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Abstract

We introduce a real-time system for recognizing five phases of the trauma resuscitation process, 

the initial management of injured patients in the emergency department. We used depth videos as 

input to preserve the privacy of the patients and providers. The depth videos were recorded using 

a Kinect-v2 mounted on the sidewall of the room. Our dataset consisted of 183 depth videos of 

trauma resuscitations. The model was trained on 150 cases with more than 30 minutes each and 

tested on the remaining 33 cases. We introduced a reduced long-term operation (RLO) method 

for extracting features from long segments of video and combined it with the regular model 

having short-term information only. The model with RLO outperformed the regular short-term 

model by 5% using the accuracy score. We also introduced a progress gate (PG) method to 

distinguish visually similar phases using video progress. The final system achieved 91% accuracy 

and significantly outperformed previous systems for phase recognition in this setting.
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1. Introduction

Trauma is the leading cause of mortality in children and young adults (Kaplan (2002)). 

The initial resuscitation of injured patients is critical for identifying and managing life­

threatening injuries. Despite the use of a standardized protocol, errors remain frequent 

during this initial evaluation (Rodziewicz and Hipskind (2020); Wolf and Hughes (2008)). 

Computerized decision support has been proposed as a method for reducing errors in this 

setting (Jia et al. (2016); Reis et al. (2017); Castaneda et al. (2015)). Trauma resuscitation 

is divided into phases based on the prioritization of activities within each phase. The 

pre-arrival phase is focused on preparation for the patient, the primary survey for identifying 

and managing life-threatening injuries, the secondary survey phase for identifying additional 

injuries that need management, and the post-secondary phases for initiating additional injury 

management. Although some activities are shared between phases, the types and order of 

many activities differ between phases. Identification of phases aids in the determination of 

errors in the type and order of activities. Decision support in this domain should reflect 

the priorities of each phase. Knowledge of the current phases aids in the prioritization 

of required activities based on the underlying goals in each. The duration of each phase 

varies across resuscitation, preventing the use of fixed time points to separate the phases. 

An automatic phase recognition system is needed to address this challenge. Our real-time 

phase recognition system uses depth video as input (Figure 1). Building on modeling 

experience with deep learning in the field of computer vision, video classification has been 

rapidly developed for activity recognition. Compared to activity recognition, recognizing 

phases in medical settings has three challenges. First, the system needs to manage privacy 

considerations because RGB videos reveal patient and providers faces. Second, the system 

training needs to rely on small datasets because of the increased time requirement of 

annotating and limited access to videos of patient care compared to general activities. 

Third, the system needs to rely on long-term context because the phases are defined 

by the occurrence of multiple and often overlapping activities that may occur in several 

phases. Models using short-term input (individual frames or subsequent frames) will make 

erroneous predictions because the same or visually similar activities may occur in different 

phases. To address the first challenge, we used depth instead of RGB videos. The depth 

videos contain gray-scale images, with pixel values denoting the distances between the 

objects and the camera. These gray-scale images do not contain recognizable facial textures 

but include the contour of the people and objects relevant to activity performance. To 

address the challenge of limited data, we used transfer learning, pre-training the model using 

public large activity datasets (Kay et al. (2017)). We then fine-tuned the model weights using 

our smaller dataset. This approach could be used because activity and phase recognition rely 

on similar low-level features, such as the presence of people and objects and the occurrence 

of associated gestures. We evaluated our system using two model structures, an inflated 3D 

ConvNet (i3D) (Carreira and Zisserman (2017)) and a nonlocal neural network (NL) (Wang 

et al. (2018)). These two model structures have achieved state-of-the-art performance on the 

Kinetics-400 dataset for activity recognition(Kay et al. (2017)), making them an appropriate 

starting point. Previous research introduced a 2-stage CNN-RNN structure, where CNN 

pre-computes features followed by a RNN, which learns temporal dependencies among 

features (Al Hajj et al. (2018)). Their method is not end-to-end trainable which causes 
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an error propagating problem, and RNN-based networks are slow and have information 

loss problems when given long-range inputs. (Vaswani et al. (2017)). To enable the model 

learn long-range video contexts better, we introduced a reduced long-term operation (RLO) 

method (Figure 1, right) that uses frame inputs from a long time sequence (320 seconds). 

Some phases have similar visual features that persist for a relatively long time, making it 

difficult for the model to distinguish them using RLO. For example, the pre-arrival (before 

patient arrival) and the patient departure (after patient leave) phases have similar visual 

characteristics. People can easily distinguish these phases using the time since the start of 

the process. Previous research proposed a phase-inference network (RSDNet) to predict the 

surgical progresses (Twinanda et al. (2018)). We introduced a progress gate (PG) method 

(Figure 1, bottom), which is using the estimated process progress for phase recognition 

unlike the RSDNet which used the phase information to predict the process progress.

1.1. Related Work

Medical Phase Recognition: Medical phases often define the progress of a medical 

event. For surgical procedures, several phases can be defined, including preparation, 

execution, and termination phases. For protocols such as Advanced Cardiovascular Life 

Support (ACLS) and Advanced Trauma Life Support (ATLS), phases can be defined based 

on the choice and priority of management and treatment activities (Kortbeek et al. (2008)). 

Phase prediction in medical settings can be used for several purposes, including targeting 

recommendations based on the current phase (context-aware), comparison of performance 

between individuals and teams, and estimating process duration for workflow tracking and 

improvement (Li et al. (2016); Twinanda et al. (2016a); Bardram et al. (2011)). Previous 

work in phase recognition has achieved good results using body-worn sensors (Ahmadi et al. 

(2008); Meißner et al. (2014)). In a medical setting, wearable sensors may require the active 

participation of providers or may interfere with the performance of medical tasks, potentially 

limiting the usability of this approach. Computer vision has advantages over wearable 

sensors by relying on data from fixed cameras without interfering with the conduct of the 

medical event. Video images are a rich source of information about phases and may enhance 

performance in a context in which wearable sensors are impractical. Deep convolution 

networks have been used to recognize surgical phases using laparoscopic and ocular videos 

(Twinanda et al. (2016a); Yengera et al. (2018); Loukas (2018); Zisimopoulos et al. (2018); 

Chen et al. (2018); Loukas (2018)). These studies showed that video-based systems work 

well on phase recognition without requiring wearable sensors that may interfere with work. 

Surgical phase recognition has used videos focused on specific regions around medical tools 

(Twinanda et al. (2016a); Zisimopoulos et al. (2018); Chen et al. (2018)). For example, the 

cholecystectomy dataset (Chen et al. (2018); Twinanda et al. (2016a)) contains videos from 

a laparoscopic view, while the CATARACTS dataset (Zisimopoulos et al. (2018)) includes 

only video of the orbital region during cataract surgery. In contrast to this previous work, 

phase recognition in a team-based medical setting requires video that covers the entire scene 

for recognition of activities relevant to each phase. A real-time state identification system 

in operating rooms has been proposed using RGB videos (Bhatia et al. (2007)). Because 

these scenes include the patient and the individuals providing medical care, the use of RGB 

videos has privacy concerns that needed to be addressed. Several strategies have been used 

to manage concerns with RGB videos including the use of using extremely low-resolution 
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images to anonymize faces (Dai et al. (2015); Ryoo et al. (2018); Ren et al. (2018)). An 

alternative approach for ensuring that images do not allow individual detection is the use 

of depth videos that include gray-scale images. This representation makes it difficult to 

identify individuals but may be sufficient for recognizing activities and phases (Li et al. 

(2016, 2017b)).

Medical Workflow Analysis using Depth Videos: Depth videos contain gray-scale 

frames that represent the distance between the camera and objects in the scene. Previous 

research on monitoring hand hygiene, human pose, and patient mobilization activities in 

Intensive Care Unit (ICU) used depth videos instead of RGB due to the privacy concerns in 

ICU (Srivastav et al. (2019); Yeung et al. (2019); Reiter et al. (2016); Yeung et al. (2016)). 

Other research used RGBD videos that rely on distance information in depth images to 

improve system performance on surgical phase recognition and activity recognition in 

operating rooms (Twinanda et al. (2015, 2016b)).

Video Understanding: In many settings, activities and phases are continuous rather 

than fixed point events. Recognition of these components of human work benefits from 

analysis of spatio-temporal features available in videos. Detection of dynamic components 

of work differs from standard image recognition that only requires spatial features from a 

single image. Several model structures are available for extracting spatio-temporal features 

for activity recognition in videos. The Two-stream and CNN-LSTM network structures 

have been used for large-scale video classification and activity recognition by extracting 

temporal associations between subsequent frames (Wang et al. (2016); Simonyan and 

Zisserman (2014); Feichtenhofer et al. (2016); Li et al. (2017a); Mutegeki and Han 

(2020)). Recent works applied 3D Convolution structures for video understanding, supported 

by 3D ConvNets being end-to-end trainable (unlike Two-stream networks) and allowing 

parallel computing (unlike CNN-LSTM networks) (Carreira and Zisserman (2017); Tran 

et al. (2015)). The SlowFast, and the Channel-separated networks were proposed for 

reducing computational complexity for training 3D ConvNets (Feichtenhofer et al. (2019); 

Tran et al. (2019)). The X3D expands hyper-parameters of 3D Convolution architectures 

for building efficient video recognition networks (Feichtenhofer (2020)). The nonlocal 

neural network also has been used to obtain long-range associations between distant 

pixels by including nonlocal blocks into the 3D ConvNets. This type of structure has 

achieved better performance for activity recognition than the i3D network (Wang et al. 

(2018)). Although these approaches perform well for recognizing activities, additional 

spatio-temporal information from longer video context is needed for recognizing phases 

rather than any single activity. An additional challenge is that some activities may be 

performed in different phases, limiting the use of short-range spatio-temporal features.

1.2. Contributions

We introduce a real-time phase recognition system that can be used to provide contextual 

information that supports a context-aware recommend system for trauma resuscitation. This 

system is privacy-preserving and extends previous preliminary works (Li et al. (2016, 

2017b)) as follows:
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• We applied recent video understanding methods that extract spatio-temporal 

features from consecutive frames instead of spatial-only features from static 

images for recognizing phases. Our system significantly outperformed our 

previous systems (Li et al. (2016, 2017b)).

• We introduced a RLO strategy that increased the performance by extracting 

long-term spatio-temporal features for phase recognition.

• We introduced a PG method that allows the model to distinguish visually similar 

phases using estimated video progress as an additional input.

• We collected depth videos and created their corresponding ground truth for more 

trauma resuscitation cases (183 cases vs. 60 cases Li et al. (2017b)). The system 

evaluated on larger testing set is more convincing.

This paper is organized as follows. Section 2 describes our phase recognition system. 

Section 3 presents data collection and the implementation details. Section 4 and section 5 

shows the experiment results. Section 6 discuss the model visualization results, and Section 

7 concludes the paper.

2. Methodology

2.1. Method Overview

We represented a video input as (T, W, H, 1), that includes T consecutive frames, each with 

three dimensions: width (W), height (H), and the color channel. We applied these inputs to 

recognize medical phases in three stages. We first trained short-term spatio-temporal models 

that take 32-second depth frames as input and each phase as output (Figure 2, up). We next 

applied a novel reduced long-term operation (RLO) method to learn long-range contexts 

from the video (Figure 2, bottom). This method takes long-range history frames (320 

seconds) as input for tuning the long-term module branch. We then fused the predictions 

between using short-term and long-term spatio-temporal features to generate the final phase 

predictions. Finally, we applied the progress gate (PG) after the fused predictions to help the 

model distinguish visually similar phases using estimated video progresses (Figure 2, middle 

left).

2.2. Short-term Module

The short-term module takes 32-second consecutive depth frames as the input and extracts 

spatio-temporal features for phase recognition. We evaluated the short-term module using 

two spatio-temporal network structures, the inflated 3D ConvNet (i3D) and the nonlocal 

neural network.

2.2.1. Inflated 3D ConvNet—Inflated 3D ConvNet (i3D) (Carreira and Zisserman 

(2017)) is a spatio-temporal structure that extends successful 2D image recognition models 

(Inception v1) into 3D ConvNets with an additional temporal dimension. 3D ConvNet learns 

spatio-temporal features from the video input as:
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Xf(k, j, i) = Conv3D(X(k + t, j + ℎ, i + w), θ)
= ∑

t
Conv2D X(k + t, j + ℎ, i + w), θt (1)

where X is the input spatio-temporal feature descriptors, Xf ∈ ℝTW H × F  is the output 

feature map of the 3D ConvNet, Xf (k,i, j) is a feature point in the 3D feature space, 

θ denotes the parameters of the 3D convolution, T is the number of consecutive frames 

in each input, and F is the number of channels in the feature map Xf. Our i3D network 

is extended from the ResNet101 (He et al. (2016)), which is the 2D image recognition 

network that achieved the first place on the ImageNet challenge (Deng et al. (2009)). Table 

1 shows the detail network structure and parameters of the i3D network that we used. The 

network includes five stages (Conv1, and Res2 −Res5), Resn denotes the bottleneck block 

including three 3D convolution layers. The i3D also benefits from loading the pre-trained 

2D convolution parameters that have already learned spatial features on image classification 

datasets and duplicating the 2D convolution kernels T times for generating 3D convolution 

kernels. Learning spatio-temporal features by fine-tuning the well-learned spatial features 

converges faster than training from scratch by randomly initializing the 3D convolution 

parameters.

2.2.2. Nonlocal Neural Network—The attention mechanism was introduced for 

capturing long-term dependencies within sequential inputs, which is commonly used in 

nature language processing systems, such as text classification, and machine translation 

(Vaswani et al. (2017); Shen et al. (2018); Bahdanau et al. (2014)). The nonlocal neural 

network (Wang et al. (2018)) extends i3D by inserting nonlocal blocks between the stages 

in the i3D network that learns long-term spatio-temporal features from the feature maps 

extracted by 3D convolution by generating spatio-temporal attentions as:

Attn = softmax(Xf
TW α

TW βXf) (2)

Xnl = Attn(W γXf) + Xf (3)

where Xnl ∈ ℝTW H × F  was the output after applying the nonlocal block, 

Attn ∈ ℝTW H × TW H was the spatio-temporal attention that represents the association 

between pairs of positions in Xf, Wα, Wβ, and Wγ are the parameters of the linear functions, 

and +Xf denotes the residual operation between Xf and the output after applying Attn on Xf. 

Nonlocal neural network learns long-rang spatio-temporal features using Attn. The attention 

Attn was generated using batch matrix multiplication between two linear projections of the 

input Xf (WαXf and WβXf ) that captures the association between two points in x, regardless 

of their distance.

The two networks (i3D and nonlocal neural network) are pre-trained on Kinetics-400, a 

large-scale video set for activity recognition (Kay et al. (2017)). Pre-training the network 

using general large-scale datasets achieves better performance than training the network only 

using the available limited domain-specific data (Carreira and Zisserman (2017); Wang et al. 
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(2018)). Although Kinetics-400 is an activity recognition dataset that is somewhat different 

from phase recognition, these two phenomena (activity and phase) share similar low-level 

features such as edges, objects contours and personal motions. To predict the phases, we 

then applied a fully-connected layer that takes the extracted spatio-temporal features as 

input.

2.3. Reduced Long-term Operation

3D convolution extracts spatio-temporal features from videos and the long-range 

dependencies in the feature maps can be captured using nonlocal blocks. This information, 

however, is constrained by the input duration (32 seconds). The short-term video inputs are 

sufficient for activity recognition because most activities are performed within seconds. 

Phase recognition requires longer-duration video contexts. Multiple activities may be 

performed during a phase, and the same activity may occur in different phases. For example, 

during trauma resuscitation, the blood pressure measurement may be performed in both 

the primary survey phase and the secondary survey phase. In this case, short-term inputs 

that contain features for this activity may be labeled as different phases (primary survey 

and secondary survey), which would confuse the model. A straightforward solution to this 

problem is to enlarge the input duration. This approach, however, increases the complexity 

of training and evaluating the model. We introduced a reduced long-term operation (RLO) 

method that enables the model to learn features from long-range video contexts without 

increasing the model complexity.

The input to our reduced long-term operation (RLO) method were the video frames over the 

last 320-seconds before the current time. We did not use the frames after the current time to 

enable the model to generate online predictions. To reduce the model complexity when using 

longer video inputs, we increased the down-sample rate of the inputs as:

xlong = xα, x2α, …, xTα (4)

where xlong denotes the long-range frame inputs of the RLO, α is the down-sample rate, and 

T is the frame number (α = 10, and T = 32). An additional fully-connected layer provided 

phase predictions that takes the long-term spatio-temporal features. The 320-second inputs 

in RLO are frames constructed by the current 32-second frames and the preceding 288­

second frames (from history). The historical frames help the model eliminate implausible 

predictions. For example, a prediction of the secondary survey phase cannot be made based 

on the inputs that having historical frames that occur before the primary survey phase. The 

model using RLO achieved accuracy that was 5% higher than using short-term module only.

2.4. Module Fusion

The next step of our system was to fuse the outputs from the short-term and long-term 

modules. The long-term module provides more accurate predictions because of the long­

range inputs. It will not produce phase predictions during the first 320 seconds until 

it observes a sufficient past interval. We used the short-term module to provide phase 

predictions during these 320 seconds and fused the short-term and long-term modules for the 

Zhang et al. Page 7

Med Image Anal. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



predictions of the remaining time. We used the outputlevel fusion to aggregate the outputs of 

the long-term and short-term modules as:

yfuse = ysℎort + ylong (5)

y = softmax yfuse (6)

where yshort and ylong are in R5, and they denote the outputs of the short-term and long-term 

modules, respectively. y denotes the model output by applying softmax function over yfuse. 

We also evaluated the potential use of multi-modal fusion strategies (e.g., by concatenating 

or using nonlocal gates (Wu et al. (2019)) to merge the features outputted by the long-term 

and short-term modules. We did not adopt these multi-modal fusion strategies in our system 

because our evaluation showed that their use imposed higher computation cost without a 

performance increase.

2.5. Progress Gate

During trauma resuscitation, several phases may have similar visual appearance over long 

intervals, making it difficult for the model to distinguish them even with RLO. For example, 

in our dataset, the pre-arrival and the patient departure phases look similar in some cases, 

but people can distinguish them based on the current progress of the video as additional 

information. We therefore applied the progress gate (PG) after the fused predictions by using 

estimated progress for additional input as:

yp′ =
1
5 1 − yp , if C

yp, otherwise
(7)

where y ∈ ℝ5 is the model prediction, p ∈ 0,...,4 is the element of y that denotes the pth 

phase, and C is the condition which is represented as:

C : argmax(y) = p and λ < λp_min or λ > λp_max (8)

where λ denotes the estimated progress of the current video by dividing the current time 

played with the average duration of the videos in our training set. We used the estimated 

progress instead of the progress relative to the total length of the current video to be able 

to use this system for real-time phase prediction. The λp_min and λp_max are the lowest and 

highest estimated progress values for the pth phase across all the cases in the training set. 

We multiplied 1 − yp by 1
5  (5 is the number of phases) in Eq. 7 to ensure that the phase 

p will not be selected as the prediction when the condition C is satisfied. In some cases, 

1 − yp will still make argmax yp = p (e.g., y = [0.5, 0.2, 0.1, 0.05, 0.05], and both argmax(y) and 

argmax 1 − yp  are equal 0). Multiplying 1 − yp by 1
5  will make at least one other phase have 

a larger prediction score than the phase p. Note that multiplying by a smaller number than 
1
5  or re-setting yp to 0 would have the same result. 1

5  is a boundary case when one phase 
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is assigned the maximum possible score y = [0.5, 0.1, 0.1, 0.1, 0.1]. Then, 1
5 1 − y0 = 0.1 and 

max y1:4 = 0.1.

3. Data Collection and Implementation Details

3.1. Data Collection

We evaluated our system using videos of trauma resuscitations conducted at a level 1 trauma 

center. This research was approved by the hospitals Institutional Review Board (IRB).We 

installed a Microsoft Kinect V2 for capturing depth videos and connected it to a local 

computer for controlling the recording and storing videos (Figure 3 left). We mounted the 

Kinect on the sidewall of the room at a position 2.5 meters above the ground and tilted 

it downwards at 20°. We applied the buildin skeleton detection function from the Kinect 

API on our system to detect the number of persons in the view. The system is triggered 

and begins recording after the Kinect detects more than two people in view for at least one 

minute. This triggering function is required to decrease data storage needs and avoid the 

need to manually start recording, a task that can easily be forgotten in this type of setting. 

After the camera is triggered, the system stores a depth frame (Figure 4 right) every second 

and stops after the Kinect detects that no person is present in the room for more than one 

minute. We collected depth videos for 183 trauma resuscitation cases, using 150 cases for 

training and 33 cases (20%) for testing. We segmented the videos into 32-second clips (32 

consecutive frames) using a 16-step sliding window (overlapped by 16 seconds). Table 2 

shows the number of clips for different phases in both training and testing set. Ground truth 

labelling was performed by manual reviewing RGB videos (without using audio), based 

on predetermined definitions of the process phases (RGB videos were not available for 

model training). Each video was annotated independently by the three providers, and any 

conflicting annotations were resolved by consensus. When there is a phase transition in an 

input clip, the system assign the clip to the phase that dominates the clip (having longer 

duration).

In contrast to other medical processes, trauma resuscitation is a highly structured process 

that is taught as part of the Advanced Trauma Life Support (ATLS) protocol (Kortbeek 

et al. (2008)). Although rare deviations may occur because of unusual patient conditions 

or provider error, this phase structure is consistently observed during trauma resuscitation. 

This consistency makes this domain ideal for phase-based decision support. The system 

was designed to recognize five phases of the trauma resuscitation process: pre-arrival, 

primary survey, secondary survey, post-secondary survey, and patient departure (Table 3). 

The pre-arrival phase occurs in the time between a notification that an injured patient will be 

arriving and the arrival of the patient in the room. During this phase, a multidisciplinary 

team of up to 15 individuals assembles and begins preparing equipment needed for 

evaluating and treating the patient. The endpoint of this phase is defined as when the 

patient is moved from the prehospital gurney to the hospital bed. The primary survey 

phase then begins. The primary survey includes a series of activities that are performed for 

identifying and immediately managing potentially life-threatening conditions. The activities 

within these phases follow five steps: acronym-named as A through E which stands for 

airway assessment and management (A), evaluation of adequacy of ventilation/breathing 
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(B), assessment of circulatory status and perfusion (C), assessment of neurological status/

disability (D), and the complete exposure of the patient for visual inspection of injuries (E). 

These five steps occur in this order in most resuscitations unless patient requirements require 

omission or delay of a step until later in the resuscitation. The secondary survey follows 

the primary survey. This phase is a head to toe physical examination focused on identifying 

additional injuries not found in the primary survey. The post-secondary phase begins at the 

completion of this assessment. The patient departure phase begins when the patient leaves 

the room, a period when the members of the team may remain to clean and prepare the room 

for another patient. The phases of trauma resuscitation are sequential (Figure 5). Although 

overlap occurs between some activities in each phase, phase order is preserved across 

resuscitation. The duration of the five phases vary through different cases (Figure 3, and 

Figure 5). In some cases, the Kinect built-in function wrongly detected some background 

objects as people and made the system to keep recording after the patient departed. This type 

of event caused the label unbalance issue because the patient departure phase was extremely 

long in these cases. We solved this problem by truncating the videos 500 seconds after the 

patient left the room.

3.2. Implementation Details

We implemented our model using the Pytorch framework. We set the length of input video 

clips as 32 consecutive frames to match the input size of the pre-trained networks and 

expand to 320 frames for the long-term branch (RLO). We added a batch normalization after 

every convolutional layer to speed up the model convergence (Ioffe and Szegedy (2015)). 

A ReLU was used as the activation function. Adam (Kingma and Ba (2014)) was used as 

the optimizer with the initialized learning rate of 1e-4, and 1e-8 as the weights decay. We 

set the batch size to 12 (constrained by the GPU memory size) and trained the model for 

14k iterations. The model was trained using three RTX 2080 ti and required about one day 

to converge. To avoid overfitting, we applied the scale-jittering method in range of [256, 

320] to augment the frames in spatial (Feichtenhofer et al. (2019)). We also applied Dropout 

(Srivastava et al. (2014)) after the fully-connected layers to avoid overfitting.

4. Experimental Results

4.1. Experimental Results Overview

Figure 6 shows the confusion matrices of our system for prediction five phases. Based on 

the confusion matrices (Figure 6), our system performed best on the pre-arrival and the 

patient departure phases. During the pre-arrival, fewer than three people are typically in 

the trauma room, and no patient is on the bed. These features are visually recognizable. 

During the patient departure phase, the patients bed has been wheeled out of the room, a 

feature providing a strong visual cue. When the patient bed stayed in the room after the 

resuscitation, but the patient has left, these two phases were sometimes confused. Prediction 

of the post-secondary phase (Figure 6, row 4) was slightly worse because of the confusion 

between the secondary and post-secondary phases. During the post-secondary survey phase, 

the patient is still on the bed and only a few providers remain in the room. The lowest 

performance was achieved on the primary and secondary survey phases. These two phases 

are difficult to distinguish based on depth video because detailed visual textures are not 
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available that help a human reviewer using RGB videos. Human reviewers presented with 

depth video had the most difficulty identifying the transition between these two phases. 

Using RLO (Figure 6 middle) significantly increased the detection of the primary survey 

because this phase is relatively short. This short duration caused the long-range inputs (320­

second frames) for the primary survey to partially include views from the pre-arrival phase 

and helped the model distinguish the primary survey from the secondary survey. The model 

using PG (Figure 6 right) eliminated the incorrect predictions between the pre-arrival and the 

patient departure phases because the estimated progress of the video helped distinguish these 

two phases.

4.2. Ablation Study

We performed ablation experiments on phase recognition for comparing the performance 

using different network structures and hyper-parameters.

Network structures: We evaluated our model using three different network structures 

(ResNet2D-101, i3D, and Non-local) that were introduced for image and video recognition 

(He et al. (2016); Carreira and Zisserman (2017); Wang et al. (2018)). The ResNet2D-101 

achieved the worst performance because the model recognized phases using single-frames 

as input without considering the context between the consecutive frames (Table 4a). The 

nonlocal network slightly outperformed the i3D network because of the long-range spatio­

temporal associations captured by the nonlocal blocks. The nonlocal network with RLO and 

PG (Table 4a, last row) significantly outperformed the nonlocal network without (Table 4a, 

second last row) because the RLO helps the model to learn spatio-temporal features from 

a longer video context for phase recognition rather than from short-term inputs (320 vs. 32 

seconds). The PG also helps the model to distinguish visually similar phases using video 

progress.

RLO input length: We also evaluated our model using RLO with different input lengths 

(Table 4b). The model using 320-second-frame inputs for the RLO achieved the best 

performance. Inputs from longer video contexts contained more information but had a 

lower temporal resolution that lacked the continuity of the videos. The model achieved the 

best performance with 320-second input duration and a decreased performance with inputs 

longer than 320 seconds (Table 4b, last row).

4.3. Comparison with Previous Systems

We compared our system with two previous systems for phase recognition during trauma 

resuscitation, both that used depth videos as input (Li et al. (2016, 2017b)). We evaluated 

our system on both the smaller video set (Table 5, 50/10 train/test) that the previous 

systems used and our larger video set (Table 5, 150/33 train/test). Our system outperformed 

these systems (Table 5) because by the use of spatio-temporal network structures and our 

proposed methods (RLO and PG) for capturing features from long-range video contexts 

and including estimated video progress as additional input (Table 5). One system (Table 

5, first row) applied a spatial-only network structure previously used for single image 

recognition, which did not include the temporal associations between consecutive frames (Li 

et al. (2016)). This system (Li et al. (2016)) applied a constrained softmax to eliminate the 
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illegal predictions from the model output. We tried to apply this constrained softmax method 

in our system, but it worsened performance. This decrease may have occurred because 

the constrained softmax depends on the predictions of the preceding models, which will 

increase the error rate when these models made incorrect predictions. The second system 

(Table 5, third row) estimated progress using depth videos as input and then predicted 

phases using the generated progress (Li et al. (2017b)). The errors propagated from the 

progress estimation step may have resulted in incorrect phase prediction. In addition, the 

second system used a filtering algorithm to smoothen the generated progress and enhance 

the performance of phase prediction (Li et al. (2017b)). This method can only be applied 

offline because progress can only be generated from consideration of performance of the 

entire case. We also evaluated our model by applying average filtering method. Application 

of this method only increased accuracy by about 1% (Table 5, last row).

We also compared our current system with our previous systems using independent 

F1-scores of the five phases. Based on the F1-scores in Table 6 (rows 3 and 5), our 

current system significantly outperformed our two previous systems on Prearrival, Primary, 

Secondary, and Post-secondary (31.5% on average, Table 6, rows 3 and 5) on the same 

dataset (Table 6, 50/10) because of the use of RLO and PG methods that we introduced. 

These four phases are more important for detecting human errors during the resuscitation 

(especially the Primary and Secondary Surveys) compared to the Pt-Departure phase after 

the patient has left. We also evaluated our current system on our current video set (Table 6, 

150/33), which is significantly larger than the video set we used in the past. Based on the 

evaluation matrices in Table 6, our current system significantly outperformed our previous 

systems (Li et al. (2017b, 2016)) on both video sets.

5. Experiment Results on EndoTube and Cholec80

To show the generalizability of our approach, we evaluate our system on the EndoTube 

dataset and, the Cholc80 dataset for surgical phase recognition (Lea et al. (2016)).

EndoTube:

The EndoTube dataset contains 25 videos captured from full cholecystectomy procedures 

performed at 19 different hospitals in nine countries. The average video length is 11.4 

minutes in the range of 4 to 27 minutes. The procedures were manually labeled into seven 

different phases: trocar placement, preparation, clip/cut, dissection, retrieval, hemostasis, 

and drainage/finish. We applied 5-fold cross-validation on EndoTube that using 20 videos 

for training and the remaining five videos for testing, as was done in this previous study (Lea 

et al. (2016)).

Cholec80:

The Cholec80 dataset contains 80 videos of cholecystectomy surgeries performed by 13 

surgeons (Twinanda et al. (2016a)). The videos were captured at 25 fps and labeled into 

seven phases: preparation, calot triangle dissection, clipping cutting, gallbladder dissection, 

gallbladder packaging, cleaning coagulation, and gallbladder retraction. We used 40 videos 

for training, 8 videos for validation and the remaining 40 videos for testing as was done 
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in previous research (Twinanda et al. (2016a); Czempiel et al. (2020)). These datasets also 

included surgical tool labels, as additional information for phase recognition. We only used 

videos as input for our experiments.

Based on the accuracy score in Table 7, and Table 8, our method significantly outperformed 

previous state-of-the-art approaches on both EndoTube, and Cholec80 datasets (75.1% 

vs.63.7% on EndoTube, and 91.2 vs. 88.6 on Cholec80), even without using the instrument 

labels as additional information (Lea et al. (2016); Czempiel et al. (2020)). The previous 

system separately extracted spatial features from individual frames and then represented 

the temporal associations from consecutive frames using temporal convolution and LSTM, 

which poorly represented the motions in the consecutive frames. Our method learns spatio­

temporal features using 3D convolution filters and nonlocal blocks. Our proposed RLO 

extracts long-term spatio-temporal features from the video and also benefits from the pre­

trained weights using large-scale activity recognition datasets. (Kay et al. (2017)). We set 

the downsample rate as 5 (α = 5) based on the experiment result. The model increased the 

accuracy score by around 3% when using RLO to extract long-term video context across 

the video. The model with PG also had about a 1% accuracy score enhancement compared 

to the model without PG. The evaluation on using EndoTube data supports that our system 

generalizes across different processes. These findings also highlight that the proposed RLO 

and PG methods can improve the model performance on the phase recognition tasks for 

processes other than trauma resuscitation.

6. Discussion

6.1. Phase Recognition Consistency

We visualized the phase predictions and their corresponding ground truth in three 

resuscitation cases (Figure 7). We compared the predictions between the system with and 

without the introduced RLO and PG methods. Based on the visualizations in Figure 7, the 

system with RLO and PG can provide more consistent predictions with very few incorrect 

fragments (Figure 7, case3). The model having limited incorrected fragments is caused 

by the use of RLO and PG methods that capture long-term information, and eliminate 

implausible predictions.

6.2. Temporal Modeling

We compared our RLO with other temporal modeling methods by evaluating them on 

both our Trauma dataset and Cholec80. Based on the evaluation matrices in Table 9, the 

Nonlocal and TCN-based networks outperformed traditional temporal modeling structures 

such as CNN-HMM, and CNN-LSTM that are unable to model long distance temporal 

associations. The HMM, and LSTM-based networks cannot build correlations between long 

distance frames. The performance did not increase when using LSTM and TCN on top of 

the Nonlocal network. The spatio-temporal features in short-term inputs (e.g., 32-second in 

Trauma dataset) have already been well captured by the Nonlocal network. Our proposed 

RLO method improved the system performance based on the Nonlocal network by including 

long-term inputs (320-second) while reducing the requirements on memory and computation 

resources. The TCN-based method reported in (Czempiel et al. (2020)) performed slightly 
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better than our implementation of the TCN-based network (88.6 vs. 87.4) on Cholec80. The 

difference in performance might be caused by using different training settings.

6.3. Runtime Efficiency

We evaluated the runtime efficiency of our system to show that the system is able to 

provide real-time phase predictions. Table 10 shows the latency of our complete system 

(including RLO and PG) using both i3D and Nonlocal as backbones and running on multiple 

processors. Based on the latency in Table 10, even running on a CPU, our model required 

less than 2 seconds to provide a prediction for a 32-second input (plus 320-seconds history 

for RLO). The runtime efficiency show in Table 10 demonstrated that our system was able 

to provide real-time phase predictions because the time that the model uses for providing a 

prediction is significantly smaller than the sliding window when extracting video clips (16 

seconds).

6.4. System Transferability

The transferability of any vision-based system is partially dependent on the camera view 

used. The Kinect in our setting was mounted on the wall, a location that is unobtrusive and 

easy to maintain. Transfer to another setting that uses different camera views may require 

tuning. We have obtained a domain-specific dataset that will speed this tuning process when 

other camera views are used. Equipment may vary in different emergency room settings. Our 

system relies on environmental features common to other resuscitation settings, including 

the position of the patient bed and the location of providers performing specific activities. 

For example, airway activities are performed during the primary survey phase by individuals 

at the head of the bed. Transferability will require fine tuning the model in other settings 

that having different background features. Image segmentation models that masking out the 

unrelated backgrounds may also help to improve the performance for system transferability 

(He et al. (2017))).

6.5. Model Visualization

To evaluate our hypotheses about the reasons for differences in phase prediction (Section 

5.1), we visualized feature maps obtained from the intermediate output of the model and 

their corresponding depth inputs for different phases (Figure 8). We overlapped the feature 

maps on their corresponding depth frames and used a threshold value of 0.5 to generate 

clearer visualizations. Based on these visualizations (Figure 8), the feature map has high 

values for the region of patient bed during the pre-arrival phase (Figure 8, left) and focuses 

on the floor during the patient departure phase (Figure 8, right). The feature map during the 

post-secondary survey phase (Figure 8, second last) focused on the patient bed and the few 

providers around the patient bed. Finally, during the primary and secondary survey, a large 

area on the feature map (around the patient bed, Figure 8, second and third) was highlighted 

reflecting the complexity of the environment in these phases. The model appeared to 

focus on multiple regions that have features for phase recognition. These visualizations 

showed that the model focused on regions likely to distinguish different phases and learned 

representative features for phase recognition.

Zhang et al. Page 14

Med Image Anal. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6.6. Limitation and Future Work

We have built the system using depth video to ensure that our system is privacy preserving. 

Our results show that the performance is lower in recognizing the primary and secondary 

survey phases, but with a relatively high F1-score (> 82%). Human annotators have 

used RGB videos ground truth coding because unique activities need to be detected to 

distinguish these two phases. Our next step will be to implement a system that uses enriched 

texture features from RGB videos preserves privacy-sensitive regions from frames using 

generating adversarial networks (Goodfellow (2016); Ronneberger et al. (2015); Mirza and 

Osindero (2014)). RGB/depth video may not be adequate for distinguishing the primary and 

secondary survey in some cases. For example, secondary survey activities may be performed 

in parallel with primary survey activities or the primary survey may be interrupted by 

performance of secondary survey activities before returning to primary survey activities. 

Although uncommon, these variations will be managed in our future work using a multi­

label phase prediction network that provides concurrent phase predictions. Modeling phase­

wise correlations will improve multi-label phase prediction in this framework (Sun et al. 

(2010); Huang et al. (2017)).

Our system segments the trauma resuscitation cases into phases and reduces the challenge 

of detecting and localizing process errors by setting the focus on a phase of interest. Phase 

recognition can also be used to improve activity recognition. Because some activities occur 

uniquely or more (or less) frequently in certain phases, the initial step of phase recognition 

can provide this needed context. The single camera system may miss some activities because 

of view occlusion when providers are crowded around the patient bed. Additional cameras 

may improve this performance even more but at a cost of reducing the transferability of our 

system. Building a system for recognizing activities using multiple RGB cameras without 

privacy violation and reducing transferability will be our future work.

7. Conclusion

We introduced a real-time medical phase recognition system during trauma resuscitation. 

The system is privacy-preserving and achieved more than 90% accuracy score, which 

outperformed the previous systems using depth videos as input for phase recognition during 

trauma resuscitation. We also evaluated our system on the EndoTube dataset, outperforming 

results using a previous system supporting the the generalizability of our approach. We 

introduced novel methods (RLO and PG) for learning spatio-temporal features from long­

range video contexts. These methods include estimation of the video progresses to enhance 

the accuracy of phase prediction. The systems accuracy in distinguishing the primary-survey 

and secondary-survey phases was affected by the limited texture information in the depth 

videos. To apply this system within an activity recognition system, we are implementing an 

RGB-based phase recognition system that manages privacy considerations.
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HIGHLIGHTS

• Video understanding method for phase recognition in trauma resuscitation.

• Privacy-preserving system for phase recognition using videos.

• Extracting long-term video contexts using the reduced long-term operation 

(RLO).

• Distinguish visually similar phases using progress gate (PG) method.
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Fig. 1: 
Overview of our phase recognition system. The system takes depth videos as input, and the 

phase is predicted using 32-second-frame inputs to the short-term module and 320-second­

frame inputs to RLO. The outputs of the short-term and long-term modules are fused for 

making the final prediction.

Zhang et al. Page 20

Med Image Anal. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: 
Network structure of our phase recognition system. Shown are the convolution kernel sizes 

for each network stage Conv1-Res5) and the dimension transformation of the features in the 

nonlocal blocks. The Wα, Wβ, and Wγ are the parameters of nonlocal blocks in equation 

2 and 3. The “f” and “C” in the progress gate module (dash-lined block on the left of the 

middle row) are the function and the condition introduced in Section 2.5.
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Fig. 3: 
The view of trauma resuscitation room (left) and the duration boxplot (right) for the five 

phases in our dataset (in seconds). The patient departure does not have an upper whisker 

(UW) because we truncated the videos 500 seconds after the patient left the room.
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Fig. 4: 
The RGB (left) and depth (right) view of trauma resuscitation room from the Kinect.

Zhang et al. Page 23

Med Image Anal. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5: 
The workflow of the two cases. The phases’ duration varies between different cases.
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Fig. 6: 
Confusion matrices for phase recognition using nonlocal network. The values in the 

confusion matrices denote the number of input clips across the 33 testing cases. The left 

diagram is the confusion matrices using nonlocal network without RLO and PG, the middle 

diagram is the confusion matrices using nonlocal network with RLO only, and the right 

diagram is the confusion matrices with both RLO and PG.
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Fig. 7: 
Phase recognition consistency: we visualized the system predictions and corresponding 

ground truth in three cases.
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Fig. 8: 
Feature visualizations for the five phases and their corresponding depth frames. We 

overlapped the feature maps on the original frames and used the 0.5 threshold for the values 

for better visualization.
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Table 1:

The detail structure and parameters of the i3D network that we are using.

Stage Details Output Size

Conv1 5 × 7 × 7, 64, stride 1, 2, 2 32 × 112 × 112 × 64

Maxpool1 2 × 3 × 3, stride 2, 2, 2 32 × 56 × 56 × 64

Res2

3 × 1 × 1, 64
1 × 3 × 3, 64
1 × 1 × 1, 256

× 3 16 × 56 × 56 × 256

Maxpool2 2 × 3 × 3, stride 2, 2, 2 8 × 28 × 28 × 256

Res3

3 × 1 × 1, 128
1 × 3 × 3, 128
1 × 1 × 1, 512

× 4 8 × 28 × 28 × 512

Res4

3 × 1 × 1, 256
1 × 3 × 3, 256
1 × 1 × 1, 1024

× 23 8 × 14 × 14 × 1024

Res5

3 × 1 × 1, 512
1 × 3 × 3, 512
1 × 1 × 1,2048

× 3 8 × 7 × 7 × 2048
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Table 2:

Number clips for different phases in training and testing sets. Each clip contains 32-second consecutive 

frames.

Phase Name Num Clips (train) Clip Num (test)

Pre-arrival 2150 490

Primary Survey 1077 205

Secondary Survey 1712 375

Post-Secondary Survey 3697 1095

Patient Departure 1973 454
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Table 10:

Runtime efficiency of our system. We evaluated the latency of our system using different backbones and 

processors.

Method Input Processors Latency

Ours (i3D) 32 + 320 (s) RTX-2080 ti 0.07 (s)

Ours (Nonlocal) 32 + 320 (s) RTX-2080 ti 0.14 (s)

Ours (i3D) 32 + 320 (s) GTX-1080 ti 0.10 (s)

Ours (Nonlocal) 32 + 320 (s) GTX-1080 ti 0.20 (s)

Ours (i3D) 32 + 320 (s) i7-6850k (CPU) 1.11 (s)

Ours (Nonlocal) 32 + 320 (s) i7-6850k (CPU) 1.75 (s)

Med Image Anal. Author manuscript; available in PMC 2022 December 01.


	Abstract
	Introduction
	Related Work
	Medical Phase Recognition:
	Medical Workflow Analysis using Depth Videos:
	Video Understanding:

	Contributions

	Methodology
	Method Overview
	Short-term Module
	Inflated 3D ConvNet
	Nonlocal Neural Network

	Reduced Long-term Operation
	Module Fusion
	Progress Gate

	Data Collection and Implementation Details
	Data Collection
	Implementation Details

	Experimental Results
	Experimental Results Overview
	Ablation Study
	Network structures:
	RLO input length:

	Comparison with Previous Systems

	Experiment Results on EndoTube and Cholec80
	EndoTube:
	Cholec80:

	Discussion
	Phase Recognition Consistency
	Temporal Modeling
	Runtime Efficiency
	System Transferability
	Model Visualization
	Limitation and Future Work

	Conclusion
	References
	Fig. 1:
	Fig. 2:
	Fig. 3:
	Fig. 4:
	Fig. 5:
	Fig. 6:
	Fig. 7:
	Fig. 8:
	Table 1:
	Table 2:
	Table 3:
	Table 4:
	Table 5:
	Table 6:
	Table 7:
	Table 8:
	Table 9:
	Table 10:

