Skip to main content
. 2021 Nov 1;72:103263. doi: 10.1016/j.bspc.2021.103263

Table 5.

Average performance evaluation of machine learning models for all test datasets.

Dataset Model Accuracy (%) Precision (%) Recall or Sensitivity (%) Specificity (%) F1-Score (%) AUC (%) MCC (%)
First Dataset [2] LR 67.14 97.50 63.93 88.89 77.23 62.10 35.73
KNN 67.14 92.50 64.91 76.92 76.29 62.90 32.87
DT 78.57 85.00 79.07 77.78 81.93 77.50 55.92
SVM 68.57 90.00 66.67 75.00 76.60 65.00 35.36
NB 67.14 70.00 71.79 61.29 70.89 66.70 33.21
ET 80.00 97.50 75.00 94.44 84.78 77.10 61.33
RF 78.57 92.50 75.51 85.71 83.15 76.30 56.69
XGBOOST 76.72 85.28 79.52 70.60 81.85 74.95 49.89
Second dataset (OSR Dataset) [6] LR 84.73 81.99 87.82 81.82 84.80 84.80 69.66
KNN 77.83 72.99 82.35 73.97 77.39 78.00 56.19
DT 75.62 76.30 76.67 74.49 76.48 75.60 51.17
SVM 83.25 81.52 85.57 80.98 83.50 83.30 66.60
NB 79.80 83.89 78.67 81.22 81.19 79.60 59.58
ET 84.98 82.46 87.88 82.21 85.09 85.10 70.12
RF 83.99 81.04 87.24 80.95 84.03 84.10 68.21
XGBOOST 81.09 81.37 80.07 82.15 80.62 81.12 62.24
Third dataset [9] LR 88.00 33.33 38.46 92.70 35.71 63.7 29.22
KNN 90.67 20.00 60.00 91.72 30.00 59.30 30.95
DT 80.67 60.00 28.13 94.92 38.30 71.50 31.46
SVM 90.67 46.67 53.85 94.16 50.00 71.10 45.02
NB 83.33 60.00 32.14 95.08 41.86 73.00 35.36
ET 92.00 33.33 71.43 93.01 45.45 65.90 45.30
RF 90.67 46.67 53.85 94.16 50.00 71.10 45.02
XGBOOST 88.64 44.96 61.19 91.77 50.03 69.92 45.70