Skip to main content
. 2021 Nov 1;2021:2158184. doi: 10.1155/2021/2158184

Table 4.

The architecture of three CNNs proposed in our work.

Layer CNNda CNNds CNNft
(n, s) Output shape (n, s) Output shape (n, s) Output shape
Input (17, 1) (3, 1) (300, 1)
Conv1D + Relu (32, 3) (15, 32) (8, 2) (2, 8) (32, 3) (298, 32)
Conv1D + Relu (16, 3) (13, 16) (8, 2) (1, 8) (16, 3) (296, 16)
Flatten + Dropout (0.2) 208 8 4736
Dense + Dropout (0.2) 128 6 128
Dense 64 4 64
Softmax 3 3 3

Note that (n, s) denotes the number of filters and filter size for the corresponding CNN model.