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Abstract

The tumor microenvironment (TME) is a highly complex and dynamic ensemble of cells of 

which a variety of immune cells are a major component. The unparalleled results obtained 

with immunotherapeutic approaches have underscored the importance of examining the immune 

landscape of the TME. Recent technological advances have incorporated high-throughput 

techniques at the single cell level, such as single cell RNA sequencing, mass cytometry, and multi

parametric flow cytometry to the characterization of the TME. Among them, flow cytometry is the 

most broadly used both in research and clinical settings and multi-color analysis is now routinely 

performed. The high dimensionality of the data makes the traditional manual gating strategy in 

2D scatter plots very difficult. New unbiased visualization techniques provide a solution to this 

problem. Here we describe the steps to characterize the immune cell compartment in the TME 

in mouse tumor models by high-parametric flow cytometry, from the experimental setup to the 

analysis methodology with special emphasis on the use of unsupervised algorithms.

1. Introduction

Immunotherapy has transformed cancer treatment resulting in a paradigm shift: from 

targeting the tumor to targeting the patient’s immune system. However, despite the 

unprecedented responses observed, only a subset of patients fully benefits of such approach 

(Kim & Chen, 2016; Pitt et al., 2016; Sharma, Hu-Lieskovan, Wargo, & Ribas, 2017). A 

major hurdle for successful anti-cancer therapy is overcoming the immunosuppressive tumor 

microenvironment (TME) (Hanahan & Coussens, 2012). This underscores the importance 

of dissecting the immunological landscape of the TME (Binnewies et al., 2018). Recent 

technological advances applied to the study of the TME have shed light on its complexity 

and diversity not only among tumor types but also within patients with similar tumor types 

(Aran et al., 2017; Bindea et al., 2013; Newman et al., 2015).

Both cells from the myeloid and lymphoid lineages can be found in the TME, and studies 

have shown that defining tumors based on the immune composition of the TME may have 

predictive value for therapy outcome and disease progression (Herbst et al., 2014; Spranger, 
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2016). These initial studies have mostly focused on the overall presence of T cells and 

were based on immuno-histochemistry analysis of tumor sections (Pagès et al., 2018). 

Due to the highly complex and dynamic nature of the TME, traditional histological and 

immuno-histochemistry analysis are now being replaced by high-throughput techniques such 

as multiparametric fluorescence-based flow cytometry (FACS), mass cytometry (CyTOF) 

and single cell RNA sequencing (scRNAseq). While these high-throughput techniques have 

increased our capabilities for a deeper understanding of the TME, they have also introduced 

an overwhelming amount of data, and with it, the need for unbiased high-dimensional data 

analysis methods.

Given its broad availability in research and diagnostic laboratories all around the world, 

FACS remains a very popular and versatile phenotyping technique. It allows the study of 

both surface and intracellular markers at a single cell level. Until not so long ago, flow 

cytometry data was analyzed in two dimensions by sequential gating performed with pairs of 

markers and visualized as two-axes plots (scatter, density, pseudocolor plots, etc.) (Bendall, 

Nolan, Roederer, & Chattopadhyay, 2012). This strategy is very limited when dealing with 

the rapidly growing number of parameters that can now be measured by FACS. In addition, 

visualization of pairwise comparisons when working with 20+ parameters is biased by the 

subjective determination of the gates, and excessively time consuming considering that it 

leads to 2n number of scatter plots (being n = number of parameters). Most importantly, the 

segmented observation of the data in a pairwise manner can result in the loss of relevant 

information, particularly when studying rare populations or subtle changes in fluorescence 

intensity of certain markers due to a biologically meaningful cause (e.g., cell activation 

status).

In order to overcome these limitations, several algorithms were developed and adapted for 

the analysis of high-parametric datasets obtained from CyTOF, scRNAseq and multi-color 

flow cytometry (Amir et al., 2013; Becht et al., 2019; Chen et al., 2016; Levine et al., 

2015; Newell, Sigal, Bendall, Nolan, & Davis, 2012; Van Gassen et al., 2015). These 

algorithms provide dimensionality reduction visualization methods, which reduce the high

dimensional data (multi-parameter) into a two- or three-dimensions plot, and also unbiased 

clustering methods that conserve the global information of the dataset (i.e., each parameter 

and their multivariate relationships). However, several critical steps must be considered for 

the successful use of these methods to analyze fluorescence-based flow cytometry data, in 

particular when working with complex cellular sources such as tumor samples.

In this chapter, we provide a detailed description of a method to characterize the immune 

landscape of the TME of mouse tumor models. This includes a general protocol for 

tissue processing and important considerations for the optimization of high-parametric flow 

cytometry panel design, data acquisition, and analysis that can be easily adapted to any 

tissue of interest. A summary of the steps described are shown in Fig. 1.

2. Cell culture and tumor models

1. After thawing, mouse tumor cell lines are routinely maintained in standard 

culture conditions (37°C, 5% CO2) in medium (e.g., Dulbecco’s Modified 
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Eagle Medium (DMEM) or Roswell Park Memorial Institute (RPMI)-1640) 

supplemented with 10% fetal calf serum (FCS), L-glutamine, and additional 

supplements (e.g., non-essential amino acids, sodium pyruvate) depending on the 

cell line (see Note 1).

2. When cells reach 75–80% confluence, the spent medium is discarded and the 

cells are gently washed with prewarmed (37°C) Hank’s balanced salt solution 

(HBSS) or phosphate buffered saline (PBS) to remove remaining FCS. The 

cell monolayer is then detached with cell dissociation enzymes (e.g., trypsin 

or TripLE Express) by adding enough volume to cover the monolayer and 

incubating at 37°C, 5% CO2 for a few minutes (see Notes 2–6). When the 

cells become loosely attached, they are collected, washed to remove any enzyme 

remnants, diluted, and reseeded to obtain cells in the exponential growth phase 

(50–60% confluence) for injection (see Note 7).

3. For injection, the cells are collected as described above and washed at least twice 

with HBSS or PBS. Cells are then resuspended in HBSS or PBS at the desired 

concentration. The number of cells to be injected will depend on the tumor 

model selected for the study (see Note 8). For subcutaneous injection the volume 

should not exceed 100–200μL.

4. For subcutaneous injections, mice are shaved in the lower right flank leaving a 

square area of around 1in. between the rib cage and the hip clear of hair.

5. Before tumor injection the skin is cleaned with alcohol (e.g., with an alcohol 

pad) and time is allowed for the alcohol to evaporate.

6. The cells should be injected in the center of the shaved and disinfected area using 

a 27G × 5/8 needle to minimize leakage.

7. Ideally, harvest will be done when tumors reach 5–10mm. However, the exact 

size and time point will be tumor model-dependent and should be determined by 

the investigator during the experimental optimization process.

3. Harvest

1. Mice are euthanized using CO2 followed by cervical dislocation as per ACUC 

guidelines (see Note 9).

2. Mouse fur and skin are cleaned spraying ethanol 70%.

3. The skin is opened from the center of the abdomen with scissors and then below 

until the pelvis to uncover the tumor area.

4. Tumors are collected with a scalpel, making sure of removing the tumor attached 

to the inner side of the skin.

5. Tumors are collected into RPMI medium containing 0.5% FCS and stored in wet 

ice or 4°C until processing (see Note 10).
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4. Tumor processing

1. Keep everything on wet ice or 4°C until digestion. To facilitate the digestion 

process, transfer the tumor into a petri dish and chop it into small pieces of about 

1–2mm. Depending on the tumor characteristics, the appropriate enzymatic 

digestion process should be setup (see Note 11).

2. Transfer the digested tumor (single cell suspension) to a new tube passing 

through a 40μm cell strainer (see Note 12). Quickly wash the cell strainer adding 

10mL of cold buffer or medium containing 2–10% of FCS to stop the enzymatic 

digestion (see Note 13).

3. Spin the cells down and lyse red blood cells with 1mL of ACK buffer, during 

3–5min. Wash with 10mL of FACS buffer (see Note 14).

4. Resuspend the cells in enough volume of FACS buffer (see Note 15). Separate an 

aliquot for cell counting if needed and transfer enough cells from the single cell 

suspension into a 96-well V-bottom plate for staining (see Note 16).

5. Design and validation of high parametric flow cytometry panels

5.1 Panel design

a. Define your goal: Before designing a flow cytometry panel it is important to 

define the purpose of the study. If the goal is to have a general overview of the 

whole immune landscape of the TME, then it will be more appropriate to select 

markers or combination of markers that allow the unequivocally (as much as 

possible) definition of different immune cell subsets (e.g., lymphocytes, innate 

lymphoid cells, monocytes, macrophages, neutrophils, dendritic cells). The more 

lineage specific markers selected, the more comprehensive the characterization 

will be. However, the goal may be to evaluate the phenotype and/or activation 

status of a certain cell type, in which case a “dump” channel can be created to 

exclude cell populations that are not of interest in the analysis (see Note 17).

b. Selection of fluorochromes: Once the desired list of markers is defined, the next 

step is the fluorochrome selection. This is determined based on fluorochrome 

brightness (staining index), marker expression level and cytometer configuration. 

The simplest formula is assigning the brightest fluorochromes to the dimmest 

markers or those expressed at a low density (Mahnke & Roederer, 2007) (see 

Notes 18 and 19). Staining index values can be obtained from the different 

antibody supplier companies, and it is highly recommended to obtain the values 

specific for the instrument that will be used in the study given that fluorescence 

intensity and resolution may vary among cytometers.

c. Spillover and spread error: When several markers are needed to define a cell 

type, the spectral overlap among fluorochromes can be a problem. Certain 

channels are more prone to suffer from spill over among them. Although 

compensation normally corrects for this defect, there are cases in which the 

spectral overlap is so high that the signals result impaired and the resolution is 
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lost (Ashhurst, Smith, & King, 2017). It is recommended to spread the markers 

that are co-expressed on the same cell along as many lasers as possible, this will 

minimize the spillover and preserve the characteristics of the signal (see Note 

20). In addition to the specific markers, dyes that discriminate live/dead cells and 

Fc receptor blocking antibodies must be included in the panel.

d. Specificity controls: Once the panel is designed, specificity controls are needed 

in order to set the positive/negative boundaries during analysis. These controls 

include:

i. Isotype control: traditionally considered control for “non-specific” 

antibody binding, which may result from Fc-mediated binding, cross

reactivity, or non-specific cell adhesion. In order to accurately account 

for the non-specific binding, the isotype control should be from the 

same species, same heavy and light chains, conjugated to the same 

fluorochrome, and have the same fluorophore/antibody ratio (i.e., 

number of fluorescent molecules bound per antibody). In addition, 

isotype control antibodies have different activities, which may result 

in varying levels of non-specific binding. Therefore, finding the ideal 

isotype control is highly unlikely. Furthermore, isotype controls do not 

discriminate signal from spectral overlap or cell autofluorescence. For 

these reasons, and the availability of Fc receptor blocking antibodies, 

the usefulness of isotype controls is debated and more and more they 

are being replaced by fluorescence minus one control.

ii. Fluorescence minus one (FMO): FMO controls consist of all the 

antibodies present in the mix, except one. The empty channel is the 

one the FMO controls for. This allows to determine any fluorescence 

signal that is detected either due to spillover from other channels 

or cell autofluorescence. This is particularly relevant when working 

with panels of >6 colors as the major source of background signal 

is generally due to spectral overlap. FMOs allow to determine the 

positive/negative boundaries and to maximize the resolution between 

channels. However, FMOs would not discriminate signal due to non

specific antibody binding.

iii. Biological control: As it is the case in most experimental setups, proper 

biological controls should be included. For example, when staining 

for cytokines or activation markers after stimulation, an unstimulated 

control should be included. In some cases, these controls are the most 

appropriate for setting positive/negative boundaries.

5.2 Antibody titration

The optimal antibody concentration to be used in a given panel depends on the expression 

level of the antigen and the fluorochrome of choice and it needs to be determined 

experimentally doing a titration. For that purpose, serial dilutions of the antibody are tested 

and the staining index (SI) is obtained as follows (see Note 21):
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SI= MFIpos−MFIneg
2 * SDneg

where MFIpos: mean fluorescence intensity positive population; MFIneg: mean fluorescence 

intensity negative population, and SDneg: standard deviation of MFIneg.

5.3 Compensation

Compensation corrects the effects of spillover among different channels and it should 

be done for each flow cytometry experimental run. Most instruments nowadays have 

a built-in software to do this automatically, please refer to the manufacturer manual 

for detailed procedures. Although compensation can be done by the instrument, it is 

highly recommended to save single-color compensation files to allow for post-acquisition 

compensation adjustments during analysis. Having adequate single-color compensation 

controls is key to obtaining a proper compensation matrix that will accurately correct the 

spillover. Below are basic rules to prepare compensation controls:

a. Single-color controls need to be as bright or brighter than the experimental stain, 

and at least 10% of the population should have a positive signal.

b. Background fluorescence should be similar for positive and negative controls 

(see Note 22).

c. The fluorochrome used in the compensation control must match the one used in 

the experimental sample. This is particularly important when using tandem dyes 

or dyes detected with the same excitation laser and filters (e.g., FITC vs Alexa 

Fluor 488).

d. Compensation controls must be treated the same way as the samples, e.g., 

fixation/permeabilization treatments may alter the fluorochrome.

e. Antibodies used for single-color controls should be titrated both when using cells 

or synthetic compensation beads, so that the positive peak is set within the linear 

range of each detector and the PMT values do not need to be changed (see Note 

23).

6. Application Settings

Setting up Application Settings ensures consistency and reproducibility over time across 

experiments and instruments. Optimal PMT voltages need to be determined for each 

particular tissue as a function of the tissue’s autofluorescence. Once optimal PMT voltages 

are determined and saved as the Application Settings, the same setting can be applied 

to standardize experiments regardless of daily variability of the instrument’s performance 

(Meinelt et al., 2012) (see Note 24).

1. Obtain the robust standard deviation of the electronic noise (rSDEN), and the 

maximum linear fluorescence (LinMax) for each parameter from the baseline 

report (see Note 25). The positive and negative signal should be out of these 

values. The optimal PMT voltages gating in the population of interest should be:
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a. The PMT values that place the negative unstained population at least 

2.5 times above the noise of the cytometer (2.5 × rSDEN).

b. The PMT values that keep the positive stained population within the 

linear range (MFIpos <LinMax).

2. Once optimal PMT voltages are determined for each parameter in the population 

of interest, the final settings are saved as Application Setting and used for further 

experiments (see Notes 26 and 27).

3. Definition of target values: target values are defined with the established 

Application Settings using standardized bright beads, like rainbow calibration 

particles (Thermo Fisher Scientific) or CS&T beads (BD Biosciences) to create a 

template as shown in Fig. 2. Target values can be used to verify the Application 

Settings in use and to transfer the Application Setting to a different instrument 

(provided that the cytometer parameters are similar under the same or different 

optical configurations) by adjusting the positive gate to that shown in the 

template.

7. Data visualization, clustering and analysis

The traditional flow cytometry data analysis performed by consecutive bivariate gating 

(i.e., gating strategy) is sufficiently robust when dealing with few parameters. However, 

this strategy is very limited when analyzing multidimensional data and new dimensionality 

reduction algorithms can be used for an unbiased data analysis approach. These algorithms 

can be divided into two main categories: (1) linear dimensionality reduction that conserve 

the information at the single cell level preserving the global structure of the data but 

assuming a linear relationship among parameters such as Principal Component Analysis 

(PCA) (Newell et al., 2012) and (2) non-linear dimensionality reduction in which local 

distances are prevalent over the global structure of the data such as t-Distributed Stochastic 

Neighbor Embedding (t-SNE), diffusion maps, and Uniform Manifold Approximation and 

Projection for Dimension Reduction (UMAP). Each algorithm has different requirements for 

the size, normalization and/or transformation of the data and should be carefully studied 

(Amir et al., 2013; Becht et al., 2019). Fig. 3 illustrates a traditional manual gating strategy 

to define tumor-infiltrating myeloid cells within total CD45+ live cells from a mouse 

tumor, where only 11 different populations can be defined based on the subjective gating 

strategy. Below is a brief description of some of the dimensionality reduction, clustering 

and trajectory methods that can be utilized and how they compare among them and to the 

traditional gating strategy when applied to the same dataset. See also Table 1 for a list of 

markers that can be used for this type of analysis and Tables 2–4 for a summary of the 

methods described below.

7.1 Linear dimensionality reduction

PCA is based on the distance and relatedness of different populations and aims to find the 

directions (components) with the maximum variance in the dataset. One advantage of this 

method is that the distance in the PCA plot infers relationship among cell populations in the 

linear space. However, it does not provide information for nonlinear relatedness among the 
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parameters. Fig. 4A right panel depicts the first two components of a PCA analysis of the 

same dataset shown in Fig. 3.

7.2 Non-linear dimensionality reduction

tSNE is based on the k-neighbor algorithm, where the dataset is visualized as a scatter plot 

and the location of each event (cell) in the plot indicates the similarities with nearby events. 

While the distance of the events (dots) within a cluster indicates similarity, unlike PCA, the 

distance between dots from different clusters cannot be used to infer cellular relationship. 

The same dataset displays more complexity in a tSNE plot than when analyzed by PCA 

(Fig. 4B). A disadvantage of this method is that only a few hundreds of thousands of events 

can be run at a given time in most platforms (e.g., Phyton, R, FlowJo) and the required 

down-sampling of the data may result in the loss of rare populations.

UMAP is similar to tSNE but allows the use of significantly larger datasets and preserves 

more of the global structure of the data. As shown in Fig. 4C, UMAP increases the distance 

among cells that are markedly different (distance between clusters), while grouping more 

those that bear more similarity (fewer clusters). Because it preserves more of the global 

structure than a tSNE, it allows to some degree to infer cellular relatedness based on cluster 

distance.

Importantly, the visual clusters generated by these methods are strongly influenced by 

several parameters that are specific for each (e.g., perplexity, iterations for tSNE and 

min_dist, nearest neighbors for UMAP), therefore a clear understanding of them is critical 

for an accurate analysis (Amir et al., 2013; Becht et al., 2019) (see also Table 2).

In all of these analyses, color can be added as an additional dimension. The example shown 

in Fig. 4 right panels use this additional dimension to show the expression level (color 

gradient) of some of the markers used for the analysis, which help identify cell types (see 

below). Alternatively, color can be used to indicate sample(s) of origin for example when 

several treatment conditions are combined.

7.3 Clustering methods

The methods described above provide a tool for data visualization following dimensionality 

reduction, however, they do not provide information regarding cell subpopulations. 

Additional partitioning methods are used to define clusters within the high-dimensional 

space in an unbiased manner (Weber & Robinson, 2016). Some of the algorithms used for 

this purpose are briefly described below (see also Table 3).

PhenoGraph: Partitions high-dimensional data into subpopulations based on finding the 

k-nearest neighbor for each cell (Levine et al., 2015). It uses the parameters (in this case 

markers expressed on the cell) to define a point in the high-dimensional space and creates 

a graph/network that represents the phenotypic similarities between cells (neighbors). These 

neighbors are then grouped into communities which are stratified into clusters. The results 

provide a quantification (number of clusters) of the general population structure that is based 

on different cell types and phenotypes within a same cell type. PhenoGraph clusters are 

depicted as colored and numbered according to their cluster identity and can be displayed 
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on the two-dimensional tSNE or UMAP data visualization scatter plots (Fig. 5A, upper 

panels). Cluster annotation (i.e., identification of cell types or subtypes) can then be done by 

obtaining a heatmap representation of the marker expression level (Fig. 5A, bottom panel) 

or by coloring the scatter plot by marker expression level rather than cluster number (Fig. 4, 

right panels). Among the advantages of this method are that it can resolve rare populations 

and that it allows for population discovery. One of the limitations on the other hand is the 

need to pre-define number of neighbors.

ClusterX: This method is based on the assumption that cluster centers are characterized by 

a higher density than the neighbors, and far away from any other points with a higher local 

density in a pre-defined visualization map (Rodriguez & Laio, 2014). The algorithm depends 

on relative density rather than the absolute values, and clusters are recognized independently 

of the dimensionality of the space in which the data points are embedded. This density-based 

clustering was applied to the t-SNE embedded map in the example and might therefore 

be limited to the power of the tSNE’s dimensionality reduction in representing the whole 

variation of the global data into the 2D representation (Fig. 5B, upper panel). Cluster 

annotation can be performed as indicated for PhenoGraph (Fig. 5B, bottom panel).

FlowSOM: This is an unsupervised technique for clustering and dimensionality reduction 

that uses a Self-Organizing Map (SOM) to visualize and interpret the data (Van Gassen 

et al., 2015). A SOM consists of a grid of nodes, in which a node is a point in the 

multidimensional input space. The input space is trained so that the nodes closely connected 

are more similar to each other than to the ones connected through a larger path. During 

clustering, each point of the dataset is classified with the node that resembles it the 

best (nearest neighbor). The advantages of this method include the fast runtime, several 

visualization options, and that it offers one of the best clustering performances allowing 

users to explore large datasets and the discovery of rare populations. Like with other 

methods, FlowSOM requires the pre-selection of several parameters and having a clear 

understanding of them is critical (Van Gassen et al., 2015).

Fig. 5A–C allows for a comparison of the clustering methods mentioned above. The 

different number of clusters obtained with the different methods may be due to intrinsic 

limitations of the method or the pre-selected parameters used (e.g., numbers of neighbors 

and/or clusters pre-defined) (Table 3). All these methods allow for a more granular 

characterization of the tumor immune microenvironment than the classical bivariate flow 

cytometry analysis. In addition, one can select specific clusters of interest and run the same 

or different algorithms for an even more detailed classification.

7.4 Trajectory or differentiation analysis

To infer differentiation paths or cell population relationship, non-linear dimensionality 

reduction algorithms that preserve the global structure of the dataset are recommended 

(Table 4). Two options that can be used to analyze cellular relatedness in the tumor 

microenvironment are:
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Diffusion map: Organize the events in non-linear and complex branches of differentiation 

still allowing the discovery of rare populations (Haghverdi, Buettner, & Theis, 2015). 

Diffusion map preserves the global structure and pseudo-temporally order of the cells. It 

is applicable to datasets with high levels of noise (such as flow cytometry data), samples 

with heterogeneous densities, and with missing or uncertain values. However, this algorithm 

falls short in depicting multi-branching transitions. Using the same dataset as in previous 

examples, Fig. 6A depicts an example of a diffusion map run with equal number of 

events (see Note 28) from selected clusters defined by UMAP and FlowSOM, containing 

monocytes, macrophages and dendritic cells. There are at least two branches defined by the 

transitional expression of markers associated to monocytes, macrophages and dendritic cells 

projected in the diffusionmap 1 and diffusionmap 2 axes (Fig. 6B). One of them represents 

the differentiation from Ly6Chi monocytes to macrophages (clusters 4-5-6) and the other 

resemble the differentiation path from dendritic cell precursor to conventional dendritic 

cells (cDCs) (clusters 14, 15, and 16). Cluster 12 represents DCs derived from monocytes 

(moDCs). This analysis also allows to dissect what marker or group of markers drive the 

differentiation path proposed by the algorithm. As an example, Fig. 6C shows increased or 

decreased levels of expression of different monocyte and macrophage-associated markers 

across clusters 4-5-6 in the trajectory defined by diffusionmap 2 axis.

pCreode: Is an unsupervised algorithm that compares graphs with different topologies 

and infers a statistically significant hierarchy of cell dynamics that define a developmental 

trajectory based on the parameters used in the analysis (Herring et al., 2018). An advantage 

of pCreode is that it allows for the visualization of multi-branching transitions (Fig. 6D) as 

well as the overlay of different markers to facilitate the interpretation (Fig. 6E). However, it 

requires a much stronger down-sampling, which results in the loss of information (rare 

populations). Another advantage of pCreode over diffusion map is that the node size 

indicates the abundance of cells within each differentiation transitional state.

Regardless of the robustness or limitations of the method of choice to define differentiation 

trajectories, the biological meaning of the data needs to be confirmed experimentally.

8. Basic steps for high dimensional flow cytometry data analysis

1. Export the files in FCS format and open them in any suitable software (e.g., 

FlowJo, Cytobank).

2. For each individual sample, plot the parameter in the last position of the laser 

delay settings (e.g., YG-586-A) against Time. Select the segment of Time in 

which the data looks constant (as shown in Fig. 3A—gate 1) (see Notes 29 and 

30).

3. From the Time gate, select by forward (FSC) and side scatter (SSC) the gate that 

defines the populations of interest (Fig. 3A—gate 2).

4. Exclude doublets via any of the methods available (FSC-H vs FSC-A or SSC-W 

vs SSC-A and FSC-W vs FCS-A) (Fig. 3A—gate 3) (see Note 31).
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5. Transform all fluorescent markers to biexponential normalization given that this 

transformation will avoid the artifacts due to logarithmic normalization around 

zero.

6. Select the live cells with the L/D marker and CD45+ cells (tumor infiltrating

immune cells, Fig. 3A—Gates 4 and 5 in Strategy 1 or Gate 4′ in Strategy 2).

7. Perform quality control of the compensation matrix automatically generated 

during data acquisition by comparing single pairwise markers (N × N plot in a 

FlowJo Layout). Fine tune any obviously under or over-compensated markers as 

needed (see Note 32).

8. Export the population of interest (e.g., CD45+ Live cells) or continue with the 

gating strategy using the dump channels to exclude any populations that are not 

of interest (see Note 33).

9. Prior to running any algorithms, verify that staining, processing and acquisition 

have no artifacts or defects. The use of specificity controls is crucial for this step 

(see Section 5).

10. Depending on the algorithm of choice, down-sample the properly compensated 

data to a fix value that will be equal in every sample/group to be analyzed.

11. Concatenate the data including the same number of events from each sample 

from every group to be analyzed (see Note 34). For example, for a total of 

100,000 events to be analyzed from two treatment conditions (e.g., untreated 

vs therapy) with 5 samples per condition: 50,000 events from untreated group 

= 10,000 events per untreated tumor × 5 samples; 50,000 events from therapy 

group = 10,000 events per treated tumor × 5 samples (see Notes 35 and 36).

12. Further steps will depend on the dimensionality reduction, clustering and/or 

trajectory analysis method of choice.

9. Concluding remarks

One of the biggest challenges in the analysis of high-parametric flow cytometry data is 

the correct definition of cell populations. While under homeostatic conditions and with few 

parameters this may seem accurate and indisputable, under pathological situations such as in 

the TME and with high-parametric data, it can be an arduous job. In this situation, traditional 

manual gating strategies become time consuming and biased and valuable information can 

be missed. Thus, an unsupervised approach based on the whole dimension of the data is 

needed for a comprehensive and objective characterization of the TME.

When applying these algorithms, user-defined settings are important variables that affect the 

data output. Therefore, a good understanding of each method and what each pre-defined 

parameter means is critical for the success of the analysis. Additionally, the quality of the 

compensated data, proper down-sampling, and the markers selected for the dimensionality 

reduction methods will also influence the outcome. It is likely that several trial runs will 

be needed to find the optimal conditions for different experimental datasets for the best 

representations that are biologically relevant. Many of these algorithms are also sensitive 
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to sample-to-sample variations. Therefore, standardized methods should be implemented 

throughout the whole process: from the tissue harvest and processing through the flow 

data acquisition. A common practice used in CyTOF analysis that can be applied to 

flow cytometry, is the barcoding of samples that are then acquired in a single tube 

minimizing batch effects. Although this is still somehow limited by the less abundant 

number of parameters available for barcoding in flow cytometry, newer instruments and 

novel improved fluorochromes will soon allow the detection of up to 50 parameters and 

reducing compensation difficulties.

An advantage of the unbiased analysis approach for high-dimensional data is the possibility 

to identify novel cell populations. It is important, however, to keep in mind that such 

populations may represent a different activation/maturation state rather than a new cell type. 

Further experimental approaches are needed to formally determine their origin/identity, 

particularly given our still limited knowledge of the TME. Another useful feature of 

these analyses is that selecting a cluster from a tSNE and back-gating using the pairwise 

comparison approach can help select the best 4–6 markers that define a given population to 

be used for purification (e.g., FACS sorting) and further characterization (e.g., functional and 

transcriptional analysis).

Because all methods have their advantages and disadvantages, and they may provide 

different type of information, a combination of different approaches should be used for a 

more thorough analysis. Here we just exemplified a few of them, however, other algorithms 

are currently available and new ones are constantly being optimized.

10. Notes

1. Optimal culture conditions should be determined for the specific tumor cell 

line of interest. Recommendations from the American Type Culture Collection 

(ATCC, Manassas, VA, USA) can be used as a starting point.

2. Cells should not be used at low (<40%) or high (>80%) confluence as this may 

lead to the selection of subclones or changes in the metabolic status of the cells, 

respectively.

3. Porcine Trypsin/EDTA is commonly used to detach adherent cells. TripLE 

reagents (Gibco-Thermo Fisher Scientific) are animal origin-free recombinant 

dissociation enzymes that better preserve the integrity of cell surface molecules.

4. The incubation time has to be optimized for each cell line and it should be just 

enough to have the cells loosely attached.

5. If Trypsin is used, FCS containing medium should be used immediately to 

inhibit its activity. TripLE reagents can be inhibited by dilution.

6. Non-adherent cells can be collected by gently pipetting and transferring to 

a sterile tube, centrifuged down and resuspended in fresh medium at the 

appropriate concentration to be reseeded.
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7. The dilution factor will depend on the cell type and size of the tissue culture 

flask of choice.

8. Careful setup of the tumor model of interest is strongly recommended before 

any further analysis. This includes determining the cell concentration, volume of 

injection, timing, etc.

9. Euthanasia should be performed following appropriate institutional guidelines.

10. If extended storage of the tumors before processing is needed (i.e., tissue 

processing cannot be performed immediately after harvest), it is recommended 

to collect and keep the tumors in PBS containing higher concentration of FCS 

(2–10%) to avoid pH fluctuations. Tissues should then be transferred to the 

digestion medium at the time of processing being careful not to increase the 

FCS content of the digestion medium as it will block the enzymatic activity. 

It is important to consider that the longer storage may impact on immune cell 

populations differently, thus affecting the overall composition of the infiltrate and 

biasing the results. Therefore, long storage periods should be avoided as much as 

possible.

11. An example of a digestion cocktail used in our lab is as follows: 200U/mL 

of Collagenase IV (Gibco) and 0.1mg/mL of DNase I (Roche). Tumors are 

incubated 10min in a water bath at 37°C and then transfer to a rotator inside an 

incubator (37°C, 5% CO2) for extra 50min of digestion.

12. To avoid clogs during flow cytometry, cells should be filtered again passing 

through a 40–50μm cell strainer or mesh after staining and prior to running the 

samples in the flow cytometer.

13. Stopping the enzymatic reaction is an important step to reduce cell death.

14. An example of FACS buffer: PBS/2mM EDTA/2% FCS.

15. The volume should be determined based on the tumor size/number of cells 

obtained for the tumor model of interest.

16. Using amount of tissue (e.g., 50mg of tumor) as a reference rather than cell 

number helps account for dead cells in the mix and avoid artifacts in the staining.

17. A fluorophore with high spectral overlap into other channels can be used for the 

dump because that channel will be excluded early on in the analysis.

18. Certain cell types are highly autofluorescent (e.g., myeloid cells). This should be 

considered when selecting the appropriate fluorochrome for a given marker as 

a true positive signal may be masked by the autofluorescence if using a weak 

fluorochrome.

19. Brilliant Violet dyes interact with each other quenching their signal. Using 

buffers that block the interaction of these dyes is strongly recommended.

20. Information about the spread characteristics of each fluorochrome can be 

obtained from the supplier’s specifications.
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21. Other metric to assess reagent brightness is the separation index (Ashhurst et al., 

2017).

22. It is recommended to include both positive and negative populations within the 

same tube. This can be done either with cells, in which case only a fraction of 

them will express the marker used for the single-color control, or with synthetic 

compensation beads by mixing positive and negative beads (some companies 

offer a premade cocktail containing reactive and non-reactive compensation 

beads).

23. The linear range of each detector can be obtained from the CS&T baseline.

24. If the cytometer baseline changes, a new application setting needs to be 

determined.

25. The rSDEN is the background noise level of each parameter due to the electronic 

system.

26. It is recommended to run a full compensation and one fully stained tumor sample 

to verify there are no excessive spillovers and all parameters are within the linear 

range. If PMT voltages need to be modified, a new application setting with the 

updated values should be saved and a new compensation acquired.

27. If needed, PMT voltages can be increased as long as their values stay within 

the linear range before saving the Application Settings. However, it is not 

recommended to decrease the values given that they were set to the minimum 

possible.

28. It is important to keep in mind that by using the same number of events from 

each cluster, information related to frequency/abundance of each population is 

lost.

29. Avoid including the beginning and end of the run when the sheath flow is less 

stable. Also, exclude any defective region, for instance, because of a clog during 

acquisition. This should be applied when doing manual gating as well.

30. Do not run samples at high speed when they contain too much debris and use a 

higher FSC threshold during acquisition to record mainly the events of interest.

31. After this step, if the tumor cells are labeled (e.g., GFP, YFP), that channel can 

be used against FSC or SSC to exclude tumor cells from the analysis.

32. Even when the manual compensation is not recommended, obvious over and 

under compensations could lead to data misinterpretation and need to be 

corrected before proceeding with further analysis.

33. It is recommended to run the first analysis with total CD45+ live cells to obtain a 

big picture of the staining and subsets segregation before further analysis.

34. When comparing more than one treatment condition, the analysis should be run 

in concatenated groups to avoid batch effects.

35. The number of events per sample will depend on the algorithm of choice.
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36. Always keep a computational barcoding of the samples (e.g., in FlowJo adding 

an extra keyword, as “SampleID”) which will be useful to determine any batch 

effect or sample abnormality, and group identification.
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Fig. 1. 
Workflow of experimental design and data analysis of high-parametric flow cytometry 

by unsupervised algorithms applied to the study of the TME. Schematic representation 

of the workflow for the characterization of the tumor immune infiltrate by unsupervised 

high-dimensional flow cytometry.
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Fig. 2. 
Target value template for a 20-parameter BD LSR Fortessa cytometer. Histograms depict an 

example of target value for each parameter.
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Fig. 3. 
Definition of populations by traditional manual gating strategy applied to the analysis 

of 20-parameters flow cytometry data of a subcutaneous mouse tumor. (A) Initial gating 

strategy starting with Gate 1 to select the events acquired with stable flow stream, Gate 2 to 

exclude cell debris, and Gate 3 to exclude doublets. Strategy 1 and Strategy 2 depict options 

to select live CD45 positive cells. (B) Example of manual gating strategy to define specific 

populations starting from Gate 4′ or 5.
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Fig. 4. 
Comparison of different visualization methods. PCA (A), tSNE using perplexity = 50 and 

iterations = 1000 (B), and UMAP with nearest neighbor = 30 and min_dist = 0.3 (C) 

showing the expression level of some of the markers used for the analysis overlaid on each 

plot.
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Fig. 5. 
Clustering methods. Visualization of PhenoGraph (k = 30) (A), Cluster X (B), and 

FlowSOM (k = 20) (C) in tSNE (n = 100,000 events, perplexity = 50, iterations = 1000; 

top panels), UMAP (n = 100,000 events, nearest neighbor = 30, min_dist = 0.3; middle 

panels) and heatmap (normalized by rows; bottom panels).
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Fig. 6. 
Trajectory analysis of monocytes, macrophages, and dendritic cells in the TME. (A) UMAP 

visualization from Fig. 5C showing clusters selected for diffusion map analysis. (B) 2D 

representation of the diffusion map analysis with an overlay of FlowSOM clusters. (C) 

Expression level of markers across clusters 4-5-6. (D) pCreode analysis from the same 

clusters from (B) (plot ranked 0 from n = 10 runs). (E) Overlay of markers in pCreode from 

(D).
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Table 1

Flow cytometry panel (example).

Marker Clone Manufacturer

CD45.2 clone 104 BD Biosciences

Ly6G 1A8 BD Biosciences

CD64 X54-5/7.1 BD Biosciences

F4/80 BM8 BD Biosciences

CD24 M1/69 BD Biosciences

Ly6C AL-21 BD Biosciences

CX3CR1 SA011F11 BioLegend

CD103 2E7 BioLegend

MHC II M5/114.15.2 eBioscience

CD68 FA-11 BioLegend

CD11c N418 eBioscience

TCRb H57–597 eBioscience

TCRgd eBioGL3 eBioscience

CD3 145-2C11 eBioscience

NK1.1 PK136 eBioscience

Ter119 TER-119 eBioscience

CD19 eBio1D3 eBioscience

CD135 A2F10.1 BD Biosciences

CD206 C068C2 BioLegend

CD11b M1/70 eBioscience

Siglec F E50-2440 BD Biosciences

CD209a MMD3 Invitrogen

LIVE/DEAD Fixable Dead Cell Stain Kit – Invitrogen

CD16/32 2.4G2 Bioxcell

CD103 2E7 BioLegend

CD11b M1/70 eBioscience

CD11c N418 eBioscience

CD127 A7R34 BioLegend

CD135 A2F10.1 BD Biosciences

CD16/32 2.4G2 Bioxcell

CD19 eBio1D3 eBioscience

CD206 C068C2 BioLegend

CD209a MMD3 Invitrogen

CD223/Lag3 C9B7W BD Biosciences

CD24 M1/69 BD Biosciences

CD25 PC61 5.3 eBioscience

CD274/PDL1 MIH5 BD Biosciences

Methods Enzymol. Author manuscript; available in PMC 2021 November 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Araya and Goldszmid Page 24

Marker Clone Manufacturer

CD279/PD1 RMP1-30 BD Biosciences

CD3 145-2C11 eBioscience

CD4 GK1.5 BD Biosciences

CD44 IM7 BioLegend

CD45.2 clone 104 BD Biosciences

CD62L MEL-14 BD Biosciences

CD64 X54-5/7.1 BD Biosciences

CD68 FA-11 BioLegend

CD8a 53–6.7 BioLegend

CX3CR1 SA011F11 BioLegend

F4/80 BM8 BD Biosciences

Foxp3 FJK-16s eBioscience

KLRG1 2F1 eBioscience

LIVE/DEAD Fixable Dead Cell Stain Kit – Invitrogen

Ly6C AL-21 BD Biosciences

Ly6G 1A8 BD Biosciences

MHC II M5/114.15.2 eBioscience

NK1.1 PK136 eBioscience

Siglec F E50-2440 BD Biosciences

TCRb H57-597 eBioscience

TCRgd eBioGL3 eBioscience

Ter119 TER-119 eBioscience

TIGIT 1G9 BD Biosciences

Tim3 RMT3-23 eBioscience
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Table 2

Visualization methods.

Method Type of method Environment Description Limitations

PCA Visualization, 
relatedness or 
trajectory

Many different options, 
R (included in Cytofkit), 
Phyton, etc.

It establishes distance and relatedness 
between populations in the linear space 
Preserve global distances Fast

Non-linear relatedness not 
considered Overcrowding of 
data points

tSNE Visualization R (included in Cytofkit), 
Phyton, FlowJo, etc.

Non-linear dimensionality reduction 
based on the k-neighbor algorithm Not 
overcrowding of data points Preserve 
local distances in detriment of global 
structure

Distance among clusters has 
no meaning Limited number of 
events per run Not so fast

UMAP Visualization, some 
degree of 
relatedness

R (included in Cytofkit2 
but requires Python) Python, 
and FlowJo Exchange plug
in

Non-linear dimensionality reduction. 
Preserve local distances, with some 
global structure Fast

Loss of resolution among 
populations with little variation 
Crowding of similar populations
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Table 3

Clustering methods.

Method Environment Description Limitations

PhenoGraph R (included in Cytofkit), Phyton, 
MATLAB™, FlowJo Exchange 
plug-in

Based on nearest-neighbor graph, followed by 
definition of communities as interconnected 
events

Number of clusters not customizable 
Not so fast

ClusterX R (defined in Cytofkit) Based on densities in the tSNE projection map 
Fast

Limited to tSNE ability to define 
clusters Number of clusters not 
customizable

FlowSOM R package (included in Cytofkit), 
FlowJo Exchange plug-in

Based in Self-Organization Maps (SOM) 
follow by hierarchical clustering Very fast 
Number of clusters customizable

For exploratory analysis, hard to 
determine the number of clusters
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Table 4

Differentiation-trajectory methods.

Method Environment Description Limitations

Diffusion Map R (included in Cytofkit), 
and Python package

Preserve global structure Pseudotemporal 
relatedness Discovery of rare populations Fast

Definition of multi-branch pathways 
Requires moderate down-sampling

pCreode Phyton package Preserve global structure Pseudotemporal 
relatedness Definition of multi-branch 
pathways

Require extreme down-sampling Loss of 
rare populations Not so fast
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