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ABSTRACT

Background: Variability in the 25-hydroxyvitamin D [25(0OH)D] response to prenatal and postpartum vitamin D
supplementation is an important consideration for establishing vitamin D deficiency prevention regimens.
Objectives: We aimed to examine interindividual variation in maternal and infant 25(0OH)D following maternal vitamin
D supplementation.

Methods: In a randomized trial of maternal vitamin D supplementation (Maternal Vitamin D for Infant Growth
Trial), healthy pregnant women (n = 1300) received a prenatal cholecalciferol (vitamin D-3) dose of 0, 4200, 16,300,
or 28,000 IU/wk from 17 to 24 wk of gestation followed by placebo to 6 mo postpartum. A fifth group received
28,000 IU cholecalciferol/wk both prenatally and postpartum. In a subset of participants, associations of 25(OH)D with
hypothesized explanatory factors were estimated in women at delivery (n = 655) and 6 mo postpartum (n = 566), and
in their infants at birth (n = 502) and 6 mo of age (n = 215). Base models included initial 25(0H)D and supplemental
vitamin D dose. Multivariable models were extended to include other individual characteristics and specimen-related
factors. The model coefficient of determination (R2) was used to express the percentage of total variance explained.
Results: Supplemental vitamin D intake and initial 25(0OH)D accounted for the majority of variance in maternal 25(0H)D
at delivery and postpartum (RZ = 70% and 79%, respectively). Additional characteristics, including BMI, contributed
negligibly to remaining variance (<5% increase in R2). Variance in neonatal 25(0H)D was explained mostly by maternal
delivery 25(0H)D and prenatal vitamin D intake (R2 = 82%). Variance in 25(0H)D in later infancy could only partly be
explained by numerous biological, sociodemographic, and laboratory-related characteristics, including feeding practices
(R? = 43%).

Conclusions: Presupplementation 25(0OH)D and vitamin D supplemental dose are the major determinants of the
response to maternal prenatal vitamin D intake. Vitamin D dosing regimens to prevent maternal and infant vitamin
D deficiency should take into consideration the mean 25(0OH)D concentration of the target population. J Nutr
2021;151:3361-3378.
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Introduction

The high prevalence of vitamin D deficiency in pregnant
women and newborns has been recognized as a global issue,
with variability within and across WHO world regions (1). It
is widely accepted that prenatal vitamin D supplementation
presents a feasible strategy for the improvement of both

maternal and neonatal vitamin D status (2), as reflected by
increases in circulating 25-hydroxyvitamin D [25(OH)D] (3-
5). However, efforts to recommend specific dosing regimens in
the prenatal and postpartum period are hindered by a lack of
pregnancy-specific Dietary Reference Values (DRVs) for vitamin
D and limited data to establish DRVs beyond an adequate
intake value in children <1 y of age (6). Establishing safe and
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effective supplemental intakes of vitamin D requires knowledge
of the dose-response relation between 25(OH)D and vitamin
D intake, with consideration of safety parameters (e.g., serum
calcium) (6). Although the use of 25(OH)D as a standalone
biomarker of vitamin D status has been disputed (7), in the
absence of more robust metabolic end points and conclusive
evidence for direct benefits of vitamin D on perinatal outcomes,
prevention of low maternal and neonatal 25(OH)D remains
the primary benchmark for establishing maternal vitamin D
supplementation regimens during pregnancy (2).

Substantial heterogeneity in the 25(OH)D response to
vitamin D intake has been observed in nonpregnant adults (8,
9), yet few dose-ranging trials have addressed the determinants
of maternal circulating 25(OH)D in response to prenatal
supplementation (10, 11), nor has this relation been exten-
sively explored in maternal-infant dyads throughout lactation.
Leveraging the placebo-controlled dose-ranging design of
a previously reported vitamin D trial (12), we examined
the biological, sociodemographic, and specimen/laboratory-
related factors that contribute to interindividual variation in
maternal and infant 25(OH)D following maternal vitamin
D supplementation during pregnancy and the first 6 mo
postpartum.

Methods

Study design and participant eligibility

This secondary analysis used data from participants of the Maternal
Vitamin D for Infant Growth Trial of maternal prenatal and postpartum
vitamin D supplementation in Dhaka, Bangladesh (12, 13). Briefly,
generally healthy women (n = 1300), having an uncomplicated
singleton pregnancy, were enrolled at 17-24 wk of gestation and
randomly assigned to 1 of 5 equally sized trial arms, comprising
a prenatal:postpartum regimen of 0:0 (placebo); 4200:0; 16,800:0;
28,000:0; or 28,000:28,000 IU cholecalciferol (vitamin D-3) per week
until 26 wk postpartum. In addition to the intervention dose, all
participants were provided with standard iron—folic acid supplements
as per usual care, and calcium supplementation (500 mg/d calcium
carbonate) to mitigate effects of low dietary calcium intakes. Ethical
approval was obtained from the Research Ethics Committees of the
Hospital for Sick Children in Toronto (REB1000039072) and the
International Centre for Diarrhoeal Disease Research, Bangladesh (PR-
13055). Written informed consent was provided by all women prior
to commencing the trial. The trial was registered prospectively at
clinicaltrials.gov (ID: NCT01924013).

To permit consideration of basal 25(OH)D in our modeling
approach as a determinant of the vitamin D intake-25(OH)D response
(14, 15), maternal-infant pairs enrolled in the parent trial were
included in the present analysis if a maternal and/or infant 25(OH)D
measurement was available for >2 consecutive study time points (i.e.,
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maternal enrollment-delivery; maternal delivery—6 mo postpartum;
maternal delivery—neonatal; or neonatal-6 mo of age).

Intervention

Placebo and vitamin D-3 tablets were manufactured by the Toronto
Institute of Pharmaceutical Technology. All tablets were identical
in appearance, color, and taste. For each lot of tablets, manu-
facturer verification of the vitamin D content was confirmed by
liquid chromatography—tandem mass spectrometry (LC-MS/MS) to
a composition range within 10% of the labeled dose. Participant
adherence was calculated by dividing the number of tablets consumed
by the total number of assigned tablets. Average weekly supplemental
vitamin D intake (referred to as “calculated dose per week” hereafter)
was estimated from the measured tablet composition and individual
participant adherence.

Data collection

General health and sociodemographic information was collected at
enrollment (17-24 wk of gestation) through interviewer-administered
questionnaires. Asset index, as a proxy for socioeconomic status,
was determined by ownership of household items, using principal
components analysis (16). Habitual dietary calcium intakes in the
prenatal and postpartum periods were estimated using a targeted,
nonquantitative FFQ. Standard portion size estimates were obtained
primarily from the Dietary Guidelines for Bangladesh (17), and
supported by the Dietary Guidelines for Indians (18) and the
Canadian Nutrient File (19). Calcium content was extracted from
the Food Composition Table for Bangladesh (20) and the Helen
Keller International Tables of Nutrient Composition of Bangladeshi
Foods (21). Pre- and postnatal supplemental calcium was included
in habitual intake estimates, using the percentage adherence to the
vitamin D intervention as a proxy for compliance with the calcium
co-intervention. Limited data on vitamin D intake were available from
the FFQ at enrollment (22), which was expected to remain consistent
throughout the observation period, and therefore not considered in the
present study. Maternal, neonatal, and infant anthropometric indices
were performed according to standardized protocols (23). BMI was
calculated at enrollment based on a mid-pregnancy weight, because
prepregnancy weight measurements were unavailable. Habitual BMI
was derived from weight at 12 mo postpartum and used as a proxy for
BMI in the nonpregnant, nonlactating state. Drained placental weight
was measured following removal of the umbilical cord and membranes,
to the nearest 0.5 g (iIBALANCE i2500; My Weigh Canada). Nonfasting
venous blood samples (including umbilical cord blood) were collected
according to standard procedures and stored at <70°C until further
analysis (12, 13). Infant feeding practices were assessed on a weekly
basis to determine patterns of exclusive and combination breastfeeding,
and the timing of introduction of complementary foods. At 6 mo
of age, breastfeeding pattern was defined as exclusive/predominant
breastfeeding (breast milk in addition to water, sugar water, honey, or
other nonmilk, nonformula liquid), partial breastfeeding (breast milk
with animal, powdered, or condensed milk, and solid or semisolid
foods), or formula feeding.

Laboratory analyses

Analysis of serum 25(OH)D was performed at the Analytical Facility
for Bioactive Molecules (Hospital for Sick Children, Toronto), which
participated in the Vitamin D External Quality Assessment Scheme
(DEQAS; Charing Cross Hospital, London, UK) throughout the
study period. Circulating 25(OH)D was measured in women (at
enrollment, delivery, and 6 mo postpartum), umbilical cord blood,
and infants (at 6 mo of age) by high-performance LC-MS/MS, using
standardized methods that have been described in detail elsewhere
(12). Chromatographic separation and quantification of 25(OH)D3,
3-epi-25-hydroxyvitamin D3, and 25-hydroxyvitamin D, [25(OH)D;]
was achieved. National Institute of Standards and Technology quality
control materials (SRM 972a) and DEQAS standards (451, 452, 453,
454, 455) were used throughout the analysis. Mean inter- and intra-
assay CVs for 25(OH)D3 were 7.0% and 4.9%, respectively. The
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lower limit of quantification (LLoQ) for 25(OH)D3 was 1.25 nmol/L
(Supplemental Table 1). The LLoQ for 25(OH)D; was 1.25 nmol/L;
however, because 25(OH)D, concentrations were undetectable or
negligible in this cohort (12), only concentrations of 25(OH)D3 are
reported in the present analysis, which excludes the C-3 epimer given
the uncertainty regarding its biological relevance and activity (24).
For simplicity, serum 25(OH)D concentrations are referred to as
“25(OH)D” hereafter.

Additional maternal and infant metabolites, including circulating C-
reactive protein (CRP), ferritin (maternal and infant), maternal serum
folate and retinol, and infant serum creatinine were measured using
commercially available kits (Supplemental Table 1). Inter- and intra-
assay CVs for all analyses were <10%.

Variables related to sample collection, storage, and
laboratory procedures

To account for potential heterogeneity in 25(OH)D introduced through
collection and handling of blood samples, we derived several sample-
related variables: 1) days since last dose was defined as the number of
days between blood collection and the last administered intervention
dose; 2) time of day of blood collection was categorized as morning
(00:00 to 11:59), afternoon (12:00 to 16:59), or evening (17:00 to
23:59); 3) assay drift was represented by the number of months between
completion of the first 25(OH)D assay and the assay concerning
the 25(OH)D measurement of interest; and 4), acknowledging the
high stability of 25(OH)D (25), potential sample degradation during
frozen storage was examined as the number of months between blood
collection and 25(OH)D analysis. Because only freshly thawed serum
samples were used for quantifying 25(OH)D, we did not need to
account for variations introduced by multiple freeze-thaw samples (26).
We calculated duration of prenatal supplementation as the number of
weeks between randomization and delivery blood sample collection.
Postpartum supplementation duration was calculated from the weeks
between delivery and blood draw at ~6 mo postdelivery.

Statistical analysis

Data distributions and descriptive statistics.

CRP and ferritin distributions were right-skewed and were therefore
natural log-transformed to approximate normality. Pairwise correla-
tions among variables were assessed using Pearson and Spearman
correlation coefficients, and bivariate relations were examined using
scatter plots with locally weighted regression. Biomarker concentrations
below the LLoQ were assigned objective values equal to or half the
LLoQ (Supplemental Table 1). Data were summarized as means + SD
or medians (25th percentile, 75th percentile) for continuous variables,
and proportions and counts for categorical variables. Because inclusion
in the present analysis required availability of 2 consecutive 25(OH)D
measurements, participant characteristics were summarized separately
for each time point of interest.

Sources of variation in the maternal and infant serum
25(0OH)D response to maternal vitamin D
supplementation.

To identify factors associated with the 25(OH)D response to sup-
plementation, we defined 4 intervals based on paired time points
at which 25(OH)D was measured in maternal-infant pairs: 1)
maternal enrollment—delivery; 2) maternal delivery—6 mo postpartum;
3) maternal delivery—neonatal (umbilical cord), and 4) neonatal-
6 mo of age. Regression models were constructed with 25(OH)D as
the (end point) outcome variable, measured at 4 corresponding (end
of each interval) time points: 1) maternal 25(OH)D at delivery; 2)
maternal 25(OH)D at 6 mo postpartum; 3) neonatal 25(OH)D; and
4) infant 25(OH)D at 6 mo of age. As a reflection of basal status,
initial 25(OH)D was represented by the measurement at the preceding
time point (i.e., start-of-interval of interest). For the maternal delivery
and 6-mo postpartum end points, initial 25(OH)D was defined as
enrollment and delivery 25(OH)D, respectively. For neonatal and infant
6-mo 25(OH)D, initial concentrations were defined as maternal delivery
and neonatal 25(OH)D, respectively. We assumed that initial 25(OH)D

accounted for nonsupplemental sources of vitamin D from cutaneous
production and dietary intake, which was expected to be low relative
to the supplemental doses provided (22).

For each interval, a base model included initial 25(OH)D and the
calculated vitamin D dose per week as the only predictor variables.
We then considered a range of other covariates that were hypothesized
to be associated with 25(OH)D (Supplemental Table 2). For each
interval and for each candidate factor, we first used a simple linear
regression model (Model A) to estimate the unadjusted association of
the hypothesized factor with 25(OH)D. We extended the model to adjust
for initial 25(OH)D and calculated vitamin D dose per week (Model B),
which enabled an assessment of the interindividual variation in end-of-
interval 25(OH)D explained by the factor of interest, but which was
not already explained in the base model. A parsimonious multivariable
model (Model C) included initial 25(OH)D, calculated vitamin D dose
per week, and any other covariate with a P value < 0.1 in its respective
Model A and/or B, as well as selected variables that were a priori
hypothesized to affect vitamin D status (season of blood draw, maternal
BMI, and, for infants, breastfeeding pattern). Finally, for each interval, a
multivariable model (Model D) consisted of all noncollinear covariates
listed in Supplemental Table 2. Multivariable models C and D were used
to determine the proportion of variance in end-of-interval 25(OH)D
that could be explained by including a wide range of predictor variables.
However, these models were not based on a specified causal framework
and many of the factors were measured concurrently; therefore, the
regression coefficients were cautiously interpreted and not assumed
to indicate total or causal effects of each covariate. Pearson » >0.6
was used to define collinearity between pairs of continuous variables,
and prompted consideration for removal from multivariable models.
Gestational age at enrollment was tightly correlated with the duration
of supplementation, as was maternal weight with BMI at each time
point, and therefore only duration of supplementation and enrollment
or habitual BMI remained in the final models.

All covariates were modeled as fixed-effects. In an exploratory
analysis, inclusion of the laboratory batch number as a random effect
did not substantially increase the overall variance explained (data not
shown); therefore, only results of fixed-effect models are reported. At
each time point, statistical interactions were explored between vitamin
D intake and each explanatory variable, including infant sex where
applicable, to examine hypothesized effect modifiers of the vitamin D
intake-25(OH)D relation. Interaction terms remained in Models B, C,
and D if the Wald test for the interaction was statistically significant
in Model B (P < 0.1). Irrespective of statistical significance, a decision
was made a priori to include interaction terms for BMI and feeding
practices in models concerning maternal delivery or neonatal 25(OH)D,
and infant 6-mo 25(OH)D, respectively, based on known attributes of
vitamin D metabolism [i.e., deposition of vitamin D in adipose tissue
(27) and transfer of vitamin D to breast milk (28)]. For predictor
variables that showed significant interactions with vitamin D intake,
average marginal effects were computed and reported separately for
each assigned intervention dose. Relations between maternal prenatal
vitamin D intake and end-of-interval 25(OH)D, and between maternal
delivery and neonatal 25(OH)D, were modeled using restricted cubic
splines to account for observed nonlinearity of the 25(OH)D-vitamin
D intake and fetomaternal 25(OH)D relations (Figure 1; Supplemental
Figure 1, respectively). Knots were placed at values corresponding to
the assigned doses for each trial arm (4200 IU/wk, 16,800 IU/wk, and
28,000 IU/wk). In women at delivery, a nonresponse to supplementation
was nominally considered as failure to attain a 25(OH)D concentration
>50% of the predicted mean 25(OH)D within each treatment group,
based on a linear regression model including initial (enrollment)
25(OH)D, calculated vitamin D dose per week, and an interaction
term between initial 25(OH)D and dose per week as predictor
variables.

For all outcomes [i.e., attained 25(OH)D at the end of each interval],
the goodness-of-fit for the base model, Model C, and Model D were
compared using Akaike information criterion and partial F-tests, where
P < 0.05 was defined as a significant improvement in model fit. R2
statistics from each regression model were used for comparison of total
variance explained. In all models, robust SEs were employed to account

25(OH)D response to vitamin D in pregnancy 3363
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FIGURE 1 Scatter plots with fitted regression lines of the associations of calculated vitamin D dose per week with serum 25(OH)D at delivery.
Variation in supplemental intake was captured by the verified vitamin D composition for each lot of tablets and individual participant adherence
with the intervention. (A) Relation between attained maternal 25(0OH)D concentrations at delivery and maternal prenatal supplemental vitamin
D intake adjusting for maternal 25(0OH)D concentrations at enrollment, modeled as a restricted cubic spline. (B) Relation between attained
maternal 25(0OH)D concentrations at 6 mo postpartum and maternal postpartum supplemental vitamin D intake adjusting for maternal delivery
25(0OH)D concentrations, modeled as a linear function. (C) Relation between neonatal (umbilical cord) 25(0OH)D concentrations and maternal
prenatal supplemental vitamin D intake adjusting for maternal delivery 25(0OH)D concentrations, modeled as a restricted cubic spline. (D) Relation
between attained infant 25(0OH)D concentrations at 6 mo of age and maternal postpartum supplemental vitamin D intake adjusting for umbilical
cord 25(0OH)D concentrations, modeled as a linear function. Owing to observed heteroskedasticity, robust SEs were estimated in all regression
models for assessment of variation in 25(0OH)D in response to vitamin D supplementation (Tables 2-5). 25(0OH)D, 25-hydroxyvitamin D.

for heteroskedasticity (29, 30). Analyses and figures were completed
using Stata v15.1 (StataCorp) and Tableau v2020.3.

Results

Participant characteristics

Of 655 women with 25(OH)D measured at delivery, 471 (72%)
had a complete dataset (i.e., all covariates of interest) for
inclusion in multivariable models. Complete data were available
for 541 of 566 (96%) women at 6 mo postpartum, 329 of
502 (66%) infants at birth, and 174 of 215 (81%) infants at
6 mo of age (Supplemental Tables 3 and 4). Participants were
equally distributed across trial arms, and sociodemographic
characteristics were similar among participants included at
each time point (Table 1). Excluding placebo, and accounting
for both lot variation and participant adherence, total ma-
ternal supplemental vitamin D intakes ranged from 1132 to
28672 TU/wk in the prenatal period, and between 1011 and
28672 IU/wk postpartum.

3364 Levy etal.

Comparison of models for estimating attained
maternal and infant 25(0OH)D following maternal
vitamin D supplementation

The calculated vitamin D dose per week and initial 25(OH)D
(base model) collectively explained a high proportion of
total variance in maternal 25(OH)D at delivery and at
6 mo postpartum (70% and 79%, respectively) (Figure 1A;
Supplemental Table 5). Addition of other covariates (Models C
and D) yielded a statistically significant improvement in model
fit (partial F-test: P < 0.01 for both), but with small increases in
the proportion of variance explained (Supplemental Table 5).
A similar trend was observed for neonatal 25(OH)D. Lower
proportions of total variance in infant 25(OH)D at 6 mo of
age were explained in the base model that included cord blood
25(OH)D and maternal postpartum calculated dose per week
(24%). Considering goodness-of-fit and explanatory power
collectively, the multivariable models (C or D) only provided
meaningful explanatory benefit beyond calculated dose per
week and initial 25(OH)D for infant concentrations at 6 mo
of age (Supplemental Table 5).



TABLE 1 Characteristics of participants included in multivariable models of attained serum 25-hydroxyvitamin D concentrations, by

time point’
Maternal delivery Maternal 6 mo postpartum Umbilical cord Infant 6 mo of age
(n=471) (n=541) (n=329) (n=174)
Maternal characteristics
Maternal age,” y 22 (20, 26) 23 (20, 26) 22 (20, 25) 23(20,27)
Maternal height,® cm 1511 £ 57 151.0 & 5.6 1512 &£ 5.7 1511 £ 5.8
Maternal BMI at enrollment,* kg/m? 23.0(20.6, 26.3) 22.9(20.6, 26.1) 22.9(20.6, 26.4) 23.7(21.0,26.5)
<185, n(%) 39(8.3) 42(8.1) 28(8.5) 9(5.5)
>18.510 <25, n(%) 277 (59) 309 (59) 189 (57) 93(57)
>25.0to <30, n(%) 123 (26) 142 (27) 90(27) 56 (34)
>30.0, n(%) 32(6.8) 27(5.2) 22(6.7) 6(3.7)
Maternal habitual BMI,> kg/m? 23.4(20.8, 26.5) 23.4(20.7,26.4) 23.5(20.9, 26.8) 23.6(20.6, 26.8)
<185, n(%) 47 (10) 55(10) 35(11) 17(9.8)
>18.5t0 <25, n(%) 238(52) 286 (53) 162 (51) 87 (50)
>25.0to <30, n(%) 130(29) 156 (29) 89 (28) 54 (31)
>30.0, n(%) 40 (8.8) 44.(8.1) 32(10) 16(9.2)
Gestational age at enrollment, wk 21(19,22) 20(19,22) 20(19,22) 20(19,22)
Parity,®7 n (%)
Primiparous 225 (48) 249 (46) 157 (48) 70 (40)
Multiparous 246 (52) 292 (54) 172 (52) 104 (60)
Asset index quintile,® n(%)
Q1 90(19) 108 (20) 67(20) 40(23)
Q2 85(18) 88 (16) 64(19) 31(18)
03 85(18) 104 (19) 57 (17) 33(19)
Q4 108 (23) 127(23) 75(23) 41 (24)
Q5 103(22) 114.(21) 66 (20) 29(17)
Maternal education level, n(%)
No education 20(4.2) 21(3.9) 13(4) 7(4)
Primary; incomplete (grades 1-4) 93(20) 107 (20) 62(19) 36(21)
Primary; complete (grade 5) 69(15) 77 (14) 49 (15) 26 (15)
Secondary; incomplete (grades 6-9) 168 (36) 206 (38) 114 (35) 68 (39)
Secondary; complete or higher 121 (26) 130 (24) 91 (28) 37(21)
Vitamin D intervention group,® n (%)
0:0 IU/wk 92 (20) 105(19) 59(18) 38(22)
4200:0 1U/wk 93(20) 104 (19) 67(20) 31(18)
16,800:0 1U/wk 106 (23) 119(22) 78 (24) 40 (23)
28,000:0 IU/wk 83(18) 104(19) 57(17) 36(21)
28,000:28,000 IU/wk 97 (21) 109 (20) 68 (21) 29(17)
Enrollment serum 25(0H)D,'® nmol/L 271 £ 144 26.8 + 142 273 +£ 147 26.6 + 15.1
Enrollment serum 25(0H)D <30 nmol/L,'0 n (%) 306 (65) 351 (65) 213 (65) 115 (66)
Prenatal calcium intake," mg/d 979 + 267 992 + 280 991 4 245 1031 & 314
Adherent to trial supplementation,'? (%) 455 (97) 528 (98) 319(97) 172(99)
Infant characteristics
Sex
Male 254 (54) 283 (52) 174 (53) 87 (50)
Female 217 (48) 258 (48) 155 (47) 87 (50)
Gestational age at birth, wk 39(38, 40) 39(38,40) 39(38,40) 39(38, 40)
Birth weight,® g 2736 + 341 2720 + 341 2744 + 346 2715 + 364

"Participants were considered eligible for inclusion in the present analysis provided a 25-hydroxyvitamin D measurement was available for 2 consecutive study time points
(enrollment, delivery, umbilical cord, and 6 mo postdelivery), to account for effect modification by baseline (or preintervention) concentrations between each dosing interval.
Inclusion in adjusted multivariable models (Models C and D) was dependent on data availability for corresponding covariates. 25(0H)D, 25-hydroxyvitamin D.

?Data are presented as median (25th percentile, 75th percentile) (all such values).

3Data are presented as mean + SD (all such values).

4n = 520 for analyses at 6 mo postpartum and n = 164 for infants at 6 mo of age.

5BMI at 12 mo postpartum as a proxy for habitual BMI in the nonpregnant, nonlactating state; n = 455 for analyses at delivery and n = 318 for umbilical cord.

6Data are presented as number (%) (all such values).

"Defined based on the total number of previous live births, irrespective of previous miscarriage or abortions, and was inclusive of the current pregnancy. Hence, parity was
categorized as primiparous (no previous live birth) or multiparous (>1 live birth).

8Determined by ownership of household items, using principal components analysis.

9Denotes dose provided prenatally; dose provided postnatally.

105 = 537 for analyses at 6 mo postpartum, n = 327 for umbilical cord, and n = 173 for infants at 6 mo of age.

" Estimated by a targeted, nonquantitative FFQ, including calcium supplementation of 500 mg/d provided to all participants throughout the intervention period.

2Defined a priori as consumption of >80% of scheduled tablets.

8n = 414 for analyses among women at delivery and n = 472 among women at 6 mo postpartum.

25(OH)D response to vitamin D in pregnancy 3365
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regression model including enrollment 25(0OH)D, calculated vitamin D dose per week, and an interaction term between enrollment 25(0OH)D and
dose per week as predictor variables. Robust SEs were estimated to account for heteroskedasticity. 25(0OH)D, 25-hydroxyvitamin D.

Factors associated with maternal 25(0OH)D following
prenatal and postpartum vitamin D supplementation
There was a nonlinear relation between prenatal supplemental
vitamin D intake and delivery 25(OH)D, with a major inflection
point between intakes of 4200 IU/wk and 16,800 IU/wk
(Figure 1A). Initial 25(OH)D did not significantly modify the
effect of calculated vitamin D dose per week on maternal
delivery 25(OH)D (7 = 651; P = 0.31 for the interaction term).
There was some evidence for attenuation of the response to
supplementation at higher initial 25(OH)D, but effects were
minor such that none of the interactions between vitamin D
status classifications and calculated dose per week reached
statistical significance (P = 0.71) (Supplemental Figure 2).
Although there was considerable interindividual variation
in response within each intervention group, few women
(n = 7/520; 1.3%) achieved a delivery 25(OH)D <50% of the
predicted group mean (Figure 2).

Postpartum vitamin D supplementation (28,000 [U/wk) had
a potent effect on maternal 25(OH)D at 6 mo (Figure 1B).
There was a significant interaction effect between maternal
BMI and calculated dose per week on delivery and postpartum
25(OH)D, such that 25(OH)D was inversely associated with
BMI in women receiving 28,000 IU/wk, but the effect of
BMI was attenuated in the lower dose groups (Tables 2
and 3; Supplemental Figure 3). A similar interaction was
found between maternal height and intervention dose in their
effects on postpartum 25(OH)D (Table 3). Other maternal
sociodemographic characteristics were not associated with
maternal 25(OH)D in adjusted models (Tables 2 and 3). Of
the biochemical markers measured at enrollment (CRP) and
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delivery (maternal folate, retinol, and ferritin), only folate was
significantly (and positively) associated with attained 25(OH)D
at delivery in multivariable models (Table 2). Maternal delivery
25(OH)D was higher from June to August relative to the
winter months, but this association was only significant in
Models B and C (Table 2; Supplemental Figure 3), and there
was no significant seasonal effect on postpartum 25(OH)D
(Table 3). The impact of sample collection and laboratory
factors on 25(OH)D was inconsistent across the models and
between delivery and postpartum time points; any significant
effects were of small magnitude (Tables 2 and 3; Supplemental
Figure 3).

Factors associated with neonatal 25(0OH)D following
maternal prenatal vitamin D supplementation
Maternal 25(OH)D at delivery strongly correlated with
neonatal concentrations (p = 0.87; Supplemental Figure 1).
Minor variation in neonatal 25(OH)D was attributable to
maternal prenatal vitamin D intake independent of maternal
delivery 25(OH)D (Figure 1C). Maternal serum folate at
delivery was negatively associated with neonatal 25(OH)D
(Table 4), in contrast to its positive association with ma-
ternal delivery 25(OH)D. There was evidence for an inter-
action effect between maternal CRP and treatment group
on neonatal 25(OH)D, but a clear dose-ranging effect was
not observed. As seen for maternal 25(OH)D, seasonal
associations and effects of sample/laboratory factors with
neonatal 25(OH)D were inconsistent across models, and were
minor relative to the overarching effect of maternal 25(OH)D
(Table 4).
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Factors associated with infant 25(OH)D at 6 mo of age
following maternal vitamin D supplementation
Maternal postpartum vitamin D supplementation significantly
increased infant serum 25(OH)D at 6 mo of age (Figure 1D).
Of the maternal characteristics considered, only education level
was associated with infant 25(OH)D, but a clear trend was
not evident (Table 5). In the absence of maternal postpartum
vitamin D supplementation, exclusive or predominant breast-
feeding was associated with significantly lower infant 25(OH)D
compared with partial breastfeeding or formula feeding
(Figure 3; Table 5). However, the magnitude of this differ-
ence was attenuated by maternal vitamin D supplementation
throughout lactation (Table 5), resulting in similar 25(OH)D
concentrations in infants irrespective of mode of feeding
(Figure 3). As observed for the other intervals, associations
of sample/laboratory factors with infant 25(OH)D were
inconsistent and difficult to disentangle from other factors in
multivariable models (Table 3).

Discussion

Determination of safe and effective strategies for prevention
of micronutrient deficiencies is reliant on an understanding of
interindividual variation in the response to supplementation
and dietary intake (31). Despite the known alterations in
vitamin D metabolism that occur during pregnancy (32, 33),
few studies to date have explored the sources of variability in
the 25(OH)D response to prenatal and postpartum vitamin D
supplementation (10, 11). Here, we found that a substantial
majority of heterogeneity in the maternal 25(OH)D dose—
response during pregnancy and lactation was explained by
just 2 factors—vitamin D supplement intake and initial
circulating 25(OH)D. Other biological and sociodemographic
characteristics explained little additional variance in 25(OH)D.
Because the determinants of habitual vitamin D status were
expected to be reflected in the initial 25(OH)D concentration,
the multivariable modeling approach in this study was aimed
at identifying factors that explained differences in attained
25(OH)D beyond those attributable to initial vitamin D status
and intake. In agreement with previous findings, our results
confirm neonatal 25(OH)D strongly reflects maternal vitamin
D status in late gestation (34-36) and highlights the important
contribution of early feeding practices to infant vitamin D status
in the first 6 mo of life.

Despite recent efforts to bridge knowledge gaps surrounding
dietary vitamin D requirements, interindividual variability in
the dose-response relation of 25(OH)D to vitamin D intake re-
mains a relatively understudied consideration in the estimation
of requirements (37). Between-individual variability is expected
and can be minimized to some extent in prediction models by
adjusting for known physiological covariates, including age and
basal vitamin D status (38, 39). Beyond the recognized effect
of supplementation adherence, our analysis showed very few
women fail to respond to supplementation with vitamin D; only
~1% attained a 25(OH)D concentration below the expected
range (<50% of predicted) at delivery. Even if these few
individuals were genuine “nonresponders” [rather than being
explained by errors in 25(OH)D measurements], this finding
nonetheless reinforces the concept that, in a generally healthy
population with known basal 25(OH)D, supplementation yields
a predictable rise in circulating 25(OH)D.

The present analysis extends the previous work by Moon
and colleagues (10, 40), who also reported determinants of

25(OH)D in response to prenatal vitamin D supplementation
in the context of a placebo-controlled trial. Despite differences
in study design and population demographics, our findings,
together with those of the Maternal Vitamin D Osteoporosis
Study (MAVIDOS), collectively highlight the importance of
basal 25(OH)D as a determinant of attained 25(OH)D follow-
ing antenatal supplementation. The rise in maternal 25(OH)D
following supplementation occurred in parallel with initial
25(OH)D, such that final achieved 25(OH)D concentrations
in women receiving the same dose were greatest in women
with higher 25(OH)D prior to randomization. In contrast to
MAVIDOS, but in line with our earlier findings of pooled trial
data (41), we did not observe a greater achieved 25(OH)D in
response to supplementation in women with moderate levels
of deficiency [25(OH)D: >15 to <30 nmol/L] at enrollment
compared with women who were relatively vitamin D replete
(>30 nmol/L). The present findings were likely due to the
high prevalence of deficiency in our study population prior to
intervention, in addition to the comparatively high doses of
vitamin D provided relative to habitual intakes (22).

Consistent with previous intervention trials, including
pregnant (4), pediatric (42), and adolescent (43) populations,
the present dose-ranging analysis shows the slope reflecting
the rise in 25(OH)D per unit increase in vitamin D intake
attenuates with increasing dose, and there is a near plateauing
of 25(OH)D beyond prenatal intakes of 16,800 IU/wk.
At the highest assigned vitamin D intervention dose only
(28,000 IU/wk), the strength of the dose-response relation was
inversely associated with maternal BMI. Due to volumetric
dilution across a larger tissue mass (44, 45), greater adiposity or
body mass is proposed to lead to an overall increased require-
ment for vitamin D to achieve a given 25(OH)D, which could be
an important consideration when developing dietary guidelines
(46, 47). Similar associations with BMI were observed in
2 previous trials of comparatively lower doses of vitamin D.
Moon et al. (10) reported an inverse association between first-
trimester BMI and maternal 25(OH)D following vitamin D
supplementation (1000 IU/d), and Alhomaid et al. (48) found
that early-pregnancy obesity was associated with an attenuated
25(OH)D response to prenatal vitamin D supplementation
(800 TU/d). Although we found the association with BMI to be
weaker at vitamin D doses equivalent to 2400 IU/d or lower, this
might have been attributable to the lower proportion of women
with high BMI (i.e., >30 kg/m?) compared with the previous
trial populations.

A substantial proportion of variance in 25(OH)D remained
unexplained for infants at 6 mo of age. As dietary diversity
increases with the introduction of complementary foods,
and sun exposure behavior influences cutaneous vitamin
D synthesis, the difficulty of capturing direct sources of
variation in 25(OH)D increases with advancing age. We
found that maternal postpartum supplementation attenuated
the difference in 25(OH)D between breastfed and formula-fed
infants, results that corroborate previous findings that high-
dose maternal vitamin D supplementation can increase breast
milk antirachitic activity, in turn improving vitamin D status
of the breastfed infant (28). Unlike in many countries (49),
vitamin D supplementation of breastfed infants is not a national
policy recommendation in Bangladesh. Where maternal vitamin
D deficiency and breastfeeding are both common, maternal
supplementation during lactation can be an effective means
of improving both maternal and infant vitamin D status (28).
Our analysis shows only a weak association between vitamin
D status at birth and later circulating 25(OH)D, underscoring
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FIGURE 3 Comparison of infant 25(0OH)D concentrations across treatment groups, and differentiated by breastfeeding pattern at 6 mo of age.
Central line shows group median; lower and upper edges of the box denote 1st and 3rd quartile, respectively; lower and upper whiskers denote
the lowest and highest values observed within 1.5 x |QR, respectively; outliers are represented by open (exclusive/predominant breastfeeding)
and shaded (partial or no breastfeeding) dots. Placebo group is represented by 0:0 IU. P = 0.007 for interaction of breastfeeding pattern and
vitamin D intake (as continuous variable) on infant 25(0OH)D (multivariable Model D). 25(0OH)D, 25-hydroxyvitamin D.

early infancy as a period in which vitamin D supplementation
may be particularly important.

Vitamin D-dependent gene transcription has long been
recognized to involve heterodimerization of the vitamin D
receptor with retinoid X receptor in the cell nucleus (50), yet
the combined effect of vitamin D and vitamin A status on
health outcomes is uncertain (51-53); in the present study,
serum retinol was not associated with 25(OH)D. The potential
reciprocal relation between folate and 25(OH)D was of partic-
ular interest given prior evidence that folate might contribute
to the epigenetic regulation of vitamin D metabolism; through
reduced methylation of the vitamin D Cytochrome P450 24-
hydroxylase (CYP24A1), folate could promote a higher or
sustained 25(OH)D concentration as the rate of catabolism
declines (54). Placenta-specific methylation might be especially
important for determining maternal-fetal transfer and, hence,
neonatal 25(OH)D concentrations (55). Despite attenuation
in multivariable models, maternal serum folate was positively
associated with attained 25(OH)D at delivery, consistent with
previous observations that folic acid supplementation may
increase 25(OH)D (56). Conversely, the negative association
of maternal folate with neonatal 25(OH)D did not support
the hypothesis that folate regulates transplacental 25(OH)D
transfer. Although we did not have available data to explore
the influence of postnatal folate status on later 25(OH)D,
our findings nonetheless highlight the potential confounding
effect of multiple micronutrient supplementation on biomarker
responses when compared with single nutrients in isolation (36).

Between-laboratory differences, and hence variable quality
of 25(OH)D data, have long been raised as concerns for the
reporting of 25(OH)D and other biomarker data (25, 57). In
the present study, we have shown that despite low inter- and
intra-assay CVs, assay drift and the time from supplement
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consumption to blood draw were associated with 25(OH)D.
However, the effects were inconsistent, might have been partly
confounded by other factors included in the models (e.g.,
season), and did not contribute substantially to total variance.
The well-characterized population and dose-ranging design
are particular strengths of this study, permitting exploration of
several potential contributors to interindividual variability in
25(OH)D across a range of administered doses. Unlike previous
trials (10, 58), the relatively high prevalence of vitamin D
deficiency in our population at enrollment enabled examination
of this variability in a population in which intervention is likely
to be of most benefit. We acknowledge the reduction in sample
size in the present analysis compared with the parent trial as a
limitation, which also contributed to inconsistent sample sizes
across the statistical models. Given the diverse range of factors
and exploratory nature of this analysis, we chose not to apply
multiple imputation methods to address missingness. However,
the detailed description of sample sizes for all completed
analyses, and the similarity of participant characteristics across
each time point, support our assumption that the findings
are unlikely to have been affected by selection biases. We
lacked measurements of other vitamin D metabolites, including
circulating 24,25-dihydroxyvitamin D or vitamin D-3 itself,
which might provide additional insights. Although the extent
to which epigenetic regulation influences vitamin D metabolism
and function remains unclear, common polymorphisms have
been associated with the response to vitamin D supplementation
during pregnancy (40), and might partially explain interindivid-
ual variations not captured by supplementation dose or basal
vitamin D status. Initial 25(OH)D accounted for vitamin D
inputs from dietary sources and cutaneous production before
the start of each interval, but data were unavailable to quantify
the effects of subsequent changes in maternal diet or sun



exposure during the interval. Given the absence of vitamin D-
rich or fortified foods in Bangladesh (22), we expected variation
in 25(OH)D due to dietary sources to be minor in this study
setting.

These findings support the expectation that the biochemical
response of most pregnant women to a given dose of supple-
mental vitamin D can be reliably predicted, assuming good
adherence. Given substantial between-population variation in
average 25(OH)D during pregnancy (1), mean maternal vitamin
D status of a target population should be considered in the
determination of the recommended vitamin D dose (5, 58).
Although higher BMI attenuated the 25(OH)D response at
the highest vitamin D dose level, BMI did not contribute
substantially to the overall variance in the 25(OH)D response
after accounting for baseline vitamin D status. However,
further research in populations with a higher prevalence of
overweight/obesity is required to assess the potential advantages
of customization of prenatal or postpartum vitamin D dosing
based on BML
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