Skip to main content
. 2021 Nov 1;72:103263. doi: 10.1016/j.bspc.2021.103263

Table 3.

Description of best-selected parameters of machine learning models.

Algorithm Parameters
LR penalty: l2, solver: lbfgs, max_iter: 100
KNN n_neighbors: 8, algoritgm: kd_tree, p: 2
DT criterion: gini, spliter: best, max_depth: none, max_features: none
SVM C: 5, gamma: 1, kernel: rbf, decision_function_shape: ovr
NB var_smoothing: 1e-1
ET n_estimators: 100, criterion: gini, max_depth: none, max_features: none
RF n_estimators: 100, criterion: gini, max_depth: none, max_features: none
XGBOOST booster: gbtree, eta: 0.3, max_depth: 6, sampling method: gradiant_based