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Abstract 

Background:  Early identification of the occurrence of arrhythmia in patients with acute myocardial infarction plays 
an essential role in clinical decision-making. The present study attempted to use machine learning (ML) methods to 
build predictive models of arrhythmia after acute myocardial infarction (AMI).

Methods:  A total of 2084 patients with acute myocardial infarction were enrolled in this study. (All data is available 
on Github: https://​github.​com/​wangs​uhuai/​AMI-​datab​ase1.​git). The primary outcome is whether tachyarrhythmia 
occurred during admission containing atrial arrhythmia, ventricular arrhythmia, and supraventricular tachycardia. All 
data is randomly divided into a training set (80%) and an internal testing set (20%). Apply three machine learning 
algorithms: decision tree, random forest (RF), and artificial neural network (ANN) to learn the training set to build a 
model, then use the testing set to evaluate the prediction performance, and compare it with the model built by the 
Global Registry of Acute Coronary Events (GRACE) risk variable set.

Results:  Three ML models predict the occurrence of tachyarrhythmias after AMI. After variable selection, the artificial 
neural network (ANN) model has reached the highest accuracy rate, which is better than the model constructed using 
the Grace variable set. After applying SHapley Additive exPlanations (SHAP) to make the model interpretable, the 
most important features are abnormal wall motion, lesion location, bundle branch block, age, and heart rate. Among 
them, RBBB (odds ratio  [OR]: 4.21; 95% confidence interval  [CI]: 2.42–7.02), ≥ 2 ventricular walls motion abnormal (OR: 
3.26; 95% CI: 2.01–4.36) and right coronary artery occlusion (OR: 3.00; 95% CI: 1.98–4.56) are significant factors related 
to arrhythmia after AMI.

Conclusions:  We used advanced machine learning methods to build prediction models for tachyarrhythmia after 
AMI for the first time (especially the ANN model that has the best performance). The current study can supplement 
the current AMI risk score, provide a reliable evaluation method for the clinic, and broaden the new horizons of ML 
and clinical research.

Trial registration Clinical Trial Registry No.: ChiCTR2100041960.
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Introduction
Admittedly, AMI is a clinically critical disease [1]. Recent 
studies have emphasized that percutaneous coronary 
intervention (PCI) can reduce acute and long-term mor-
tality [2]. However, the 1-year mortality rate for AMI 
patients reported by the Angiography Registry is still 

Open Access

*Correspondence:  Circulation9999@163.com; drsunlin@sina.com
Department of Cardiology, The First Affiliated Hospital of Harbin Medical 
University, 122 Postal Street, Nangang District, Harbin City, Heilongjiang 
Province, China

http://orcid.org/0000-0001-7955-2868
http://orcid.org/0000-0001-5211-8068
http://orcid.org/0000-0002-6594-522X
http://orcid.org/0000-0001-7948-7090
http://orcid.org/0000-0002-4177-3320
http://orcid.org/0000-0003-2127-7888
http://orcid.org/0000-0002-2865-8133
https://github.com/wangsuhuai/AMI-database1.git)
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-021-01667-8&domain=pdf


Page 2 of 14Wang et al. BMC Med Inform Decis Mak          (2021) 21:301 

10% [3]. Arrhythmia accompanying AMI is an important 
cause of worsening heart function and increased mortal-
ity  [4–6]. Studies have confirmed that in patients under-
going PCI treatment, arrhythmia that occurred before 
and after the end of cardiac catheterization was associ-
ated with increased mortality [7]. As a result, identifying 
the risk factors of arrhythmia after AMI and predicting 
the occurrence of arrhythmia in AMI patients can arouse 
doctors’ alertness and improve the prognosis of patients. 
In recent years, many studies have been concentrated on 
the risk factors of arrhythmia after AMI, including the 
clinical characteristics, coronary angiography results, and 
laboratory indicators [7–11]. However, the above studies 
are limited to a small number of factors and lack a com-
prehensive and multi-dimensional systematic evaluation 
of patients with arrhythmia in the acute phase of AMI. 
The GRACE risk score [1] is the most commonly used 
systematic assessment method for AMI patients, while it 
is mainly used to predict mortality, and the accuracy of 
predicting arrhythmia may not remain high. Therefore, 
establishing a predictive model of arrhythmia after AMI 
exerts an essential role in assisting clinicians in decision-
making. Traditional risk models are usually based on sta-
tistical methods, which can only linearly analyze several 
factors’ relationships. Researchers will select variables 

in advance to artificially cause the loss of potential risk 
factors. In terms of complex diseases such as acute myo-
cardial infarction, it has higher requirements for dealing 
with multi-factor and multi-level interactions.

As the most critical subset of artificial intelligence, ML 
has gradually become an important research method in 
medicine [12–14]. Through simulating human learning 
activities, ML automatically obtains information from big 
clinical data for learning [15, 16], effectively avoiding the 
limitations of human factors and variables in traditional 
analysis. ML has been successfully applied in various 
cardiovascular field aspects, including disease predic-
tion [17–21] and diagnostic classification [22–24]. In 

Table 1  Variables for machine learning

MI indicates myocardial infarction; CI, cerebral infarction; HF, heart failure; CHD, coronary heart disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, 
heart rate; pro-BNP, pro-B-type natriuretic peptide; CRP, C-reactive protein; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; 
DDP, D dimer; Cr, creatinine; TNI, Troponin I; CK-MB, creatine Kinase Isoenzyme; UGLU, urine glucose; P-R, PR interval; QTc, QTc interval; BBB, bundle-branch-block; 
LAFB, left anterior branch block; LPFB, left posterior branch block; LBBB, left bundle branch block; RBBB, right bundle branch block; LVEF, left ventricular ejection 
fraction; FS, fraction shortening; E/A, mitral valve peak velocity early diastolic filling (E wave) to peak velocity of late diastolic filling (A wave) ratio; Dt, E deceleration 
time; LVEDD, left ventricular end-diastolic diameter; IVST, interventricular septum thickness; LVPWT, left ventricular posterior wall thickness; LA, left atrium diameter; 
RA (up and down), right atrium up and down diameter; RA (right and left), right atrium right and left diameter; PA, pulmonary artery internal dimension; Vpa, 
Pulmonary peak flow rate; Vao, Peak aortic velocity; LAD, left anterior descending; LCX, left circumflex artery; RCA, right coronary artery; LM, left main coronary artery

Category Variables

Demographics and medical history Age, sex, smoker, drinker, Pre-hypertension, Pre-diabetes Mellitus, Prior MI, Prior CI, Prior HF, Prior CHD

Baseline characteristics of admission SBP, DBP, HR, Killip, NYHA

Laboratory characteristics Pro-BNP, CRP, Total cholesterol, Triglyceride, HDL, LDL, Cr, K + , TNI, CK-MB, UGLU, DDP

Findings on ECG P-R, QTc, BBB (LAFB, LPFB, LBBB, RBBB)

Echocardiographic parameters LVEF, FS, E/A, Dt, LVEDD, IVST, LVPWT, LA, RA (up and down), RA (right and left), PA, Vpa, Vao, ventricu-
lar wall motion

Angiographic characteristics LAD, LCX, RCA, LM, LAD + LCX, LAD + RCA, RCA + LCX, Triple vessels

Table 2  RF parameters

Criterion Gini

Random state 35

Max depth 3

Min samples leaf 6

Max features 40

N estimators 22

Fig. 1  Flow diagram showing the process for evaluating the 
performance of ML methods
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recent years, research on ML in AMI has mainly focused 
on predicting patient mortality [25–28]. In the field of 
arrhythmia, ML is mainly used for classification [29, 30], 
but the related ML model of arrhythmia after AMI has 
not been explored. As a result, this study intends to apply 
machine learning algorithms, including decision tree, RF, 
and ANN to establish a model to predict tachyarrhyth-
mia after AMI and compare the performance with the 
model-based by GRACE risk variable set.

Methods
Patient cohort
We retrospectively studied patients with acute myocar-
dial infarction diagnosed in the cardiac care unit of the 
First Affiliated Hospital of Harbin Medical University 
from January 2014 to January 2019. The guidelines define 

acute myocardial infarction as elevated Troponin I (TNI) 
(≥ 0.03 μg/L) or elevated Troponin I (TNT) (≥ 42 ng/L), 
accompanied by one of the following conditions: (1) 
Symptoms of myocardial ischemia; (2) New ischemic 
ECG changes: (3) Development of pathological Q waves; 
(4) Imaging evidence of new loss of viable myocardium 
or new regional wall motion abnormality in a pattern 
consistent with an ischemic etiology; (5) Identification of 
a coronary thrombus by angiography.

All patients underwent three-dimensional echocar-
diography, coronary angiography, and 24-h Holter. 
Outcome events were defined as whether or not tach-
yarrhythmia occurred. Arrhythmic events include atrial 
arrhythmia (atrial fibrillation, atrial flutter, and frequent 
atrial premature), ventricular arrhythmia (ventricular 
tachycardia, ventricular flutter, ventricular fibrillation, 
and frequent premature ventricular), supraventricu-
lar tachycardia. (All data is available on Github: https://​
github.​com/​wangs​uhuai/​AMI-​datab​ase1.​git).

Variable selection
We selected the risk factors for tachyarrhythmia after 
AMI identified in the previous study, and added some 
new risk factors as candidate variables, including demo-
graphics, admission baseline characteristics, labora-
tory characteristics, echocardiographic parameters, and 
angiography Features, a total of 45 variables (Table 1), all 
variables were collected immediately after hospitalization 
and before PCI. As some patients received emergency 
PCI, the 24-h Holter record includes data before and 
after PCI. We graded continuous variables and converted 
them into ordered categorical variables (see Additional 
file 1).

Machine learning
Feature selection
Feature selection is done after fine-tuning the hyper-
parameters defined as model parameters, which are 
assigned arbitrary values before the start of the learning 
process. During training, Random Forest generates sev-
eral random decision trees, which are applied to a subset 
of the data. Random forest checks all the binary results 
of these decision trees and selects their results by major-
ity voting. Based on the ranking of features with reduced 
Gini impurity, the degree of reduction in Gini impurity 
predicted when specific features are removed is calcu-
lated. This Gini impurity is then compared with the Gini 
impurity obtained by using all the characteristics, and 
this difference is regarded as the importance of the spe-
cific characteristic: the more the Gini impurity decreases, 
the more important the characteristic is. The specific 
parameters can be seen in Table 2. From this, we get the 
importance ranking of features. In addition, to make the 

Fig. 2  Artificial neural network architecture diagram

https://github.com/wangsuhuai/AMI-database1.git
https://github.com/wangsuhuai/AMI-database1.git
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ML model interpretable, we use the SHAP method to 
show the importance of features. In the end, we selected 
the top 15 variables, and the cutoff point was selected 
based on optimizing the predictive performance of the 
model with the fewest variables (feature importance 
ranking see Additional file 2).

Model construction
Predictive classifiers were developed based on data from 
the training set using 3 supervised ML methods: (1) 
Decision Tree, (2) RF, (3) ANN. We chose 80% as the 
training set and 20% as the testing set. We use the ten-
fold cross-validation technique on the training set. The 
dataset is randomly divided into 10 equal folds, each with 
approximately the same number of events; 10 validation 
experiments are then performed, with each fold used in 
turn as the validation set, and the remaining 9 folds as 
the training set. Then use the 20% testing set to evaluate 
model performance (Fig. 1, Additional file 3 describes the 
detailed data).

The artificial neural network architecture diagram is 
shown in Fig.  2. The first dense layer uses ReLU as the 
activation function, and the probability of dropout is 
0.05; the second dense layer uses ReLU as the activation 

function, and the probability is 0.25; the third dense layer 
uses ReLU as the activation function, and the fourth 
dense layer uses Sigmoid As an activation function. The 
loss function is cross-entropy, and the optimization algo-
rithm is RMSProp.

First, we feed all the variables into machine learning to 
build the prediction model. However, considering that it 
is difficult for doctors to consider all 45 variables in the 
actual clinical environment. To simplify the ML model for 
clinical use, a simplified model is derived from the com-
plete model, which includes the top 15 variables selected 
based on the RF. Finally, to evaluate the ML model’s 
clinical significance, we input the GRACE risk score vari-
ables into three ML algorithms for training to build the 
GRACE variable set model. The overall performance of 
the prediction model on the test set was assessed by cal-
culation of accuracy, specificity, false-negative rate, false-
positive rate, and the area under the curve (AUC) and the 
associated 95% CI. We drew receiver operating charac-
teristic (ROC) curves of all models and used the Yoden 
index to get the best threshold of ROC curves. The ML 
techniques were implemented in the open-source Python 
3.7 environment.

Table 3  Comparison of basic characteristics between the two groups

* means P < 0.05, ** means P < 0.01

Characteristics Arrhythmia

No (n = 1224) Yes (n = 860) P value

Demographics and history

Age, years 57.97 ± 11.38 61.68 ± 10.81  < 0.001**

Sex (male), n (%) 942 (76.96) 611 (71.05) 0.002**

Prior MI, n (%) 86 (7.03) 81 (9.42) 0.048*

At admission

Heart rate, beats/min 75 (66, 86) 72 (62, 85)  < 0.001**

SBP, mmHg 130 (117 ~ 150) 127 (112 ~ 144)  < 0.001**

DBP, mmHg 83.84 ± 15.86 79.59 ± 16.68  < 0.001**

Laboratory values

Pro-BNP (pg/mL) 1003.5 (420.0, 2207.0) 1202.0 (482.0, 2641.5) 0.003**

TNI (μg/L) 19.810 (1.1, 50.0) 30.785 (2.0, 54.0) 0.001**

CK-MB (μg/L) 74.0 (25.4, 161.6) 91.5 (33.7, 190.6) 0.001**

TG (mmol/L) 1.95 ± 1.15 1.82 ± 1.10 0.014*

Cr (μmol/L) 75.88 ± 37.08 79.88 ± 42.88 0.027*

Findings on ECG

BBB, n (%)  < 0.001**

 LAFB, n (%) 214 (17.48) 175 (20.35)

 LBBB, n (%) 22 (1.80) 19 (2.21)

 LPFB, n (%) 49 (4.00) 35 (4.07)

 RBBB, n (%) 25 (2.04) 51 (5.93)

 LAFB + RBBB, n (%) 13 (1.06) 27 (3.14)

Q-Tc (ms) 439 (418, 462) 442 (418, 469) 0.014*
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Statistical analysis
Descriptive analyses and comparisons between clinically 
defined groups were performed using SPSS 25.0 (IBM, 
Inc, Chicago, IL, USA). Continuous variables are pre-
sented as mean ± SD or median (25th and 75th percen-
tiles) and categorical variables as number and percentage. 
Baseline characteristics of groups were compared using 
unpaired t-test or Mann–Whitney’s U-test for continu-
ous variables and by chi-square test for categorical vari-
ables. Logistic regression was used to determine the risk 
of important features of arrhythmia after AMI.A prob-
ability value of less than 0.05 was considered statistically 
significant.

Results
Patient characteristics
Excluding patients with incomplete data records and 
prior arrhythmias, the study included 2084 patients with 
AMI, of whom 1224 had no arrhythmias and 860 had 
tachyarrhythmia (611 men and 249 women). Tables 3 and 
4 summarizes the differences in demographics, baseline 
characteristics of admission, laboratory characteristics, 

echocardiographic parameters, and angiography features 
between the two groups. (* means P < 0.05, ** means P < 
0.01). Details on all 45 features are available in Additional 
file 4.

ML analysis
Variable selection
ML extracted top-15 feature-ranking with the random 
forest for further modeling. After applying SHAP to 
make the model interpretable, the most important fea-
tures are abnormal wall motion, lesion location, bundle 
branch block, age, and heart rate (Fig. 3).

Model evaluation and comparison
We use three ML algorithms to build a predictive model 
of tachyarrhythmia after AMI. Whether it is all variables, 
15 important variables, or the GRACE variable set, ANN 
has better performance than the other two algorithms. 
The model constructed by the feature selection combined 
with the ANN algorithm has the best performance, with 
an accuracy rate of 0.668 (95% CI, 0.621–0.714), which is 
higher than the Grace variable set model, with an accu-
racy of 0.644 (95% CI, 0.615–0.673). Table 5 summarizes 
the accuracy, specificity, false-negative rate, false-positive 
rate, and the area under the curve (AUC) and the associ-
ated 95% CI of each model.

We drew ROC curves of all models. Figure  4 is the 
ROC curve obtained by the decision tree learning three 
types of data sets. Figure  5 is the ROC curve obtained 
by RF learning three types of data sets; Fig. 6 is the ROC 
curve obtained by ANN learning three types of data sets. 
We can see that the highest value of the area under the 
ROC curve of the model constructed by the artificial 
neural network combined with the feature selection vari-
able set is 0.654 (95% CI, 0.625–0.683).

To further explore the clinical application value of ML, 
we used logistic regression to analyze the risk of impor-
tant features of arrhythmia after AMI. The results showed 
RBBB (OR: 4.21; 95% CI: 2.42–7.02), ≥ 2 ventricular wall 
motion abnormalities (OR: 3.26; 95% CI: 2.01–4.36), and 
right coronary artery occlusion (OR: 3.00; 95% CI: 1.98–
4.56) are important factors related to arrhythmia after 
AMI (Table 6).

Discussion
AMI is a clinically critical illness, and the mortality 
rate after PCI can still reach 10%  [3]. Arrhythmia after 
AMI complicates the patient’s condition and increases 
the Incidence of adverse events (including stroke  [31], 
higher use of pacemakers  [4], re-infarction, cardio-
genic shock, heart failure, asystole  [8], and sudden car-
diac death  [32]). The hospital mortality of patients with 
arrhythmia [4, 6, 31, 33], 30-day mortality [34, 35], and 

Table 4  Comparison of the results of echocardiography and PCI 
between the two groups

* means P < 0.05, ** means P < 0.01

Characteristics Arrhythmia

No (n = 1224) Yes (n = 860) P value

Echocardiographic

LVEF (%) 52.28 ± 9.04 51.17 ± 9.20 0.006**

RA (up and down), mm 44.0 (42.0, 46.0) 45.0 (42.0, 46.0) 0.006**

RA (right and left), mm 34.0 (32.0, 35.0) 34.0 (32.0, 36.0) 0.003**

 Ventricular wall 
motion abnormal, 
n(%)

 < 0.001**

   ≥ 2 walls 270 (22.06) 213 (24.77)

  Anterior 430 (35.13) 217 (25.23)

  Apex 19 (1.55) 3 (0.35)

  Anteroseptal 19 (1.55) 2 (0.23)

  Posterior 148 (12.09) 135 (15.70)

  Inferior 297 (24.26) 268 (31.16)

Angiographic

Lesions vessels, n (%)  < 0.001**

  LAD 262 (21.41) 95 (11.05)

  LCX 46 (3.76) 20 (2.33)

  RCA​ 78 (6.37) 112 (13.02)

  LM 38 (3.10) 35 (4.07)

  LAD + LCX 158 (12.91) 64 (7.44)

  LAD + RCA​ 198 (16.18) 166 (19.30)

  RCA + LCX 66 (5.39) 60 (6.98)

  Triple vessels 378 (30.88) 308 (35.81)
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Fig. 3  Feature importance
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1-year mortality [8] are significantly higher than patients 
without arrhythmia. In addition, studies have found 
that in patients undergoing PCI treatment, arrhythmias 
occurring before and after cardiac catheterization are 
associated with increased mortality  [7]. Therefore, it is 
essential to predict the occurrence of arrhythmia after 
AMI as early as possible. To this end, a large number of 
studies have analyzed the risk factors for arrhythmia after 
AMI  [7, 8, 10, 11, 34, 36–41], but there is no systematic 
risk model. Currently, AMI’s clinical risk model is mainly 
the GRACE risk score recommended by the ACC/AHA 
guidelines  [42]. Still, it is mainly used to assess patients’ 
mortality and may not accurately predict the occurrence 
of arrhythmia. Besides, the model is constructed using 
traditional statistical methods and only linearly analyzes 
the relationship between a few factors, does not explore 
the potential prognostic value of interactions between 
several unexpected weaker risk factors and the primary 
outcome. For complex diseases, multi-factor and multi-
level interactions need to be analyzed. In this case, ML 
can provide a useful alternative when encountering a 
large number of potentially relevant variables when 
building a predictive model. In the cardiovascular field, 
ML has been used in medical image analysis  [43–49], 
disease classification and diagnosis  [16, 19, 50, 51], and 
predictive model construction  [21, 25, 28, 52, 53]. At 
present, researches related to ML and AMI were mainly 
devoted to the prediction of patient mortality  [25, 54], 
and the ML model of arrhythmia after AMI has not been 
explored. In this study, we collected big clinical data of 
2084 AMI patients and applied the power of ML to 
develop predictive models of tachyarrhythmia after AMI.

Before ML, we included 45 variables based on the cur-
rent AMI risk score  [1, 35, 55–59] and the risk factors for 
tachyarrhythmia after AMI identified in previous stud-
ies  [7–9, 11, 35–38, 60, 61]. First, we applied 3 ML tech-
niques (decision tree, RF, ANN) combined with all 45 
variables to assess the risk of tachyarrhythmia after AMI. 
Our goal is to accurately predict the patient’s arrhythmia 
with as few features as possible, so we further used the 
top 15 highly predictive variables to build the ML model. 
We found that compared with other machine classifi-
ers, the ANN algorithm has better predictive ability in 
the full-variable model, the important variable model, 
and the Grace variable model. Surprisingly, after feature 
selection, the ANN model obtained the best prediction 
performance. Finally, to evaluate the clinical efficacy of 
ML, we introduced the widely used GRACE risk variable 
set (including age, heart rate, blood pressure, Killip grade, 
ECG changes, myocardial enzymes, serum creatinine, 
and past medical history) to construct the model. The 
best accuracy obtained is lower than the feature selec-
tion-ANN model. It can be seen that the feature selec-
tion-ANN model has higher performance in predicting 
the occurrence of arrhythmia in the acute phase of AMI.

In terms of variable selection, we combine advanced 
ML algorithms to perform complex nonlinear analysis 
on important variables with significant predictive capa-
bilities. In addition, to make the ML model interpretable, 
we use the SHAP method to show the importance of fea-
tures. The top five are abnormal wall motion, lesion loca-
tion, bundle branch block, age, and heart rate. Consistent 
with the results of previous studies, age, heart rate [8], 
inferior MI, RCA lesions [9], RBBB, and RBBB + LAFB 

Table 5  Predictive performance of all machine learning models

Models Accuracy AUC​ Specificity False negative 
rate

False 
positive 
rate

All features

Decision tree 0.627 (95% CI, 0.598–0.656) 0.575 (95% CI, 0.545–0.603) 0.963 0.915 0.037

Random forest 0.646 (95% CI, 0.617–0.675) 0.596 (95% CI, 0.567–0.652) 0.869 0.755 0.131

Artificial neural network 0.650 (95% CI, 0.607–0.675) 0.625 (95% CI, 0.579–0.672) 0.861 0.665 0.139

Feature selection

Decision tree 0.642 (95% CI, 0.613–0.671) 0.592 (95% CI, 0.563–0.648) 0.963 0.915 0.037

Random forest 0.648 (95% CI, 0.601–0.695) 0.605 (95% CI, 0.558 –0.652 0.913 0.802 0.087

Artificial neural network 0.668 (95% CI, 0.621–0.714) 0.654 (95% CI, 0.625–0.683) 0.922 0.755 0.078

Grace variable sets

Decision tree 0.622 (95% CI, 0.576–0.668) 0.554 (95% CI, 0.508–0.601) 0.973 0.927 0.027

Random forest 0.627 (95% CI, 0.598–0.656) 0.575 (95% CI, 0.545–0.603) 0.966 0.904 0.034

Artificial neural network 0.644 (95% CI, 0.615–0.673) 0.594 (95% CI, 0.565–0.65) 0.892 0.778 0.108
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Fig. 4  The ROC curves of decision tree models: A decision tree-all feature model; B decision tree-feature selection model; C decision tree-GRACE 
model;
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Fig. 5  The ROC curves of random forest models: A random forest-all feature models; B random forest -feature selection model; C random 
forest-GRACE model;
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Fig. 6  The ROC curves of ANN models: A ANN-all feature model; B ANN-feature selection model; C ANN-GRACE model
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[62] are related to the occurrence of an arrhythmia, prov-
ing that ML has a very reliable Clinical practice. More 
importantly, the lesion location, abnormal wall motion, 
and bundle branch block not included in the GRACE 
score rank the top three in ML, which means that the 
ML model we constructed is more suitable for predict-
ing arrhythmia in the acute phase of AMI. Abnormal wall 
motion, bundle branch block, age, and heart rate are eas-
ily obtained clinically and can be used as key indicators 
for CCU physicians to monitor AMI patients. As men-
tioned above, the occurrence of arrhythmia after PCI can 
also increase the mortality of patients. Even after revas-
cularization, stricter observations should be made based 
on the location of the lesion after PCI.

Our results show that the overall performance of ML 
was moderate, and therefore, it probably cannot yet 

replace diagnostic or risk estimations that further workup 
can provide. Nevertheless, when results were compared 
to those of utilizing the sets of variables considered in the 
Grace models, ML exhibited a higher performance for 
predicting the occurrence of tachyarrhythmia after AMI. 
Therefore, the ML model is more suitable for predicting 
arrhythmia after AMI than the Grace model and can be 
used to refine and supplement the current AMI risk score 
to help clinicians perform a more accurate risk assess-
ment and timely treatment.

Limitation
The present study naturally carries the limitations of any 
observational study. However, this kind of largescale ret-
rospective analysis is the main target of the data-driven 
approaches of ML. Second, this ML approach still needs 
further model training, validation, and optimization before 
clinical application. Patients in this study were enrolled from 
a single center that included only Chinese patients. Nev-
ertheless, we compared the performance of advanced ML 
algorithms with the GRACE variable set model. The main 
finding of the current analysis was that ANN exhibited 
the highest prediction performance. ML-based prediction 
model could represent a great supplement in optimizing risk 
assessment and even clinical alerts of patients after AMI.

Conclusions
In summary, we used advanced ML algorithms to select 15 
clinical variables and constructed a prediction model for 
the occurrence of tachyarrhythmias after AMI. This novel 
approach proved is superior to the method of the GRACE 
model. Early prediction of the occurrence of tachyarrhyth-
mias in the acute phase of AMI is critical to clinicians’ 
decision-making. This study highlights the utility of using 
ML methods for more precise risk assessment.

Perspectives
We established ML-based prediction models in a cohort of 
patients with AMI. The GRACE variable set model’s com-
parable performance indicates ML approaches’ potential 
value for evaluating complex and multifactorial diseases. 
There is no doubt that 2020 has been a great year, domi-
nated by the COVID-19 pandemic. Under these difficult 
circumstances, most areas of cardiovascular research com-
promised due to national lockdowns. ML to extract and 
analyze large volumes of data remotely allowed cardiovas-
cular medicine to continue its evolution. This study is only 
a small part of this booming field, providing new ideas for 
what will come to clinical practice in the coming years.

Table 6  Odds ratio for important characteristics

* means P < 0.05, ** means P < 0.01

Characteristics OR (95% CI) P value

Age (+ 10-year increments) 1.25 (1.15–1.36)  < 0.001**

Heart rate (+ 20-beat increments) 1.12 (1.06–1.24) 0.047*

BBB

None 1.00 (Dummy variable)

LAFB 1.33 (1.05–1.68) 0.018*

LBBB 1.22 (0.63–2.34) 0.554

LPFB 1.48 (0.93–2.36) 0.101

RBBB 4.21 (2.42–7.02)  < 0.001**

LAFB + RBBB 4.36 (2.17–8.74)  < 0.001**

Ventricular wall motion abnormal

 ≥ 2 walls 3.26 (2.01–4.36)  < 0.001**

Anterior

1.24 (0.71–2.19) 0.453

Apex 0.32 (0.08–1.23) 0.980

Anteroseptal 0.20 (0.04–1.02) 0.054

Posterior 1.41 (0.78–2.54) 0.254

Inferior 1.21 (1.12–2.24) 0.013*

None 1.00 (Dummy variable)

Lesions vessels

LAD 1.00 (Dummy variable)

LCX 0.63 (0.33–1.19) 0.154

RCA​ 3.00 (1.98–4.56)  < 0.001**

LM 1.77 (1.03–3.06) 0.040*

LAD + LCX 0.91 (0.62–1.35) 0.650

LAD + RCA​ 1.86 (1.33–2.60)  < 0.001**

RCA + LCX 1.91 (1.20–3.03) 0.006*

Triple vessels 1.67 (1.22–2.64) 0.001*
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