [103]. More such graphs are available in the GitHub repository.

5.1. Comparison with previous related work

For the sake of a coarse comparison, the AUROCs of several EHR-based pharmacovigilance 

methods have been included in Table 6. However, note that the performance patterns are not 

strictly comparable owing to different sample sizes and populations. However, these results 

have been included here for convenience and to provide context, however crude.

In summary, our literature-informed graphical causal modeling framework resulted in 

superior performance compared with our previous purely EHR-based modeling efforts [26, 

70] but fare poorly in comparison with results from applying meta-analysis from [104] with 

an AUROC of 0.89, as seen in the table 6. However modest the improvement, the success of 

such a principled approach using causal models applied to coarse cross-sectional data opens 

many doors for methodological refinement and future avenues of research.

For example, incorporating outside statistical information (e.g., from FAERS and claims 

data) resulted in more considerable performance improvements than could be obtained with 

confounding correction alone. Our approach could be readily applied to any of these data 

sources or their combination also.

5.2. Practical applications of literature-informed modeling

Domain knowledge improves the efficiency of causal learning tasks by:
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• Reducing the dimensionality of features: the richness of HER data introduces 

the “curse of dimensionality” problem, presenting a large number of potential 

covariates for which to adjust. By contrast, discovery pattern search can 

provide a parsimonious set of covariates vetted from background knowledge 

that is useful in many situations for explaining, controlling for, and reducing 

confounding bias. That is, EHR data have a large number of variables and are, 

hence, high dimensional; having computable domain knowledge permits the 

efficient identification of a feasibly-sized set of confounders.

• Simplifying causal structure: qualitative information about the orientation of 

variables in causal graphs simplifies the task of learning causal structure.

• Providing a priori knowledge of causal order: although time is not coded 

explicitly in cross-sectional data, a priori knowledge provides information about 

the likely ordering of events. In terms of graphs, when we assume that a 

biomedical entity is a confounder relative to exposure and an outcome, then it 

has a set topological structure (probabilistic and causal dependency). Without 

assumptions drawing from substantive knowledge, it is often impossible to 

determine the causal direction (such that it exists) from the data alone [34], 

though much progress is being made in this area [105, 6].

Discovery pattern search could be useful for identifying variables with causal roles besides 

that of being a confounder. For example, investigators may also be interested in identifying 

certain types of variable, such as:

• Colliders, or common effects of both the exposure and outcomes variables, that 

can amplify bias [106, 3, 107]; and

• Mediators, or intermediate variables which lie along the causal chain from the 

exposure to the outcome (and which can also bias estimates if a variant of “total 

effect” is the causal parameter of interest) [108].

While we have not screened for such variables in the current paper, we present the discovery 

patterns in Table 7 as a starting point for future research.

Furthermore, although we have only used the TREATS and CAUSES-derived predicates 

in this study, other potentially useful “causal” predicates, and related discovery patterns, 

exist. For example, other likely useful predicates include: PREDISPOSES, AFFECTS, 

STIMULATES, PREVENTS, INHIBITS, and PRODUCES.

Note that the discovery patterns we have used in our paper are “manually-designed” 

discovery patterns. As mentioned earlier, methods exist that can automatically generate 

discovery patterns directly from the distributional semantics of PSI spaces [66, 67] but 

exploring other discovery patterns is beyond the scope of the present paper.

5.3. Error analysis

We interrogated our modeling procedures to try to identify why they failed and to gather 

ideas on how to address these issues in subsequent work.
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We bring the case of ketorolac and acute myocardial infarction to attention. Initially, we 

thought that the listing of the right platysma (a facial muscle) demonstrated PSI’s power 

to infer relationships based on the global similarity of structured knowledge. Although 

there were no results in PubMed or SemMedDB linking “right platysma” to ketorolac and 

acutemyocardial infarctions, Keterolac has been a useful adjunct to Botox treatment to 

reduce discomfort (after facial injection). Ketorolac was also studied in an RCT for biliary 

colic pain [109].

However, we note that PSI can only draw inferences based on the global similarity of 

structured knowledge when deliberately asked to (using e.g., two-predicate path queries 

from semantic vector cue to semantic vector target). The results of the current search method 

do not benefit from vector similarity, as we are retrieving elemental vectors, which are, by 

definition, dissimilar. Another explanation could be that this suggestion may have resulted 

from the random overlap between elemental vectors. Within our broader methodological 

framework, it is helpful that the empirical data can often be used to correct for machine 

reading or information retrieval errors in causal models. By contrast, string-based search 

often yielded confounder candidates that were overly general. Confounder search yielding 

generic confounder candidates was less often the case with PSI, presumably because 

statistical weighting was used to deliberately limit the influence of frequently occurring 

terms during the construction of the vector space.

As per table 8, the explanation we considered for the poor performance we observed in 

some cases was that some of the TREATS relationships mined by SemRep in SemMedDB 

were occasionally more suggestive of potential non-standard uses that are not as yet FDA 

approved. It would be un-likely that a patient would be prescribed the drug for that particular 

(confounder candidate) indication, though it could still affect the outcome. Also, we noted 

other cases of hedging, the use of case reports, and anecdotal evidence.

Recent work on SemRep has focused on assigning confidence scores capturing the factuality 

of extracted SemRep triples [110]. These results suggest a promising path for constraining 

SemMedDB predications further.

Causal irrelevance—Machine reading errors have the potential to introduce additional 

bias. Including inappropriate or irrelevant information can variously (positively or 

negatively) bias estimates. Irrelevant covariates may be classified into two categories: 1.) 

variables that are causal relevant (adjacent) but related inappropriately to the exposure 

and outcome; and 2.) variables that are entirely causally irrelevant. In the first category 

of irrelevance, individual covariates may be causally relevant but have the wrong type of 

relevance for the question at hand, as is the case with colliders and mediators mentioned 

earlier. Controlling for these covariates may result collider bias [111, 106, 112]. An example 

of collider bias would be controlling for fever when determining a hypothetical relationship 

between influenza and food poisoning [2]. In the case of mediators, if the intermediate 

variable’s relationship to the outcome is more vital than that between the exposure of 

interest and the outcome, then the estimate may be negatively biased.
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We were curious to see how including variables selected at random would affect our 

adjustment and effect estimation procedures. To interrogate the notion of causal relevance 

- and its corollary, causal irrelevance, we have devised, run, and summarized an additional 

experiment.

We hypothesized that controlling for randomly selected covariates (that were presumed to be 

irrelevant) would result in more biased models than models incorporating literature-derived 

confounders. To this end, we built models using the same EHR-derived clinical narrative 

data and reference dataset. We identified and controlled for up to ten covariates selected 

at random to empirically evaluate the effect of controlling for irrelevant covariates on error 

propagation on the outcome, measured by the amount of bias. In the next few paragraphs, 

we report on our findings.

Figure 6 illustrates the treatment effect estimates from drug / adverse event pairs using 

different sets of confounders. We ran the procedure over all of the drug / adverse event 

pairs described earlier. However, to obtain a clearer picture of the methods performed, we 

removed outliers by excluding models from drug / adverse event pairs scoring in the lowest 

and highest quartiles. This procedure resulted in slightly different baselines from the entire 

subset described earlier since there are fewer sample pairs per adverse event.

The leftmost boxplot illustrates the distribution of regression coefficients using ten randomly 

selected covariates, while the other two boxplots represent regression coefficients from 

models incorporating literature-derived confounder candidates ( sql5 and psi10 confounder 

search).

Of the two literature-derived methods, psi10 better reduces the negative control pairs’ 

estimates. The effect estimates for the positive drug / adverse event pairs are slightly higher 

than the estimates of the negative control pairs on average. The raw regression coefficient 

scores average treatment estimate scores were not as strongly discriminative.

These observations prompted us to revisit the regression coefficients from the rest of the 

research data. Table 9 shows the AUROCs from ranking the drug / adverse event pairs 

by calculating the difference between adjusted vs. unadjusted regression coefficient across 

different adverse event types. In this way, we were able to perform a direct comparison of 

the performance of models using randomly selected vs. the literature-derived confounders 

((psi10)).

Treatment-confounder feedback—We made simplifying assumptions that assumed that 

confounder behavior would be stable for the practical purpose of reducing confounding bias. 

However, it is known that the relationship between biomedical entities can vary with time. 

Such is the case, for example, when a therapy affects the indication for which it is prescribed 

that is itself an independent cause or risk factor of the disease. In this setting, a confounder 

variable also behaves like an intermediate variable or mediator. Mediators are links on the 

causal chain between exposure and outcome: Aexposure → mediator → Youtcome.

The modeling problem associated with the issue of such problematic covariates is called 

treatment-confounder feedback [113, 114, 115]. Treatment-confounder feedback can result 
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in “overcontrol bias,” wherein estimates are biased toward the null hypothesis [95]. Bias 

towards the null hypothesis occurs if the intermediate variable’s effect overwhelms the direct 

effect from the exposure. For reference literature on this phenomenon, see chapter 20 in 

[116].

For instance, literature search ranks diabetes as a probable confounder of the anti-diabetic 

drug rosiglitazone and acute myocardial infarction. If rosiglitazone is effective at treating 

diabetes, the effect of treating diabetes might reduce the risk of heart attack. If diabetes is 

a more powerful risk factor than rosiglitazone, controlling for diabetes without truncating 

the data longitudinally may bias conclusions. In this study, the case of acute kidney failure 

presented an overall pattern of overcontrol bias from treatment-confounder feedback in 

which the β scores from positive cases were lower on average than the adjusted scores in 

the negative controls, after incorporating the literature-derived confounders, violating the 

assumptions mentioned earlier that the effect estimates of the negative controls should tend 

towards zero (ASSUMPTION I) and the estimates of the positive controls should be greater 

than the negative controls (ASSUMPTION II).

Since knowledge is incomplete and imperfect, misspecified models, or models that 

erroneously include or omit certain variables, are likely the norm in causal modeling. 

It is also likely that treatment-confounder feedback introduces additional hurdles to bias 

reduction. Fortunately, the question of how to handle confounding in these circumstances 

has motivated the developments causal parameter estimation methods methods that can 

address treatment-confounder feedback [117]. Advanced estimation frameworks such as 

that of targeted learning are robust to model misspecification by employing data-adaptive 

procedures that combine a propensity score model with an outcome regression to optimize 

causal effect estimates, which can be further enhanced with ensemble machine learning 

[118, 119]. For more details, a paper is available here [120] outlining how to apply targeted 

learning procedures that also offers important insights concordant with the observations 

made in the present study.

5.4. Limitations and themes for future work

Ideally, we would wish that our methods for studying observational data would possess 

sufficient rigor to approach the level of scientific confidence of an RCT. We have 

enumerated additional limitations of the present study with a view toward future work in 

this area to bridge gaps in the following areas:

• IMPROVING DATA

– Improving data hygiene: We did not carry out advanced phenotyping 

procedures, correct for missingness in the data, or rigorously define 

exposure and outcome criteria. Although we have no evidence to prove 

that such factors negatively impacted our methods’ performance, these 

factors likely set a ceiling on the performance improvements attainable 

by applying our methods. In our current work, we have adopted more 

rigorous approaches to measure and improve the validity of the clinical 

data [121, 122]. Other improvements could be attained with more 
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extensive vocabulary mapping. For example, we have not reconciled 

the data underlying each synonym into a single representation for 

each overarching biomedical entity of interest representing confounder 

candidate concepts. In future work, we may explore NER systems 

beyond or additional to MedLEE, e.g., using ensemble-based NER 

methods [78], and take efforts to approximate a target trial [123] by 

better defining the observation periods and setting “time zero.”

– Addressing temporality: one fundamental limitation of our approach 

stems from the coarseness of cross-sectional data. Cross-sectional 

data represent a “snapshot in time” rather than temporality. These 

data may violate independence and exchangeability assumptions [124] 

and thereby introduce “immortal time bias” [123]. Study designs that 

rigorously apply eligibility criteria explicitly specifying a “time-zero” 

and observation periods for the exposure, outcome, and confounding 

variables can address this limitation. Longitudinal data may also be 

important for optimal performance.

– Structured + unstructured data: In the present study, we used 

empirical data extracted from the unstructured free-text narrative. EHR 

systems were designed primarily for administrative record-keeping such 

as claims, billing, and other non-research-specific information and to 

fulfill legislative mandates [125]. Anticipating administrative needs, 

system designers naturally used structured fields to capture the most 

critical information for these purposes. However, unstructured text can 

provide unique insight to inform both clinical ends and basic science 

[126]. For example, information that may be absent in structured 

fields (as was the case in [79]) about sub-pathological states such 

as worry, hypomania, or other affective states captured by clinicians 

and present in clinical notes could provide insight into the progression 

of chronic illnesses outcomes such as Alzheimer’s disease and other 

neurodegenerative diseases. Many other types of valuable information 

may be missing in structured data, including the reasons for drug 

discontinuity events [127]. Thus unstructured data is necessary to 

enhance our understanding of risk factors as well as potential benefits 

from drug exposures. For a more complete picture of patient health, 

it will be essential to capture the valuable information from both 

structured fields and unstructured free-text in the EHR systems in 

future work. However, to take full advantage of the richness of free-text 

clinical data in EHR systems, additional efforts are needed to mitigate 

data quality issues.

• IMPROVING KNOWLEDGE

– Confounder quality control: Machine reading produces errors, and 

those errors can propagate additional biases. As we saw in the randomly 

selected variable experiment, controlling for etiologically irrelevant 
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randomly selected covariates did not help improve the detection of 

drug / adverse event pairs. There is no way of knowing whether the 

measures of association represent artifacts of the data sample rather 

than support for a causal effect. On the other hand, machine reading 

errors may also introduce a variable that is causally related to the 

exposure and outcome of interest in undesirable ways. For example, if 

machine reading errors introduce a collider into an adjustment set, then 

collider or selection bias can occur, amplifying bias.

– Proxy confounders: While automated tools such as those described in 

this paper may be useful, these tools are only useful for identifying 

confounders from a priori knowledge in the published data, and residual 

bias may remain from uncontrolled confounders. Machines still have a 

very limited ability to understand language and causality. It is crucial 

that researchers familiarize themselves both with confounders from the 

literature, the features of their data, and engage with subject-matter 

experts familiar with the local causal structure of biomedical entities 

involved [120]. Seemingly irrelevant covariates may still be useful for 

capturing missing information, even though they are not etiologically 

related to either the exposure or the outcome directly. For example, 

information about whether patients play ice hockey may seem irrelevant 

on the surface. However, such information could be potentially useful 

for controlling for the effect of socioeconomic status since hockey is an 

expensive sport. Thus, detailed knowledge of local causal structures is 

crucial for formulating a working model that can most reliably help test 

causal hypotheses from observational data and covariate selection [32]. 

However, such procedural knowledge is likely beyond the capability of 

any AI system for the conceivable future. For these methods to be of 

use in settings where significant precision is required, it is necessary to 

have a human possessing substantial subject-matter knowledge in the 

loop.

– Using improved knowledge representation: Our methods may 

benefit from updated literature-based discovery and distributional 

representation methods. For example, Embedding of Semantic 

Predications (ESP) is a neural-probabilistic extension of the PSI model 

that has been shown to improve performance in predictive modeling 

tasks [128]. Still, other comparator methods exist, which we will also 

soon explore [129].

– Including other discovery patterns: It is probably not the case that a 

single discovery pattern is sufficient to capture all confounders. More 

research is needed in this area to expand search through other pathways.

– Identifying ‘minimal adjustment sets’: Although the thresholds on 

the number of confounder candidates incorporated into the models are 

to some extent justified from a heuristic standpoint on the basis of 
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examining the number of confounders per drug / adverse event pair, we 

note the arbitrary nature of these thresholds as a limitation. However, 

the selection of optimal subsets of confounders is a distinct and active 

research area referred to as causal feature selection [130], and further 

optimizing feature selection for causal inference is not the focus of this 

paper. We shall seek to remedy this shortcoming by applying minimal 

adjustment set methods in future work.

– Developments in machine reading: Limitations in our capability to 

process knowledge into a usable form further limit our ability to control 

for confounding. The SemRep system is currently being upgraded to 

support end-user extensibility and with exciting features that include 

methods for encoding factuality levels [110], where factuality levels 

denote the degree of belief in mined assertions from text. Factuality 

levels are potentially useful for improving “knowledge hygiene” and for 

improving the detection and identification of contradictory claims in the 

literature [131]). The Integrated Network and Dynamical Reasoning 

Assembler, or INDRA, NLP system can translate scientific prose 

directly into executable graphical models [132, 133]. INDRA output 

can be filtered through additional postprocessing filters to provide 

confidence scores [134]. Such additional information weighting the 

validity of machine reading output could help to screen out irrelevant 

literature-derived covariates. To this end, we (authors S.A.M. and 

R.D.B. along with others) are exploring combining knowledge from 

the SemRep reading system with knowledge extracted using the 

INDRA system [132] into an ontology-based knowledge graph platform 

populated with comprehensive biomedical knowledge [135].

– The deconfounder: The extent of knowledge itself further limits 

the ability to control for confounding (and also the observation that 

the claims of most scientific studies are invalid [136]). There have 

been notable efforts afoot to contrive a synthetic variable called a 

deconfounder [37, 137]. Deconfounders can substitute for substantive 

knowledge of the causal structure relative to the exposure and the 

outcome and also potentially correct for missingness. An intriguing 

line of study, as yet unpursued, would be interesting to combine both 

simulated and empirically-derived confounders.

• IMPROVING ESTIMATION

– Advanced estimation methods: More advanced effect estimation 

techniques exist (e.g., G-methods [115, 114, 138, 139], Inverse 

Probability Weighting [140], and targeted learning estimators [118]) 

with more desirable statistical properties than the method presented 

here. These tools are more resilient against issues that commonly 

plague observational studies including model specification errors 

from treatment-confounder feedback and missing-not-at-random data. 
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Accordingly, these more advanced estimation methods are a natural 

fit with the knowledge integration methods outlined in this paper (see 

[120] for an overview).

– More appropriate target causal parameter: Also, causal effect 

parameters such as Effect of the Treatment on the Treated (ETT) are 

often more appropriate for situations where treated subgroups may have 

distinct background characteristics compared with untreated subgroups, 

as is often the case with observational data.

5.5. Conclusions

This paper introduced a generalizable framework for helping solve the ubiquitous problem 

of confounding bias, an endemic threat to all observational studies, and expands upon our 

previous work combining computable knowledge from the literature with observational data 

to reduce confounding [26, 70].

We have shown that our knowledge integration methods can modestly improve the ability 

to detect genuine pharmacovigilance signals from observational clinical data, though leaving 

ample room for methodological refinement, given the limitations listed above.

Notwithstanding confounding adjustment, residual bias may remain from unmeasured, 

mismeasured, or omitted variables [96], as well as from other forms of systematic bias 

[141] along with random noise. However, we assume that confounding and other forms of 

bias can be reduced but not eliminated.

We found that incorporating literature-derived confounders more often than not improved 

causal inference using a publicly available reference dataset and that confounder candidates 

from semantic vector-based search improved the detection of genuine drug safety signals 

over string-based confounder search.

Moreover, semantic vector-based search offered improved performance over string-based 

search. We conjectured that the advantageous properties of the representation scheme helped 

prioritize the most useful confounder candidates and resulted in models with the most 

improvement over baseline.

Our framework can be easily adapted to help in other areas, such as estimation of therapeutic 

rather than adverse effects, with only a modicum of difficulty. This provides an avenue 

through which to leveraging existing causal knowledge to to accelerate the discovery of new 

knowledge, by improving the reliability of causal inference from observational data.
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A.: Appendix A - Stopwords

A.1. Stopterms

The following terms were excluded from being confounder candidates on account of the 
terminological vagueness or other reasons. adhesions; adolescent; adult; agent; animals; 

antibodies; antigens; apoptosis; application procedure; assay; assessment procedure; 

assessment procedure; bacteria; biopsy; blood; body tissue; boys; canis familiaris; 

capsule; cattle; cell line; cell membrane; cells; cerebrovascular accident; child; chronic 

disease; clinical research; cohort; color; complication; congenital abnormality; contrast 

media; control groups; country; detection; diagnosis; disease; dna; elderly; embryo; 

entire hippocampus; enzymes; excision; extracellular; family; family suidae; felis catus; 

fibroblasts; follow-up; fracture; fume; functional disorder; genes; girls; growth; house 

mice; human; implantation procedure; implantation procedure; individual; induction; infant; 

infiltration; injection procedure; injection procedure; injury; intervention regimes; jersey 

cattle; lesion; macaca mulatta; macrophage; magnetic resonance imaging; male population 

group; malignant neoplasm of breast; malignant neoplasms; management procedure; 

management procedure; medical imaging; membrane; micrornas; mild adverse event; 

monkeys; monoclonal antibodies; mothers; mus; muscle; nonhuman primates; obstruction; 

operative surgical procedures; organ; participant; pathogenesis; patient; patient state; 

patients; persons; pharmaceutical preparations; pharmacophore; pharmacotherapy; placebos; 

plants; plasma; primates; procedures; prophylactic treatment; proteins; protoplasm; 

psychopharmacologic agent; rabbits; radiation therapy; rats; rats; rattus norvegicus; receptor; 

rna; rodent; screening procedure; screening procedure; screw; serum; sloths; solutions; 

stimulation procedure; stimulation procedure; study models; substance; supplementation; 

symptoms; syndrome; techniques; test result; therapeutic procedure; toxic effect; 

transplantation; treatment aids; treatment protocols; voluntary workers; water; woman; 

young child
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Highlights

• Drug safety research asks causal questions but must rely on observational data

• We explore searching literature-derived computable knowledge to elucidate 

confounders

• To identify confounders, we search for common causes relative to a drug and 

an adverse event

• We test search, modeling, and inference procedures on EHR data to detect 

genuine adverse events

• Semantic vector-based search performed better overall than string-based 

confounder search.
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Figure 1: 
Illustration of confounding. If both the exposure and outcome variables are effects of the 

same cause. That common cause is referred to as a confounder.
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Figure 2: 
Schema depicting our literature-informed causal modeling toolkit.
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Figure 3: 
Illustration of our literature-informed modeling framework.
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Figure 4: 
Unweighted AUROC for best results for literature-derived confounders (querying method = 

PSI, # of confounders = 10) vs. (baseline = χ2). Light gray = χ2. Medium gray = [logistic 

regression coefficient]. Black = [average treatment effect/Δ]. The numbers to the right of the 

ROCs represent the 95% confidence intervals.
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Figure 5: 
Graphical causal model using PSI at the 10 confounder threshold for loratadine, a negative 

case for acute myocardial infarction. The thickness of the edges indicates the strength of the 

observed relationship in the EHR-derived data.
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Figure 6: 
These boxplots represent the differences in unadjusted vs. adjusted regression coefficients 

(β) for gastrointestinal hemorrhage. The leftmost boxplot shows these differences in β using 

randomly selected (irrelevant) covariates whereas the next two boxplots show the differences 

from using sql5 and psi10 confounder search. Controlling for literature-derived methods 

resulted in more considerable reductions in the negative controls’ estimates than randomly 

selected covariates. The boxplots generated for from the β difference for a drug/adverse 

event pair sample size of n = [17+, 18−]pairs. The highest and lowest scoring quartiles were 

excluded from the counts and statistics reported below.
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