Skip to main content
. 2021 Nov 1;72:103263. doi: 10.1016/j.bspc.2021.103263

Table 9.

The performance evaluation results of machine and deep learning models on the third balanced dataset.

Model Accuracy (%) Precision (%) Recall or Sensitivity (%) Specificity (%) F1-Score (%) AUC (%) MCC (%)
LR 85.00 84.62 91.67 75.00 88.00 85.20 68.47
KNN 70.00 65.38 85.00 55.00 73.91 72.00 41.93
DT 72.50 73.08 82.61 58.82 77.55 72.30 42.94
SVM 87.50 86.63 90.34 87.69 87.34 87.92 76.92
NB 85.00 88.46 88.46 78.57 88.46 83.50 67.03
ET 90.00 88.46 95.83 81.25 92.00 90.70 79.17
RF 85.00 80.77 95.45 72.22 87.50 86.80 70.59
XGBOOST 81.25 79.89 83.49 82.74 80.48 81.12 64.16
DNN 92.50 86.96 100 85.00 93.02 92.20 85.97
CNN 76.87 72.56 83.26 77.09 74.78 76.87 56.82
RNN 79.35 83.47 79.00 83.64 79.72 80.22 61.53
LSTM 51.25 100 50.59 25.00 67.05 51.12 5.18