Skip to main content
. 2021 Nov 2;21:301. doi: 10.1186/s12911-021-01667-8

Table 5.

Predictive performance of all machine learning models

Models Accuracy AUC Specificity False negative rate False positive rate
All features
Decision tree 0.627 (95% CI, 0.598–0.656) 0.575 (95% CI, 0.545–0.603) 0.963 0.915 0.037
Random forest 0.646 (95% CI, 0.617–0.675) 0.596 (95% CI, 0.567–0.652) 0.869 0.755 0.131
Artificial neural network 0.650 (95% CI, 0.607–0.675) 0.625 (95% CI, 0.579–0.672) 0.861 0.665 0.139
Feature selection
Decision tree 0.642 (95% CI, 0.613–0.671) 0.592 (95% CI, 0.563–0.648) 0.963 0.915 0.037
Random forest 0.648 (95% CI, 0.601–0.695) 0.605 (95% CI, 0.558 –0.652 0.913 0.802 0.087
Artificial neural network 0.668 (95% CI, 0.621–0.714) 0.654 (95% CI, 0.625–0.683) 0.922 0.755 0.078
Grace variable sets
Decision tree 0.622 (95% CI, 0.576–0.668) 0.554 (95% CI, 0.508–0.601) 0.973 0.927 0.027
Random forest 0.627 (95% CI, 0.598–0.656) 0.575 (95% CI, 0.545–0.603) 0.966 0.904 0.034
Artificial neural network 0.644 (95% CI, 0.615–0.673) 0.594 (95% CI, 0.565–0.65) 0.892 0.778 0.108