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Abstract

Often considered a rare disease, cardiac amyloidosis is increasingly recognized by practicing 

clinicians. The increased rate of diagnosis is in part due the aging of the population and increasing 

incidence and prevalence of cardiac amyloidosis with advancing age, as well as the advent of 

non-invasive methods using nuclear scintigraphy to diagnose transthyretin cardiac amyloidosis due 

to either variant or wild type transthyretin without a biopsy. Perhaps the most important driver of 

the increased awareness is the elucidation of the biologic mechanisms underlying the pathogenesis 

of cardiac amyloidosis which have led to the development of several effective therapies with 

differing mechanisms of actions. In this review, the mechanisms underlying the pathogenesis of 

cardiac amyloidosis due to light chain (AL) or transthyretin (ATTR) amyloidosis are delineated as 

well as the rapidly evolving therapeutic landscape that has emerged from a better pathophysiologic 

understanding of disease development.
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The elucidation of physiologic mechanisms underlying the genesis of misfolded proteins 

which form amyloid fibrils that deposit in the myocardium and can cause cardiac 

amyloidosis has led to development of several effective therapeutic approaches1. These 

efforts have led to therapies that have been described as a “translational triumph”2. Among 

the causes of cardiac amyloidosis, the two that account for >95% of cases encountered 

clinically (Table 1) include: (1) immunoglobulin light chain (AL) cardiac amyloidosis, 

which is due to a plasma cell dyscrasia with over-production of either kappa or lambda 

light chains, and (2) transthyretin (TTR) cardiac amyloidosis, which results from misfolded 

monomers or oligomers of either wild type (ATTRwt) or variant transthyretin (ATTRv) 
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cardiac amyloidosis3. ATTRv is inherited in an autosomal dominant fashion and is due to 

one of the more than 130 mutations in the transthyretin gene on chromosome #18. With 

the aging of the population, ATTRwt cardiac amyloidosis (CA) is anticipated to become 

the most common form of systemic amyloidosis. In this review, we will delineate the 

mechanisms underlying the pathogenesis of cardiac amyloidosis and highlight the rapidly 

evolving therapeutic landscape that has emerged from a better understanding of disease 

development.

Pathophysiology

Despite originating from different precursor proteins, the basic mechanisms underlying 

amyloid pathogenesis is similar in that the capability of a protein to become amyloidogenic 

lies in its ability to acquire more than one conformation. Amyloid formation occurs when a 

protein loses (or fails to acquire) its physiologic, functional fold. A number of factors may 

trigger protein misfolding and aggregation, such as abnormal proteolysis, point mutations 

and post-translational modifications such as phosphorylation, oxidation and glycation. The 

misfolded protein or peptide then assembles with similar proteins or peptides to form 

oligomers, which circulate in the blood and deposit as highly ordered fibrils in the interstitial 

space of target organs. In cardiac amyloidosis, the mechanisms of organ dysfunction 

are likely multifactorial, resulting from a combination of factors including extracellular 

deposition of amyloid in the parenchymal tissue leading to mechanical disruption of 

tissue structure, as well as proteotoxicity of the fibrils or pre-fibrillar proteins leading to 

inflammation, reactive oxygen species generation, apoptosis and autophagy, which can be 

observed even prior to fibril deposition4–7. This leads to a restrictive physiology, diastolic 

dysfunction and eventually manifests clinically as heart failure.

Overview of protein folding

Protein or peptide folding is a tightly regulated process. In general, proteins require specific 

three-dimensional conformations in order to be soluble and function correctly in the body. 

The process of protein folding begins after polypeptide chains are synthesized in the 

endoplasmic reticulum of the cell and a rapid sequence of intracellular folding consisting 

of conformational modifications is initiated, requiring the use of chaperones and catalysts 

of folding, to achieve its native structure. In this pathway, conformational intermediates 

become progressively more organized as they merge, resulting in the most stable native 

state. In this native structure, there is a minimum of free energy which results from the 

balance between the internal energy of the protein determined by intramolecular bonds 

and the level of conformational entropy, determined by the level of randomness of the 

polypeptide in solution8.

Proteins must remain folded throughout their lifetimes to continue to perform their 

biological functions and the abundance of each of the thousands of different proteins 

in a cell must be tightly regulated. This state of a balanced proteome, termed protein 

homeostasis or proteostasis, requires an extensive network of competing pathways within 

cells that control the protein synthesis and folding, conformational maintenance and 

degradation of proteins present within and outside the cell9. The proteostasis network 
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serves to ensure that correctly folded proteins are generated at the proper time and 

cellular location and in amounts allowing stoichiometric assembly in the case of oligomeric 

protein complexes. Additionally, it prevents proteins from misfolding and aggregating, and 

removes proteins that are misassembled. Normally, misfolded proteins are retained by the 

endoplasmic reticulum, dislocated to the cytoplasm and degraded by the proteasome10. Loss 

of proteostasis is the underlying cause of disease associated with protein misfolding, such as 

amyloidosis.

Mechanisms of amyloidogenesis.

Folded proteins structures, in most cases, are only marginally stable, meaning that a 

substantial proportion of protein species exist in unfolded states. The exposure to various 

extra-cellular denaturing stimuli causes unfolding of the polypeptide chain, an event which 

is normally followed by the rapid restoration of the native structure. This extra-cellular 

unfolding and refolding process causes the exposure of normally hidden hydrophobic 

residues and the protein may become the target of ubiquitous endopeptidases. Even minor 

proteolytic cleavage can destabilize the protein, promote its denaturation and prevent the 

restoration of the native structure.

Partial unfolding of the native state of the protein to less thermodynamically stable states 

is a required step in amyloidogenesis11. Amyloidogenic and normal protein counterparts 

are synthesized, but cellular quality control appears to be unable to remove misfolded 

proteins and they are secreted from the cell11. Outside the cell, amyloidogenic variants 

reach a state of equilibrium between fully folded and partially folded forms. Any factor that 

disrupts the normal three-dimensional protein structure, such as low pH, oxidation, increased 

temperature, can shift this equilibrium towards the partially folded state. A misfolded protein 

must then reach critical local concentration to trigger fibril formation, in conjunction with 

local factors including glycosaminoglycans and collagen, shear forces, endoproteases and 

metals that modulate aggregation and oligomer formation9, 12, 13.

In both ATTRv and ATTRwt, amyloid aggregation of TTR is preceded by destabilization 

of the native homotetrameric structure into its constituent monomers and dimers with an 

exposed hydrophobic surface, followed by misfolding and structural reorganization into 

amyloid aggregates (Figure 1). Physiologic TTR is a homotetramer, mainly synthesized in 

the liver and the choroid plexus of the brain, circulates in plasma and CSF and serves 

as a carrier of thyroxine and retinol bound to retinol-binding protein14. TTR consists of 

2 weakly bound dimers, between which lie 2 thyroxine (T4) binding sites. It is at these 

sites that the dimers of TTR dissociate and the process of destabilization and unfolding 

occur. In ATTRv, different mutations lead to a kinetically unstable tetrameric protein 

with an increased propensity to dissociate into monomers leading to misfolding15. For 

example, the Val122Ile (p.Val142Ile), variant destabilizes the TTR tetramer by lowering 

the kinetic barrier for tetramer dissociation, resulting in a greater extent and faster rate of 

folded monomer formation that then self assembles into amyloid fibrils in vitro. Despite 

structural instability, mutant TTR tetramers are secreted with the same efficacy as wild type 

if they possess a thermodynamic and kinetic profile to escape the endoplasmic reticulum 

degradation pathway. In ATTRwt, which is associated with increased age, protein oxidative 
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modifications and failures in the proteostatic machinery and repair mechanisms associated 

with aging, contribute to native TTR dissociation and aggregation into fibrils5.

AL amyloidosis is characterized by a clonal expansion of differentiated plasma cells, that 

produce misfolding-prone immunoglobulin free light chains, or a fragment thereof, secreted 

in excess compared to heavy chains14, 16. The two classes of light chains, kappa and 

lambda, each consist of an N-terminal variable Ig domain attached to a C-terminal constant 

Ig domain. While excess free light chain production is observed in plasma cell disorders 

including monoclonal gammopathy of undetermined significance, multiple myeloma and 

Waldenstrom macroglobulinemia, only a fraction of free light chains can form amyloid 

deposits in vivo. Lambda light chains are observed almost twice as commonly as kappa in 

systemic AL amyloidosis17. DNA sequencing studies have shown presence of germline gene 

mutations on the variable lambda region, Vλ6a and Vλ3r, that reduce the thermodynamic 

stability of the protein, have a strong association with the development of amyloidosis 

and account for the propensity of lambda light chains to form amyloid deposits18. 

Amyloidogenic light chains are kinetically unstable and susceptible to endoproteolysis, 

which results in the release of amyloidogenic light chain fragments prone to improper 

aggregation19.

Other less commonly forms of cardiac amyloidosis encountered clinically include 

AA amyloidosis, dialyses associated amyloidosis and isolated atrial amyloidosis. AA 

amyloidosis is associated with auto inflammatory condition such as rheumatoid arthritis, 

inflammatory bowel disease and hidradenitis suppurativa, particularly when the diagnosis 

is delayed. Serum amyloid associated protein (SAA) is elevated and cardiac involvement 

in AA amyloidosis is always preceded by renal involvement. Effective control of the 

underlying inflammatory process can halt disease progression and even reverse organ 

damage.20 β2-microglobulin is the precursor protein for cardiac amyloidosis associated 

with long term dialysis, Cardiac amyloidosis related to β2-microglobulin occurred with 

low-flow dialysis membranes during dialysis of > 9 years in duration. However, newer 

dialysis technologies reduce serum β2-microglobulin levels in chronic dialysis patients and 

appear to reduce the risk of developing this form of systemic amyloidosis.21 Isolated atrial 

amyloidosis (IAA), due to deposits of amyloidosis from atrial natriuretic factor, is extremely 

common with advancing age and often seen on biopsies of the atrium obtained at the time 

of cardiac surgery.22 Distinguishing these forms of amyloidosis from those more commonly 

encountered clinically is essential.

Amyloid fibril structure

Despite originating from different precursor proteins, amyloid deposits share several 

structural properties as observed by electron microscopy. They are composed of rigid, 

non-branching fibrils with an average diameter of 7.5–10nm and a cross-ß-sheet secondary 

structure. Intermolecular main-chain hydrogen bonding between the amide and carbonyl 

groups of the main chain acts as a major stabilizing interaction between protein 

monomers8, 23 that allow formation of the ß-sheet. Both immunoglobulin light chains and 

TTR protein have extensive ß-structure in the normal folded state, but this region has to 

be exposed for intermolecular hydrogen bonding between monomers. Contiguous ß-sheet 
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polypeptide chains constitute a protofilament, which are wound around one another to form 

an amyloid fibril, which frequently have repetitive hydrophobic or polar interactions along 

the fibril axis23. This ultrastructure of the fibril allows the intercalation of Congo red dye, 

conferring the diagnostic property to amyloid of apple-green birefringence under polarized 

light microscopy.

Beside the fibril core proteins, additional components are known to be part of all amyloid 

deposits including components of the extracellular matrix, such as lamin, entactin and 

collagen, and additional proteins. Serum amyloid P-component (SAP), a glycoprotein 

that belongs to the pentraxin family, is calcium dependently bound to amyloid fibril 

independently of the protein of origin24. SAP is highly protected against proteolysis25, 

making amyloid fibrils highly rigid, resistant to thermal and chemical denaturation and 

degradation. Proteoglycans or glycosaminoglycans are also common in amyloid deposits 

and contribute to the carbohydrate composition of amyloid, influencing the conformation of 

the fibril. Their role is quite complex and seem to contribute to both the genesis and the 

structural stabilization of amyloid fibrils. Proteoglycans are proposed to represent the initial 

structural scaffold that facilitates adhesion and orientation of the first nuclei of aggregated 

amyloid. Despite being common component of all amyloid deposits, proteoglycans show a 

degree of chemical and structural heterogeneity, depending on the tissue and may play a role 

in the localization of amyloid deposits in tissues.

Amyloid deposition

Amyloid deposition in target organs occurs by an extremely complicated aggregation 

process. The kinetics of fibril formation has an S-shaped growth curve and a discernable 

lag phase. The duration of each phase of fibril formation is protein specific and defines the 

rate at which amyloid deposition occurs26. First, primary nucleation occurs when soluble 

oligomers form from monomers. The initial nucleation process is driven by specific adhesive 

parts of the amyloid proteins and target organ cells may be transiently involved11. In ATTR, 

two adhesive segments that form the F and H ß-strands in the native TTR structure are 

the principal drivers of protein aggregation. Upon dissociation into monomers, these strands 

become exposed and enable stacking into the steric zipper spines of amyloid fibrils27. 

Circulating monomers can then add to this existing fibril. Secondary nucleation occurs when 

the surface of this existing amyloid aggregate catalyzes the formation of new small soluble 

aggregate and fragmentation occurs when the existing fibrils break apart, increasing the total 

number of fibrils. The process of amyloid deposition can be accelerated by the presence of 

preformed fibrils, or seeds, which can capture and catalyze the conversion of precursors, 

even at low concentrations, into misfolded, toxic and aggregation-prone structures28.

Deposition of amyloid in specific organ tissues likely depends on the concurrence of 

several factors including high local protein concentrations, low pH and the presence of 

fibril seeds. Specific interactions with tissue glycosaminoglycans or cell surface receptors 

may be important29. In AL amyloidosis, it has been hypothesized that organ tropism may 

be a function of the variable region gene polymorphisms, leading to interactions between 

the light chain (or fragment thereof) and tissue constituents such as collagen, lipids and 

glycosaminoglycans19. For example, LV1–44 germ line cells favor deposition in cardiac 
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tissue18. In ATTRv, the specific site of amino acid substitution determines the propensity 

for depositing primarily in the peripheral nervous system or cardiac tissue, leading to 

markedly different phenotypes of disease. Patients with the Val122Ile (p.Val142Ile) TTR 

variant present predominantly with a cardiomyopathy4 whereas other variants such as 

Val30Met (p.Val50Met) are associated with neuropathy. While for certain mutations the 

correlation between the genotype and phenotype is strong, for others clinical features 

can vary significantly. Furthermore, significant variability in clinical presentation is seen 

between patents with the same mutation. Cleavage of the TTR monomer into fragmented 

fibrils may play a role as well in determining the site of deposition as well as the disease 

penetrance30. Full length TTR fibrils are commonly seen in ATTRv caused by the Val30Met 

(p.Val50Met) variant with early disease and a predominant axonal polyneuropathy with rare 

cardiac involvement, whereas those with later onset disease often have fibrils composed 

of a mixture of full-length and truncated TTR. These patients also often have marked 

cardiac involvement at presentation with concomitant peripheral neuropathy. Similarly, in 

patients with ATTRwt, amyloid deposits always include both fragmented and full length 

TTR fibrils31. Indeed, environmental and genetic factors that have not been identified must 

play a role in the pathobiology of TTR amyloidosis.

Mechanisms of cardiac dysfunction (Figure 2)

The deposition of amyloid fibrils results in cellular injury, tissue damage and finally 

organ dysfunction. Although the type of cardiac amyloidosis cannot be distinguished based 

on patterns of deposition, it appears there is a predominance of diffuse, peri-cellular, 

endocardial and arterial or arteriolar deposits in AL amyloidosis and nodular deposits in 

TTR amyloidosis32. In both AL and TTR cardiac amyloidosis, large deposits of amyloid 

in the extracellular space of the myocardium leads to loss of normal tissue architecture 

and function, progressive biventricular wall thickening and stiffness without compensatory 

ventricular dilation, leading to a restrictive myopathy and low cardiac output11. Early 

disease is marked by isolated diastolic dysfunction with normal systolic function but as 

the disease progressive restrictive physiology becomes apparent, atrial infiltration is present 

and frequently causes contractile dysfunction. Insights from non-invasive pressure-volume 

analysis in patients with both wild-type and Val122Ile associated TTR-CA demonstrate a 

complex cascade of events occurring overtime marked by decreasing ventricular capacitance 

and chamber contractility leading to reduced stroke volume, alterations in ventricular­

vascular coupling and progressive pump dysfunction not simply due to impairment in 

diastolic dysfunction but systolic derangements as well33 (Figure 3).

Mechanical displacement of normal parenchymal tissue by amyloid deposits is insufficient 

to fully explain organ dysfunction associated with both AL and TTR amyloidosis (Figure 

2). In addition to the mechanical problems imposed by amyloid fibril deposition, small 

soluble monomers and oligomers are extremely toxic and believed to play a major role 

in cell and tissue toxicity. The direct toxic effect of circulating light chains in AL 

amyloidosis has been postulated to explain discrepancies between myocardial amyloid 

fibril burden, cardiac dysfunction and the more aggressive disease trajectory in those with 

AL compared with TTR cardiac amyloidoses34. Notably, not only amyloid deposition, 

but light chain proteotoxicity exhibits specific organ tropism7. Pre-fibrillar cardiotropic 
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light chains alter cellular redox state in cardiomyocytes, marked by an increase in 

intracellular reactive oxygen species (ROS), increased apoptosis and cause oxidative stress7. 

Oxidant stress imposed by the light chains result in direct impairment of cardiomyocyte 

contractility and relaxation with associated alterations in intracellular calcium handling4, 35. 

The activation of p38 mitogen-activated protein kinase (MAPK) is one of the molecular 

mechanisms responsible for cardiotoxicity by increasing oxidative stress and apoptosis. This 

pathway also mediates type B natriuretic peptide transcription, supporting the association 

between cardiotoxic light chain effects with induced MAPK signaling and elevated brain 

natriuretic peptide (BNP) levels36. Indeed, the degree of circulating light chain abnormality 

is clinically prognostic in patients with AL amyloidosis37, and correlates with cardiac 

biomarker elevations. Furthermore, reduction in circulating amyloidogenic free light chain 

concentrations by chemotherapy translates into reductions in BNP, despite unaltered amyloid 

deposition in the myocardium38.

In TTR amyloidosis, an accumulating body of evidence suggests that tissue dysfunction 

precedes TTR fibril deposition, suggesting as well that circulating pre-fibrillar proteins 

cause toxicity. In vitro, TTR monomers and oligomeric intermediates smaller than 100kDa, 

but not large aggregates or amyloid fibrils, induce cytotoxicity through interactions with 

membrane proteins and cholesterol7. Apoptotic mechanisms are activated through cleavage 

of caspase 3/7 and superoxide formation4, 6. However, the relevance of these short-term in 

vitro findings to disease that manifest clinically over months to years remains unclear6.

Presentation and diagnostic evaluation

Systemic manifestations of TTR deposition, such as carpal tunnel syndrome, lumbar spine 

stenosis or biceps tendon rupture, may precede cardiac diagnosis of ATTR-CA by several 

years, survival after which is approximately 2–5 years without treatment. In contrast, AL­

CA is a more rapidly progressing disease, with a median survival of 6 months from the 

onset of heart failure if untreated. Although a detailed description of the presentation and 

diagnostic evaluation of cardiac amyloidosis is outside of the scope of this review, table 

2 outlines the cardinal manifestations, approach to diagnostic testing and characteristic 

findings for both AL- and ATTR-CA.

Therapeutic targets

Emerging from the basic molecular mechanisms of the genesis of amyloid fibrils in 

the myocardium that underlie the development of cardiac amyloidosis, there are several 

therapeutic strategies that have either been shown to be effective or are actively being 

explored in human clinical trials. These approaches broadly include one of four strategies 

including:

1. knocking down production of the precursor protein with either gene silencing 

techniques for TTR that leverage small interfering RNA or anti-sense 

oligonucleotides (both of which include approved compounds for ATTRv disease 

with or without a concomitant cardiomyopathy) and CRISPR based approaches; 

for AL amyloidosis there is a large and growing armamentarium of anti-plasma 

cell therapies.
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2. Stabilization of the precursor protein in order to maintain its normal 

conformational structure which has led to the development of tafamidis for 

TTR cardiac amyloidosis39 and the investigation of other TTR stabilizers (e.g. 

AG10), as well the identification of small molecules that kinetically stabilize 

light chains.40

3. Degradation/Disruption of amyloid fibrils with use of monoclonal antibodies 

targeted at particular epitopes on misfolded and/or aggregated proteins that 

either induce macrophage medicated dissolution or disruption of amyloid 

formation41–43

4. Anti-seeding therapies that involve peptides designed as inhibitors to cap fibril 

growth.44, 45

Effective and Emerging Therapies Based on Biologic Mechanisms

Although ATTR and AL amyloidosis both result in the deposition of amyloid fibrils and 

damage to the involved organs, treatment regimens are distinct. Therapies are generally 

more effective if administered before significant cardiac dysfunction has ensued (Figure 4). 

The following sections will describe:

1. Reducing the precursor protein or stabilization of TTR amyloid in cardiac 

amyloidosis.

2. Anti-plasma cell therapies for the treatment of AL amyloidosis.

3. Agents targeting the degradation and/or extraction of TTR or AL amyloid fibrils.

4. Emerging therapies for ATTR and AL amyloidosis.

Knocking Down or Reducing Precursor Production (Table 3).

There are 2 classes of gene silencer therapy for TTR amyloidosis currently commercially 

available or in late phase clinical trials. The first, small interfering RNA (siRNA) molecules 

and the second, antisense oligonucleotides (ASOs). These molecules knockdown or reduce 

TTR production, but with slightly different mechanisms. Vitamin A supplementation must 

be provided in those receiving silencer therapy given that a major function of TTR is to 

transport retinol, the major circulating form of vitamin A, via retinol binding protein 4. 

Thyroxine supplementation is not necessary given the fact that the majority (~85%) of 

thyroxine is bound to thyroxine binding globulin or albumin.

First Generation Therapies: Inotersen (Tegsedi, Akcea Therapeutics, Inc), an ASO, is 

a 2’-O-methoxyethyl-modified antisense oligonucleotide inhibitor of TTR production in the 

liver. It is currently approved in the US for treatment of stage 1 or 2 polyneuropathy due 

to ATTRv. ASOs46 are single stranded, amphipathic DNA sequences which have a high 

binding affinity for proteins, thus enhancing distribution in the body. ASOs are taken up into 

the liver by binding with hepatocyte surface proteins, mainly clathrin- or caveolin-mediated 

uptake46, and subsequently transported to the nucleus by chaperone proteins. It is here in 

the nucleus that the ASO binds to the target mRNA protein and via the endonuclease, 

RNase H2, initiates mRNA degradation. The 2’-O-methoxyethyl modification provides 
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resistance against endogenous degradation of the ASO. The NEURO-TTR trial randomized 

172 patients with familial amyloid polyneuropathy with or without ATTR-CA to inotersen 

300mg delivered subcutaneously weekly or placebo for 64 weeks. Subjects with New York 

Heart Association (NYHA) class III or greater were excluded from participation. During 

the NEURO-TTR trial47, reduction in serum TTR reached steady-state levels by 13 weeks, 

with a mean reduction in serum TTR of 74% and median of 79%. Serious adverse events 

included glomerulonephritis (3%) and thrombocytopenia, with 3 patients having a platelet 

count < 25,000 (3%) and one death from intracranial hemorrhage (platelet count <10,000). 

These adverse effects have led to FDA approval of inotersen with a Risk Evaluation 

and Mitigation (REMS) Program that requires weekly monitoring of platelet counts and 

biweekly assessments of eGFR, urinalysis and urine creatinine protein ratio. Inotersen was 

being investigated in phase II programs for ATTR-CA, however, given the aforementioned 

side effects, toxicity profile and the development of longer acting ASOs, it is no longer 

being developed for use in ATTR-CA.

Patisiran (Onpattro, Alnylam), a siRNA which has been approved for ATTR-FAP in the 

US, targets the 3’ untranslated region of the TTR mRNA. siRNA are double stranded, 

hydrophilic molecules containing a sense and an antisense strand and prone to rapid renal 

excretion48. As such, patisiran is formulated as a lipid nanoparticle to target hepatocyte 

uptake. Once in the cytoplasm, the sense strand is removed by Ago2, an intracellular RNA 

endonuclease, leaving the pharmacologically active antisense strand-Ago2 complex to bind 

to the target mRNA. This forms the RNA-induced silencing complex (RISC) and facilitates 

subsequent degradation of the target mRNA. In a phase II study of patients with FAP, serum 

TTR levels were reduced by over 80% after the second dose of patisiran, when given at a 

dose of 0.3mg/kg every three weeks49. The APOLLO study, a phase 3 study, randomized 

225 patients with ATTR-FAP to patisiran vs placebo, excluding NYHA class III and IV 

patients50. In the cardiac subpopulation (n=126) defined by a left ventricular wall thickness 

≥13 mm at baseline and no history of hypertension or aortic valve disease, those who 

were randomized to patisiran demonstrated a reduction in mean LV wall thickness (~1mm), 

global longitudinal strain by −1.4% and N terminal pro-BNP (NT-proBNP) levels reduced 

by ~55%. A post-hoc analysis showed a reduction of 46% in cardiac hospitalizations and 

all-cause mortality. The APOLLO-B trial (NCT 03997383) is a phase III study of patisiran 

in 300 patients with ATTR-CA, with a 1:1 randomization to placebo. Subjects must be 

pre-medicated with antihistamines (H1 and H2), glucocorticoids and acetaminophen given 

the pro-inflammatory nature of the lipid nanoparticle-siRNA complex, which predominately 

manifests as infusion reactions. The study duration of APOLLO-B involves a 12-month 

double bind period followed by an open-label extension where all patients will receive 

treatment with patisiran. The primary endpoint will be change from baseline at month 12 in 

the 6-minute walk test.

Second Generation Therapies: Vutrisiran (Alnylam) is an siRNA which is conjugated 

to a N-acetyl galactosamine (GalNAc), specifically targeting hepatocytes. siRNAs that 

are conjugated to GalNAc enter cells via interaction with the GalNAc moiety on 

the asialoglycoprotein receptor (ASGPR) on the hepatocyte. ASGPR is present on the 

hepatocytes at a high concentration and thus facilitates rapid uptake. Vutrisiran has a 
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greater potency and longer duration of action than other knockdown therapies currently 

in clinical trial and as such can be administered at a lower dose (25 mg every 3 months), 

with lower injection volume and longer dosing intervals. Furthermore, as a subcutaneous 

injection it has greater ease of administration than IV infusions and no premedications are 

required given the absence of pro-inflammatory lipid nanoparticles in the formulation. In 

a phase 1 study (NCT02797847), a single dose of 25mg of vutrisiran resulted in a mean 

maximum TTR reduction of 83% by week 6, which was sustained for 90 days51, enabling 

quarterly administration. HELIOS-A was a phase III study which enrolled 164 patients 

with hereditary amyloidosis polyneuropathy with or without ATTR-CA, excluding NYHA 

class III-IV heart failure (NCT03759379). Patients received either vutrisiran or the reference 

comparator, patisiran, during the treatment period in a 3:1 randomization, after which all 

patients will be switched to vutrisiran during the treatment extension period. Vutrisiran 

met the primary endpoint, change in modified neurologic impairment score (mNIS+7) from 

baseline at month 9 as compared to historical placebo data from the APOLLO study in 

addition to both secondary endpoints (quality of life assessed by the Norfolk Quality of 

Life Questionnaire-Diabetic Neuropathy and gait speed assessed by the 10-meter walk 

test). In addition, vutrisiran showed improvement compared to placebo in the exploratory 

cardiac endpoint of change from baseline in NT-proBNP. HELIOS-B is a phase III study of 

approximately 600 ATTR-CA patients, randomized 1:1 to receive 25mg of vutrisiran every 

3 months or placebo (NCT04153149). There will be a cap of 30% on those concurrently 

taking commercial tafamidis who are enrolled in the trial. The trial will run for 30–36 

months with the primary outcome being a composite of all-cause mortality and recurrent CV 

hospitalizations.

AKCEA-TTR-LRx (ION 682884, Akcea Therapeutics, Inc) is a ligand (GalNAc linked 

to the 5’ end) conjugated ASO (LICA) in which the ASO portion shares the same base 

sequence as inotersen. Thus, when the GalNAc is cleaved, ION-682884 has the same 

mechanism of action as inotersen, however the GalNAc conjugated drug has a much greater 

potency (approximately 51-fold). This allows for lower dose of drug to be administered to 

achieve a similar therapeutic effect. The ION-682884-CS1 (NCT03728634) study, showed 

a greater than 85% mean reduction in serum TTR levels with a monthly 45mg dose52. 

Furthermore, this dose (and interval of administration) has reportedly occurred without the 

problematic adverse events seen with inotersen, thought due to the 27-fold lower exposure 

to active drug seen with ION-682884. Cardio-TTRansform (NCT04136171) is a phase 3 

clinical trial which will enroll approximately 700 patients with ATTR-CA, randomized 1:1 

to receive 45mg of ION-682884 or placebo subcutaneously once every 4 weeks53. All 

patients in this study will be allowed to receive commercial tafamidis concurrently. The 

treatment period will be 120 weeks with frequent clinical monitoring. The primary endpoint 

will be a composite of CV mortality and frequency of CV clinical events comparing the 2 

study arms.

CRISPR /Cas9 stands for clustered regularly interspaced short palindromic repeats and 

CRISPR-associated protein 9 that is a genome editing approach which is being leveraged 

to knock down the production of hepatic transthyretin. Formulations in phase 1 human 

trials include NTLA-2001 that is composed of human single-guide ribonucleic acid and 

a messenger ribonucleic acid sequence encoding Cas9 protein encapsulated in a lipid 
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nanoparticle (LNP), that facilitates delivery to hepatocytes. The drug is a highly specific 

gene editing LNP that disrupts expression of human serum TTR expression. The first 

in human study is designed to investigate the safety and tolerability of NTLA-2001 at 

doses that are expected to meaningfully decrease the level of the circulating TTR protein. 

Animal data demonstrate that with a single administration, significant editing of the mouse 

transthyretin (TTR) gene in the liver was enabled with a >97% reduction in serum protein 

levels that persisted for at least 12 months54.

Stabilizing the transthyretin tetramer (Table 3)

Diflunisal is a non-steroidal anti-inflammatory agent which binds to the T4 binding sites 

on TTR, though with lower affinity than tafamidis. When compared to 3 other kinetic 

stabilizing agents, diflunisal was found to be the least potent. Dissociation of TTR was 

shown to be limited to 10% of normal with concentrations of 5.7 μM AG10 (800mg 

bid), 10.3 μM tolcapone (3 × 100mg over 12hours), 12.0 μM tafamidis (80mg daily) and 

188 μM diflunisal (250mg bid)55. Diflunisal is associated with adverse effects such as 

renal dysfunction, gastrointestinal bleeding, hypertension and fluid retention, which can 

exacerbate heart failure in susceptible individuals. However, when used in the treatment of 

ATTR-CA, diflunisal is prescribed at a dose of 250mg orally twice daily, which is below 

the dose recommended for anti-inflammatory activity and appears to be well tolerated56. 

Furthermore, in subjects who receive this therapy, prescribers should ensure an eGFR > 45 

ml/min, < 1 mg/kg of furosemide (or equivalent bioavailable loop diuretic) daily without a 

recent heart failure decompensation or history of gastrointestinal bleeding. Lohrmann et al 

assessed the effect of diflunisal therapy on cardiac structure and function at 1 year in 81 

patients with ATTR-CA57. They described a significant increase in serum TTR levels (33 vs 

19 mg/dL, p=0.01), and improvement in both left atrial volume index (−1.4 vs +4.6 ml/m2) 

and cardiac troponin I (−0.01 vs +0.03 ng/ml, p=0.01) in treated compared with untreated 

groups. In addition, the ATTRwt subgroup were found to have stable global longitudinal 

strain on echocardiogram (+0.1% vs +1.2%, p=0.03 for treated vs untreated, respectively). 

As such, diflunisal has been used in an off-label manner in those without significant renal 

or hematologic comorbidities, and also in allele carriers of mutations who are at high risk of 

developing disease, with frequent monitoring of renal function and heart failure symptoms.

Tafamidis (Vyndamax/Vyndaqel, Pfizer Inc, New York, NY, USA)—In those of 

Portuguese descent the most common TTR variant is Val30Met (p.Val50Met), which 

leads to early onset familial amyloid polyneuropathy (FAP), often in the 4th decade of 

life. Val30Met (p.Val50Met) has a high clinical penetrance, though some carriers develop 

mild or no manifestations of disease. Coehlo and colleagues studied these individuals 

who were allele carriers of the Val30Met (p.Val50Met) variant but did not develop 

evidence of disease. They found that these individuals were compound heterozygotes for 

Val30Met/Thr119Met58, which led to the hypothesis that a stabilizing variant (Thr119Met 

[p.Thr139Met]) can prevent dissociation of the TTR tetramer into monomers in the presence 

of a destabilizing variant and highly pathogenic Val30Met mutation. In seminal work, Kelly 

et al, showed that Thr119Met enhances stability of the TTR protein by slowing the rate 

of dissociation of the dimers39. It was based on this discovery that the TTR stabilizer, 

tafamidis was developed. Tafamidis is a benzoxazole derivative which lacks nonsteroidal 
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anti-inflammatory activity and selectively binds to TTR in the blood, at the T4 binding site. 

Bulawa et al, showed that tafamidis stabilizes wild type TTR and inhibits amyloidogenesis 

in a dose-dependent manner, with similar effects on both Val30Met and Val122Ile TTR 

variants. In a randomized clinical trial of 128 patients with Val30Met familial amyloid 

polyneuropathy (Fx-005), tafamidis 20mg daily delayed neuropathic progression and 

preserved quality of life compared with placebo in a predefined secondary analysis, after 

18 months of treatment59. It was approved by the European Medicines Agency in 2011 for 

patients with stage 1 symptomatic polyneuropathy. In the ATTR-ACT trial60, 441 patients 

with ATTR-CA, NYHA class I-III HF were randomized to receive tafamidis 80mg, 20mg 

or placebo daily for 30 months. Tafamidis was associated with a lower all-cause mortality 

vs placebo (29.5% vs 42.9%) and a 32% lower risk of cardiovascular hospitalizations in 

those with NYHA class I or II HF. However, subjects with NYHA class III symptoms 

had higher rates of cardiovascular related hospitalization with tafamidis therapy compared 

to placebo, highlighting the importance of early diagnosis and treatment. Furthermore, 

assessment of functional capacity and quality of life parameters showed a lower rate of 

decline in the distance covered on 6-minute walk test and a lower rate of decline in the 

Kansas City Cardiomyopathy Questionnaire-Overall Summary score. It was based on this 

study that tafamidis became the first US Food and Drug Administration (FDA) approved 

TTR stabilizer to treat ATTR-CA in the US, in May 2019. It is formulated as tafamidis 

meglumine (20mg capsules, dose 80mg daily) and tafamidis free salt (61mg capsule daily), 

the latter of which was formulated for patient convenience as a single dose capsule. These 

formulations are bioequivalent, though are not substitutable on a per mg basis61.

AG10 (Eidos Therapeutics, Inc., San Francisco, CA, USA)—AG10 (Acoramidis) is 

a small molecule stabilizer with oral bioavailability which selectively binds to and stabilizes 

TTR. It mimics the super stabilizing properties of the Thr119Met variant62, which are 

thought to be due to the formation of hydrogen bonds between neighboring serine residues 

at position 117 of each monomer63. AG10 has been shown to be a potent and selective 

stabilizer of TTR, exceeding the efficacy of tafamidis in stabilizing WT and variant TTR in 

serum64. In the phase 2 AG10–201 study, there was near complete stabilization (>90%) of 

TTR at peak and trough serum levels, defined by percent occupancy of T4 binding site as 

measured by Fluorescent Probe Exclusion65. TTR stabilization was demonstrated by the fact 

that at 28 days after initiation of therapy, TTR levels rose on average by 51% in those taking 

800mg twice daily of AG10 vs placebo. The Eidos AG10 study (ATTRIBUTE-CM) is a 

phase 3 trial, which has planned to enroll 510 subjects with ATTR-CA in a 2:1 ratio to AG10 

800mg or placebo twice daily for 30 months (NCT03860935). The co-primary endpoints 

are change in distance walked on 6-minute walk test at 12 months (p<0.01) and all-cause 

mortality and frequency of cardiovascular related hospitalizations over a 30-month period 

(p<0.04). The 12-month data are expected towards the end of 2021.

Tolcapone—Tolcapone is a catechol-O-methyltransferase (COMT) inhibitor typically used 

for the treatment of Parkinson’s disease, though also observed to have TTR stabilizing 

properties. In vitro, it was found that tolcapone has a high affinity for the T4 binding site, 

displacing radiolabelled T4 from TTR with 4 times the efficiency of tafamidis and stabilizing 

the TTR dimer-dimer interface. Furthermore, tolcapone exhibits stronger TTR aggregation 
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inhibitory activity for both wild-type and Val122Ile than tafamidis66 demonstrating dose­

dependent kinetic stabilization of the TTR tetramer. When studied ex-vivo, it was shown 

to bind to and kinetically stabilize tetrameric TTR in human plasma from subjects with 

wild-type TTR and carriers of Val30Met-TTR. However, tolcapone has a short half-life and 

a FDA black box warning of potentially fatal, acute liver failure.

With the advent of effective therapies for cardiac amyloidosis and the potential role of 

combination therapy, providers may soon be in the enviable position of choosing among 

therapies. The cost effectiveness of emerging therapies has been questioned67, 68, especially 

for what may not be a rare disease (e.g. ATTRwt). Unfortunately, cost of such therapies 

could pose a significant obstacle to adoption and increase health disparities.

Anti-Plasma Cell Therapy (Table 4)

Therapies for AL amyloidosis have evolved considerably over the past decade. Autologous 

stem cell transplant (ASCT) has proven to have the best long-term outcomes, however 

only a fraction of patients with cardiac involvement are eligible and with a host of new, 

novel highly active therapies, the treatment landscape is rapidly evolving. The Mayo group 

reported that ~25% of patients are eligible for ASCT69 and only 3.4% (23 of 668 patients) 

of patients with overt heart failure and AL amyloidosis treated at their center over a 20-year 

period underwent heart transplant70. Cardiac damage in AL amyloidosis occurs as a result of 

light chain toxicity, and so the goal is rapid and complete normalization of the involved light 

chain. Indeed, the advent of effective anti-plasma cell therapies with limited toxicity has led 

to an evolution in the definition of a deep hematologic response from a complete response 

to modified, stringent and absolute involved free light chain response, the latter defined as 

a difference in involved and uninvolved light chain of < 10 mg/L71 and an involved free 

light chain of < 20 mg/L72. In those ineligible for ASCT, medical therapy is pursued with 

the goal of attaining complete remission (CR), defined as normalization of serum kappa and 

lambda free light chains and free light chain (FLC) ratio. Those who do not achieve CR may 

be classified as having very good partial response (VGPR), defined as a difference in FLC 

< 40mg/dl, partial response (PR, decrease in difference in FLC > 50%) or no response73. 

Cardiac involvement of AL amyloidosis predicts a poor prognosis, which is outlined in 

the staging system created by the Mayo group. Patients are categorized as stage I to IV 

based on TnT ≥ 0.025 ng/ml (high sensitivity TnT ≥ 40ng/L), NT-proBNP ≥ 1800pg/ml 

and difference in FLC ≥ 18mg/dL, with stage I defined as all below threshold to stage IV 

being all three elevated37. Typically, patients with a serum NT-proBNP ≥ 8,500 pg/ml or 

TnT ≥ 0.05 ng/ml (high sensitivity TnT ≥ 75 ng/mL) are considered ineligible for ASCT. 

Although patients may become transplant eligible over time, the benefit of ASCT compared 

to targeted anti-plasma cell therapy is unknown. Cardiac response is defined as a decrease in 

NT-proBNP by > 30% and 300 ng/L (if baseline NT-proBNP > 650ng/L)73 and is associated 

with a survival benefit in the setting of anti-plasma cell therapy.

Alkylating Agents:

Melphalan, cyclophosphamide and bendamustine belong to a group of chemotherapeutic 

agents called the nitrogen mustard alkylating agents. Melphalan exerts its effects via 
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alteration of the DNA nucleotide guanine, and results in the formation of inter- and 

intra-strand DNA crosslinks74 which interfere with DNA replication and transcription. The 

cytotoxic effects of melphalan are related to cellular concentration and duration of cellular 

exposure, with some studies linking higher doses of melphalan to excess toxicity in older 

patients and those with renal impairment. As such, a lower dose of melphalan (~140 mg/m2) 

is often used in those over 65 years, and in patients with renal insufficiency, reduced cardiac 

function or lower performance status without a detrimental effect on long-term outcomes75. 

Oral melphalan is typically combined with dexamethasone in the treatment of patients who 

are ineligible for ASCT or as pre-ASCT conditioning treatment. Palladini et al evaluated 

259 patients with AL amyloidosis treated with oral melphalan and dexamethasone, over 

50% of whom had advanced cardiac disease76. In those with severe cardiac involvement, 

the dose of dexamethasone was reduced by 50% given the propensity for fluid retention 

and exacerbation of heart failure. Hematologic response rate in the full dose group was 

76% vs 51% in the attenuated steroid dose group with a complete response occurring 

in 31% and 12% respectively. Median survival was also much lower in the attenuated 

dose group, 20 months as compared to 7.4 years in the full dose group. Patients with 

severe cardiac involvement are at high risk of early death after the initiation of treatment, 

have a short overall median survival of < 18 months and poorer response to therapy77. 

Cyclophosphamide acts in a similar manner to melphalan, though exerts its effect via 

the active metabolite, phosphoramide mustard, at the guanine N-7 position leading to cell 

apoptosis78. It is typically used in combination with other therapies such as proteasome 

inhibitors and CD38 monoclonal antibodies and is associated with side effects including 

hair loss and hemorrhagic cystitis. Bendamustine was investigated in a phase 2 trial of 31 

patients with relapsed AL amyloidosis in combination with dexamethasone, in which 57% 

achieved a partial response or better (NCT01222260)79. The overall organ response was 

29% with a median overall survival of 18.2 months. Bendamustine is considered a third line 

or salvage therapy.

Steroids:

Glucocorticoids (prednisone and dexamethasone) bind to cytosolic glucocorticoid receptors 

and translocate to the nucleus where they modulate gene expression resulting in 

anti-inflammatory and immunosuppressive activity80. Dexamethasone treatment induces 

upregulation of pro-apoptotic genes, down-regulation of anti-apoptotic genes and activation 

of intrinsic apoptotic pathways80. It has a potency 6-fold that of prednisone, however, 

with greater efficacy comes greater toxicity, particularly in patients with advanced cardiac 

involvement. In a study by Dhopaker et al, 28% of patients experienced volume overload 

related to treatment with 40mg daily of dexamethasone (480mg per cycle)81. Treatment 

related mortality occurred in 6 patients, 4 of whom had advanced cardiac amyloidosis 

and experienced sudden death thought due to a cardiac event. Other severe adverse effects 

include thrombosis, gastrointestinal hemorrhage, infections and psychosis especially with 

high dose therapy and as such a low-dose strategy is often employed in older patients 

and those with heart failure76. In the recent era, due to their synergistic effect with 

immunomodulatory agents and proteasome inhibitors, glucocorticoids are used as part of 

a multidrug regimen to improve response rates and limit toxicity (see below).
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Immunomodulatory agents

Originally marketed as a tranquilizer and antiemetic, thalidomide and its 

derivatives (lenalidomide and pomalidomide) have antiproliferative, anti-angiogenic and 

immunomodulatory effects. Their anti-angiogenic and antiproliferative properties are 

mediated via inhibition of interleukin-6 (IL-6) expression, a growth factor for the 

proliferation of myeloma cells. They activate apoptotic pathways through direct activation 

of caspase-8 mediated cell death. Within the mitochondria, they activate c-jun terminal 

kinase (JNK) which through a series of events result in the release of pro-apoptotic 

proteins into the cytosol82. In addition, by activating T cells, they increase expression of 

IL-2 and interferon-gamma (IFN-γ) genes, augmenting natural killer (NK) cell-dependent 

cytotoxicity82. Lenalidomide has a greater potency than thalidomide, being 50 to 2,000 

times more potent at stimulating T-cell proliferation and 50 to 100 times more potent 

in augmenting IL-2 and IFN-γ production82. Dexamethasone activates caspase-9, a pro­

apoptotic molecule and is associated with the release of second mitochondrial-derived 

activator of caspase (Smac) from the mitochondria into the cytosol, a regulator of the activity 

of molecules that affect apoptosis82. As such, it augments the anti-proliferative effects 

of lenalidomide. However, notable side-effects include neutropenia, thrombocytopenia, 

elevations in liver function tests and thromboembolism and lenalidomide tends to raise NT­

proBNP in AL amyloidosis patients83. With the addition of melphalan to lenalidomide and 

dexamethasone, overall hematologic response rates of ~ 58% are observed84, with a higher 

dose of lenalidomide associated with a higher rate of CR, though limited by tolerability 

at doses >15mg84. The addition of cyclophosphamide in place of melphalan shows similar 

overall hematologic response rates (~60%), though again has a high burden of toxicity 

and poor outcomes in those with advanced cardiac disease85. Overall hematologic response 

rates with pomalidomide/dexamethasone are similar to those achieved with lenalidomide 

(40–60%)85, 86. Unfortunately, in those with advanced cardiac amyloidosis at the time of 

treatment initiation, outcomes of these treatment combinations remain poor.

Proteasome Inhibitors:

The ubiquitin-proteasome system (UPS) functions as a pathway for intracellular regulation 

of protein degradation, thus playing a role in maintaining protein homeostasis87. The UPS 

involves a series of enzymes which tag the protein with a polyubiquitin chain. The 26S 

proteasome comprises a 20S core flanked by two 19S caps. The 20S core contains subunits 

which have proteolytic activity, including caspase-like, trypsin-like and chymotrypsin-like 

activity. The proteasome recognizes and binds the tagged protein and subsequently 

hydrolyzes it into short polypeptides in the 20S core. Proteasome inhibitors bind to the 

proteasome binding pocket, thus rendering it inactive87 which results in a multitude of 

downstream events, including accumulation of ubiquitin tagged proteins, inhibition of NF-

κB signaling, downregulation of growth factor receptors, suppression of adhesion molecule 

expression and inhibition of angiogenesis, all of which lead to apoptosis88. Bortezomib 

(Velcade) is a first-generation reversible boronic acid inhibitor of the chymotrypsin-like 

activity to the proteasome. Bortezomib, in conjunction with cyclophosphamide and 

dexamethasone (CyBorD), has been shown to induce a rapid reduction in light chains in 

patients with AL amyloidosis and appears to be relatively well tolerated in those with 

cardiac involvement, however, can cause significant peripheral neuropathic side effects. 
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Furthermore, those with translocation t(11;14) have inferior hematologic response to 

bortezomib89. A study of 230 patients from the National Amyloidosis Center (London, 

England) and the Amyloidosis Research and Treatment Center (Pavia, Italy) of newly 

diagnosed patients with AL amyloidosis reported an overall hematologic response rate of 

60% with a cardiac response of 17%90. Advanced cardiac stage IIIb patients (Mayo 2004 

criteria91) (NT-proBNP > 8500ng/L) had a lower overall response of 42% and poorer 

survival (median survival 7 months), than those with stage II or IIIa disease (overall 

hematologic response 64% and 69%, respectively), though still showed a survival benefit in 

those who achieved a hematologic response compared to those who did not (median survival 

26 months vs 6 months, respectively)90. In a retrospective study of bortezomib/melphalan/

dexamethasone (BMDex) vs melphalan/dexamethasone (MDex), the former induced higher 

hematologic response (69 vs 51%) and CR (42 vs 19%) the difference in response between 

groups being most notable in those who could not tolerate full-dose dexamethasone92. The 

addition of bortezomib in patients with NYHA class III or IV HF and/or NT-proBNP 

> 8500ng/L did not improve survival. Second generation proteasome inhibitors include 

carfilzomib, ixazomib, marizomib and oprozomib. Carfilzomib (Kyprolis) is an irreversible 

tetrapeptide epoxyketone which has greater inhibitory activity than bortezomib and has 

shown activity in patients resistant to bortezomib93. In a phase 1 dose-escalation study 

of carfilzomib in patients with previously treated systemic AL amyloidosis however, 

cardiac events were common42. Three of 12 patients had a cardiac event: 1 with cardiac 

arrest due to ventricular tachycardia, 1 developed a restrictive cardiomyopathy (amyloid 

negative on biopsy) and 1 had a decline in LV function, all possibly related to carfilzomib 

therapy and highlighting the need for close cardiac monitoring if this therapy is utilized. 

However, in those for whom bortezomib is contraindicated due to peripheral neuropathy, 

carfilzomib may be effective in appropriately selected candidates without severe cardiac 

involvement94. Ixazomib (Ninlaro) is a reversible agent which is hydrolyzed to its active 

form in aqueous solution and has comparable inhibitory activity to bortezomib93. It binds 

to the proteasome beta-5 site to inhibit the chymotrypsin-like activity. In 27 patients with 

relapsed/refractory AL amyloidosis ixazomib showed encouraging hematologic (52%) and 

organ (56%) response rates with a 45% cardiac response rate (5 of 11 patients)95. It is 

being investigated in a phase 1/2 study to assess safety and hematologic response rate 

in combination with cyclophosphamide and dexamethasone (NCT03236792). Patients with 

NYHA class III or IV HF or NT-proBNP > 8500ng/L are excluded. TOURMALINE-AL1 

is a phase 3 trial investigating the use of ixazomib with dexamethasone vs physician’s 

choice (NCT01659658), results of which showed no significant difference in hematologic 

overall response rate96. Nevertheless, CR was more frequent with ixazomib (26 vs 18%), 

and treatment with ixazomib was associated with a significantly longer progression-free 

survival. Furthermore, the patients who received ixazomib had a higher rate of cardiac and 

renal responses.

Daratumumab:

CD38 is a glycoprotein expressed on a variety of cell types, including normal myeloid and 

lymphoid cells, but is also highly overexpressed on neoplastic monoclonal plasma cells97. 

CD38 is involved in cell signaling and regulation of cytoplasmic calcium flux playing a role 

in activation, survival and growth of lymphoid and myeloid cells. Daratumumab (Darzalex) 
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is a human immunoglobulin G1 kappa (IgG1κ) monoclonal antibody against CD38 antigen 

which leads to cell death via multiple mechanisms including complement mediated and 

antibody dependent cytotoxicity and apoptosis98. It has been shown to be highly effective 

in and is approved for the treatment of multiple myeloma99, which led to investigation of 

its use in AL amyloidosis. It has been shown to be effective in the treatment of patients 

with relapse or progression of AL amyloidosis, resulting in a 76% hematologic response 

rate and 36% CR rate with a median time to response of 1 month100. The speed with which 

daratumumab can achieve normalization of light chain levels was highlighted in a report 

by Hossein et al101. Two patients with advanced Mayo cardiac stage (stage III and IV) 

were treated with daratumumab monotherapy and achieved a normal light chain level within 

one cycle of therapy. ANDROMEDA investigated the safety and efficacy of daratumumab 

plus CyBorD compared with CyBorD alone in patients with new diagnosed AL amyloidosis 

(NCT03201965). ANDROMEDA enrolled 388 patients, randomized to CyBorD alone or 

with daratumumab (1:1). More than one-half of patients assigned to daratumumab achieved 

a complete hematological response (53%) compared with only 18% of patients assigned to 

CyBorD (odds ratio [OR] = 5.1; p<0.0001). The 6-month cardiac response rate was 42% for 

the daratumumab arm compared with 22% for CyBorD alone (p=0.0029)102. In comparison, 

CR rates in patients receiving CyBorD90, melphalan with dexamethasone76 or HDM with 

ASCT103 have been reported as 23%, 19% and up to 48%, respectively. Isatuximab acts 

by inducing internalization of CD38104. Daratumumab was approved by the FDA in 

combination with CyBorD for newly diagnosed light chain amyloidosis. A phase 2 study of 

isatuximab in patients with relapsed or refractory AL amyloidosis with organ involvement is 

underway (NCT03499808), however those with NYHA class IV symptoms or EF < 35% are 

excluded from participation. Elotuzumab is an IgG1κ monoclonal antibody against signaling 

lymphocytic activation molecule F7 (SLAMF7) which is used in the treatment of multiple 

myeloma combined with lenalidomide and dexamethasone. The mechanism of action 

in multiple myeloma cells appears to be antibody-dependent, cell-mediated cytotoxicity 

through recruitment and activation of NK cells105. Elotuzumab mediated cell death requires 

the presence of NK cells since binding to SLAMF7 marks the myeloma cells for recognition 

by NK cells and also direct binding to SLAMF7 on NK cells themselves causes direct 

activation and enhanced cytotoxicity106. Elotuzumab in conjunction with lenalidomide and 

dexamethasone was successful in inducing hematologic and renal response in a patient with 

relapsed/refractory multiple myeloma with AL amyloidosis despite two stem cell transplants 

and numerous combinations of chemotherapeutic agents107. It is currently being studied 

in a phase 2 trial in conjunction with lenalidomide and dexamethasone with or without 

cyclophosphamide in patients with relapsed AL amyloidosis (NCT03252600).

Venetoclax

Translocation t(11;14) is the most common cytogenic aberration in AL amyloidosis 

occurring in up to 60% of patients and confers a poor response to bortezomib89. Patients 

with t(11:14) overexpress B-cell lymphoma 2 (BCL-2), a protein involved in programmed 

cell death regulation108. BCL-2 mediates suppression of the proapoptotic pathway molecules 

BAX and BAK108. Venetoclax, an orally bioavailable agent, is an inhibitor of BCL-2 

and thus promotes cell death. It has been shown to be effective in patients with multiple 

myeloma with translocation t(11;14)109. A phase 1 study (NCT03000660) investigating 
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venetoclax and dexamethasone in relapsed/refractory AL amyloidosis was stopped given 

the FDA concerns that emerged from the BELLINI clinical trial (NCT02755597, Study 

M14–031) evaluating venetoclax with bortezomib in patients with multiple myeloma in 

which there was an increased risk of death for patients receiving venetoclax as compared 

to the control group. However, after subgroup analysis, the BELLINI study has reopened 

for patients with t(11;14). Similarly, it is expected that the study of venetoclax in AL 

amyloidosis will reopen for those with t(11;14).

Amyloid Degradation/Extraction:

Doxycycline (Table 3) is a tetracycline antibiotic which binds to the bacterial ribosome 

and inhibits protein synthesis. However, it is the ability to inhibit matrix metalloproteinase 

(MMP) which is thought to be the basis of its anti-amyloidogenic activity110. Levels of 

MMP are elevated in AL accompanied with marked diastolic dysfunction when compared to 

little or no elevation in TTR amyloidosis110. This led to a phase 2 study of the safety and 

efficacy of doxycycline in combination with CyBorD for the treatment of AL amyloidosis. 

D’Souza and colleagues reported a low 1-year mortality of 20% and a high stem cell 

transplant utilization rate of 60%, in this single arm study111.

The use of doxycycline in combination with ursodeoxycholic acid (ursodiol) for the 

treatment of ATTR CA was studied in 53 patients112. Ursodiol is a bile acid sequestrant 

which has antiamyloid fibril effects as has its taurine conjugate, tauroursodeoxycholic 

acid (TUDCA). Both have synergistic activity with doxycycline to reduce amyloid fibril 

burden. Karlstedt et al reported an 11% adverse event rate, mainly due to dermatologic and 

gastrointestinal side effects, and equivocal outcomes112 with no obvious benefit observed. 

Overall, it remains unclear as to the place doxycycline and ursodiol have in the treatment of 

either AL- or ATTR-CA.

NI006 is a recombinant human monoclonal IgG1 antibody that exclusively targets with 

high affinity the forms of TTR that are disease-associated with amyloid conformation 

but not physiological forms of transthyretin. NI006 targets both wild-type TTR as well 

as TTR variants and induces the clearance of pathological TTR in preclinical models. 

Currently, NI006 is in Phase 1 clinical development in ATTR cardiomyopathy patients 

(NCT04360434).

CAEL-101 (11–1F4) is an IgG1 monoclonal antibody that binds to kappa and lambda light 

chain amyloid fibrils, accumulating in amyloid laden organs113 leading to elimination of the 

amyloid protein. In the 1 year follow up of the phase 1a/1b study, 67% (12 of 18) of renal 

and/or cardiac-evaluable patients demonstrated organ response43. Currently, CAEL-101 is 

being evaluated in patients with Mayo stage IIIa (NCT04512235) and IIIb cardiac AL 

amyloidosis (NCT04504825).

Serum amyloid P (SAP) is a glycoprotein which binds avidly to all types of 

amyloid fibrils. As such, targeting this protein may provide a pathway to extraction 

of amyloid deposits from affected organs. Bodin et al showed that administration 

of anti-human-SAP antibodies to mice with amyloid deposits containing human SAP 

activated macrophage mediated phagocytosis of the SAP containing amyloid deposits114. 
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In a phase 1 trial, a small-molecule drug, (R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo­

hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC), was first administered to 15 patients with 

systemic amyloidosis to reduce circulating SAP, followed by a fully humanized monoclonal 

IgG1 anti-SAP antibody41. Patients with cardiac involvement were excluded from the study. 

At 42 days following treatment, there was a decrease in amyloid organ burden as indicated 

by decreased hepatic stiffness and reduction in hepatic amyloid burden on SAP scintigraphy. 

A phase 2 study failed to show any improvement in cardiac amyloid burden after treatment 

with anti-SAP antibody (dezamizumab).

NEOD-001 (Prothena) is a humanized form of murine monoclonal antibody 2A4, which 

binds to an epitope on the misfolded light chain protein though does not bind in the protein’s 

native conformation. Therefore, it was posited that NEOD-001 could clear AL amyloid 

deposits in affected organs. Exploratory end points of a phase 1/2 study showed that 8 of 14 

patients (57%) with cardiac involvement responded to therapy while the remaining 6 patients 

showed stable disease115. A phase 2b study (NCT02632786) in previously treated patients 

with persistent cardiac dysfunction did not meet its primary or secondary endpoints and the 

phase 3 study in treatment naïve patients was discontinued due to futility.

PRX004 (Prothena) is a monoclonal antibody which selectively binds to non-native 

misfolded TTR but not native TTR. PRX004 is being studied in patients with hereditary 

ATTR amyloidosis in a phase 1 study (NCT03336580).

Emerging therapeutics:

Anti-seeding (Table 3) refers to inhibition of the aggregation of native transthyretin onto 

preformed amyloid fibrils. This may be particularly beneficial in the setting of single 

organ liver transplantation for ATTRv, after which ongoing cardiac deposition can occur. 

Preformed amyloid fibrils in the heart can act as a template for further seeding of native 

transthyretin. TabFH2 is a peptide inhibitor which binds to the amyloid driving F- and 

H-stands of fragmented fibrils, thereby impeding self-recognition and seeding45.

The CD38-targeting antibody-drug conjugate (ADC) STI-6129/CD38–077, comprises a 

fully human anti-CD38 antibody conjugated to a microtubule inhibitor (duostatin 5.2)116. 

This ADC binds avidly to CD38 positive tumor cells, after which it is internalized to exert 

its cytotoxic effect. STI-6129 is being studied in patient with relapsed or refractory systemic 

AL amyloidosis in a phase 1 study (NCT04316442).

Advanced Therapies

Heart transplantation may be considered in select patients with end-stage cardiomyopathy 

secondary to ATTR-CA or AL-CA who have responded to light-chain depleting therapy. 

Heart transplant candidates should be carefully selected with particular attention being paid 

to extracardiac involvement such as neuropathic, gastrointestinal or hepatic manifestations 

of disease, which could affect post-transplant outcomes117. Patients with ATTRwt- or 

ATTRv-CA with the Val122Ile mutation generally require only single organ heart transplant, 

however, other variants, such as Thr60Ala may need consideration for dual heart/liver 

transplant. Recent single center studies have shown that outcomes of appropriately selected 
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patients with either AL- or ATTR-CA are similar to that of non-amyloid cardiomyopathy 

patients118, 119. Furthermore, the new heart transplantation allocation policy120 provides 

a pathway for listing these patients with a restrictive cardiomyopathy, who often do not 

meet the hemodynamic criteria otherwise required for higher priority status. This has led 

to a decrease in waitlist time/delisting due to clinical deterioration and an increase in the 

number of patients being transplanted with amyloid cardiomyopathy121 without any change 

in short-term outcomes. Going forward, it is unclear where heart transplantation will fit in 

the treatment paradigm, as earlier detection of amyloid cardiomyopathies and novel medical 

therapies continue to change the landscape of this disease.

Summary/Conclusions

Basic science investigations in the last few decades have led to the elucidation of 

mechanisms underlying amyloidogenesis and have resulted in the development of effective 

therapies in multiple classes of compounds. The cardiologist caring for affected patients is 

in the enviable position of choosing from these therapies that can meaningfully improve the 

lives of affected patients especially when administered before significant cardiac dysfunction 

has ensured (Figure 4). The therapeutic landscape in this arena is rapidly evolving and 

additional breakthroughs are anticipated in the coming years.
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Non-standard Abbreviations and Acronyms

AL immunoglobulin light chain

ASCT autologous stem cell transplant

ASGPR asialoglycoprotein receptor (ASGPR)

ASO antisense oligonucleotide

ATTRv variant transthyretin amyloidosis

ATTRwt wild-type transthyretin amyloidosis

BCL-2 B-cell lymphoma 2 receptor

BMDex bortezomib, melphalan, dexamethasone

BNP brain natriuretic peptide

CA cardiac amyloidosis

COMT catechol-O-methyltransferase
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CPHPC (R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo­

hexanoyl]pyrrolidine-2-carboxylic acid

CR complete response

CRISPR/Cas9 clustered regularly interspaced short palindromic repeats/

CRISPR-associated protein 9

CyBorD cyclophosphamide, bortezomib, dexamethasone

FAP familial amyloid polyneuropathy

GalNAc N-acetyl galactosamine

HDM high dose melphalan

IAA isolated atrial amyloidosis

IFN-γ interferon-gamma

JNK c-jun terminal kinase

LICA ligand conjugated antisense oligonucleotide

LNP lipid nanoparticle

MAPK mitogen-activated protein kinase

MMP matrix metalloproteinase

NT-proBNP N terminal pro-BNP

PR partial response

SAP serum amyloid P-component

Smac second mitochondrial-derived activator of caspase

siRNA small interfering ribonucleic acid

SLAMF7 signaling lymphocytic activation molecule F7

SSA Serum amyloid associated protein

Tn troponin

TUDCA tauroursodeoxycholic acid

UPS ubiquitin-proteasome system

VGPR very good partial response
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Figure 1: 
Pathogenesis of Cardiac Amyloidosis and Therapies. Mechanisms underlying formation of 

cardiac amyloidosis in TTR and AL. Targets for therapy are enumerated in blue. Effective 

therapies approved for use are shown in black and experimental therapies in a particular 

class are shown in red. Those listed above specific mechanism are for TTR while those listed 

below a specific mechanism are for AL amyloidosis. (Illustration credit: Ben Smith).
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Figure 2: 
Mechanisms of myocardial dysfunction in TTR and AL amyloidosis. In both TTR and 

AL, extracellular deposition of amyloid fibrils causes mechanical disruption of normal 

tissue architecture, leading to impaired relaxation and increased ventricular stiffness. In AL 

amyloidosis, circulating free light chains cause cytotoxicity by increasing oxidative stress 

and activation of the p38 MAPK signaling pathway. Activation of the p38 MAPK pathway 

also leads to release of NT-proBNP. In TTR amyloidosis, circulating TTR monomers and 

oligomers have also been proposed to cause direct cytotoxicity. (Illustration credit: Ben 

Smith).
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Figure 3: 
Cardiac mechanics in TTR amyloidosis. Non-invasive pressure-volume loops (top) and 

isovolumetric pressure volume area (bottom).

(Left) Progression of cardiac chamber dysfunction overtime marked by reduced ventricular 

capacitance and impaired contractility. Collectively, both abnormalities lead to reduced 

stroke volume and isovolumetric pressure volume area overtime.

(Right) Compared to WT, patients with V122I associated ATTR-CA have more impaired 

cardiac function at baseline. Patients with both WT and V122I associated ATTR-CA have 

reduced ventricular capacitance. However, patients with V122I associated ATTR-CA also 

have impaired contractility, leading to lower stroke volume and isovolumetric pressure­

volume area in V122I associated ATTR-CA compared to WT.

Griffin et al. Page 33

Circ Res. Author manuscript; available in PMC 2022 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Model of ATTR-CA progression over time. Myocardial amyloid infiltration occurs before 

clinically manifested changes in ejection fraction, cardiac biomarkers, and renal function. 

The ideal emerging therapeutic window for novel therapies is hypothesized to be before 

significant organ dysfunction has occurred and before rapid and potentially irreversible 

declines in functional capacity. The relative scale specific to each factor and time course are 

not proportional. (From Circulation. 2019 Jul 2;140(1):27–30).
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Table 1.

Major Etiologies of Cardiac Amyloidosis

Features
Light Chain Cardiac

Amyloidosis
(AL-CA)

Transthyretin Cardiac Amyloidosis

Wild type
(ATTRwt-CA)

Variant / Hereditary
Transthyretin
(ATTRv-CA)

Age at diagnosis 5th to 9th decade 7th to 10th decade 3rd to 8th decade

Sex distribution Roughly equal male:female Very significant male 
predominance

Male predominance

Precursor protein Light-chain Transthyretin Transthyretin

Genetic etiology None None Autosomal dominant 
inheritance

Genetic modifier to 
therapeutic efficacy

t(11,14) presence – poor response to 
bortezomib but responsive to venetoclax

None None

Extracardiac 
involvement

Nerves, kidney, liver, gastrointestinal 
tract, skin, tongue/soft tissue

Carpal tunnel, lumbar spine, 
gastrointestinal tract

Nerves,

Clinical 
Manifestations

Multi-systemic disease with cardiac and 
renal involvement (60–70%); liver (15%) 
and peripheral / autonomic neuropathy 
(10%)

Predominant cardiac phenotype 
with a restrictive cardiomyopathy, 
atrial and ventricular arrhythmias 
and HFpEF

Depends on variant. 
Val122Ile predominately 
cardiac, Thr60Ala mixed 
and Val30Met predominately 
neuropathic

Prognosis after 
diagnosis

Depends on stage. Median survival 4–6 
months with advanced heart failure

Depends on stage. Median survival 
2–6 years in the absence of 
treatment

Depends on mutation and 
stage. Median survival 3–12 
years

AL-CA, immunoglobulin light-chain cardiac amyloidosis; ATTRwt, wild-type transthyretin amyloidosis; ATTRv, variant (hereditary, familial) 
transthyretin amyloidosis; CA, cardiac amyloidosis; HFpEF, heart failure with a preserved ejection fraction.

Circ Res. Author manuscript; available in PMC 2022 May 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Griffin et al. Page 36

Table 2:

Clinical manifestations and diagnostic evaluation of cardiac amyloidosis

AL (Light Chain Amyloidosis) TTR (Transthyretin Amyloidosis)

Clinical features Heart failure with a preserved
ejection fraction

Right heart failure (JVP, hepatomegaly and
edema)

Atrial arrhythmias (atrial fibrillation and
flutter)

Intolerance of neurohormonal blockade

Periorbital purpura and
macroglossia
Proteinuria and nephrotic syndrome
Peripheral
neuropathy or autonomic dysfunction
Gastrointestinal motility
disorder

Men affected more than females in
ATTRwt
Peripheral neuropathy or autonomic dysfunction 
especially
in ATTRv
Orthopedic manifestations including bilateral carpal
tunnel, lumbar spinal stenosis and biceps tendon
rupture
Conduction disease

ECG Low voltage to mass
ratio

Pseudoinfarct pattern
Low QRS voltage (late phase

phenomenon, not sensitive but specific)

Low voltage more common due to toxic light chains Conduction disease
Left Ventricular
Hypertrophy in 15%

Echocardiogram Left ventricular wall thickness
>12mm

Low tissue doppler velocities
Restrictive

filling pattern
Apical sparing
Atrial septal
thickening

LV wall thickness usually < 15 mm LV wall thickness usually > 15
mm
Concomitant aortic stenosis

Cardiac Magnetic 
Resonance Imaging

Late gadolinium enhancement (in
any pattern)

Elevated native T1 and ECV

ECV higher in AL than ATTR Native T1 lower in ATTR than AL

99mTechnetium- 
pyrophosphate 
scintigraphy

Myocardial uptake < grade 2 Myocardial uptake ≥ grade 2

Endomyocardial or 
extracardiac biopsy

Positive congo red
staining

Apple-green birefringence under polarized light

Fat pad biopsy positive >
50%
Renal involvement
Carpal tunnel

Fat pad biopsy positive <
50%
Lumbar spine and carpal tunnel

Serum Biomarkers Elevated troponin and natriuretic peptides based on stage of disease

Abnormal free light chain
ratio
Monoclonal protein present on immunofixation

Normal free light chain ratio
No
monoclonal protein on immunofixation

AL, immunoglobulin light-chain amyloidosis; ATTRwt, wild-type transthyretin amyloidosis; ATTRv, variant transthyretin amyloidosis; ECV, 
extracellular volume; JVP, jugular venous pressure; LV, left ventricle.
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