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Abstract. Post‑translational modification of histones serve a 
crucial role in the control of gene transcription. Trimethylation 
of lysine  4 on histone  3 is associated with transcription 
activation. There are currently six known methylases and 
six known demethylases that can control the methylation 
status of this site. Lysine demethylase 5B (KDM5B) is one 
such demethylase, which can repress gene expression. In 
particular KDM5B has been found to be overexpressed 
in a number of cancer types, and small‑molecular weight 
inhibitors of its demethylase activity have been identified. 
Previous characterisation of Kdm5b knock‑out mice has 
revealed that this genotype leads to either embryonic or 
neonatal lethality. However, the ΔA‑T rich interaction domain 
(ΔARID)‑KDM5B strain of mice, which have the ARID 
domain and five amino acids within the Jumonji (Jmj)N 
domain spliced out from KDM5B, remain viable and fertile. 
In the present study, ΔARID‑KDM5B was found to have no 
demethylase activity as determined by in vitro demethylase 
assays and by immunofluorescence in transfected Cos‑1 
cells. Furthermore, molecular dynamic simulations revealed 
conformational changes within the ΔARID‑KDM5B struc‑
ture compared with that in WT‑KDM5B, particularly in the 
JmjC domain, which is responsible for the catalytic activity of 

WT‑KDM5B. This supports the experimental data that shows 
the loss of demethylase activity. Since Kdm5b knock‑out mice 
show varying degrees of lethality, these data suggest that 
KDM5B serves a crucial function in development in a manner 
that is independent of its demethylase activity.

Introduction

The H3K4me3 histone mark is frequently found at the 
promoters of genes that are undergoing active transcrip‑
tion  (1,2). In mammals, to methylate H3K4 there are six 
methyltransferases that can function as components of 
complexes  (3), whilst there are six demethylases that can 
remove these methyl groups from this mark. Specifically, two 
of these demethylases, namely lysine‑specific demethylase 
(LSD or KDM)1/KDM1A and LSD2/KDM1B, belong to the 
flavin adenine dinucleotide‑dependent homologues of the 
amine oxidase family, which can remove methyl groups from 
dimethylated and monomethylated H3K4 (4). By contrast, four 
KDM5 proteins, KDM5A, KDM5B, KDM5C and KDM5D, are 
members of the Jumonji (Jmj)C class of Fe (II)‑ and 2‑oxoglu‑
tarate‑dependent proteins, which can demethylate H3K4me3 
and H3K4me2 through the JmjC domain (5). Interacting with 
repressor complexes, the KDM1 and KDM5 demethylases can 
repress gene transcription and are overexpressed in a wide 
range of cancers, including renal cell carcinoma and head 
and neck cancers (4,5). KDM5B (also known as JARID1B or 
PLU‑1) was first identified as being upregulated in breast (6,7) 
and prostate cancer (8). These two types of cancer have been 
the focus of previous studies in oncogenesis (9,10).

The KDM5 family of demethylases are unique among 
those that use an Fe2+‑ and 2‑oxoglutarate‑dependent mecha‑
nism for removing methyl groups (5,6). The catalytic core 
of KDM5 is separated into the JmjN and JmjC domains by 
sequences, which include the A‑T rich interaction domain 
(ARID or BRIGHT domain) and the plant homeodomain 1 
(PHD1) (5,6). The DNA‑binding ARID domains in KDM5A 
and B (Fig. 1A) can bind to GC‑rich sequences (11,12), whilst 
the PHD1 domain interacts with unmethylated H3K4 (13). 
However, in both KDM5A and B proteins, the JmjN and JmjC 
domains lie adjacent to each other and interact closely (14‑16).
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Previous studies using the expression of mutated constructs 
found that deletions of either the ARID, JmjN or JmjC 
domains led to the loss of histone demethylase function (7,8). 
However, linking the JmjN and JmjC domains of KDM5B, 
which results in the deletion of the ARID and PHD1 domains, 
did not decrease demethylase activity in vitro (17). In addition, 
a shortened construct of KDM5B, which contains deletion 
of the PHD1 domain and most of the ARID domain (amino 
acids 102‑369 deleted), retains its demethylase activity (14). 
However, although apparently dispensable in terms of demeth‑
ylase activity, the PHD1 domain can influence the re‑modelling 
of the catalytic core by binding to H3K4me0 (15,18).

Human and mouse KDM5B share a 95% sequence 
homology at protein level (6). To investigate the function of 
KDM5B, a number of knockout (KO) genotypes of mouse 
have been developed. The Kdm5b KO C57BL/6 mice devel‑
oped by Albert et al (19), which targeted exon 6, resulted in 
neonatal lethality due to respiratory failure resulting from 
neurological abnormalities. Another homozygous Kdm5b KO 
mice developed by Catchpole et al (20) generated on the same 
C57BL/6 background, which targeted exon 1, caused early 
embryonic lethality. In addition, a Kdm5b KO mice devel‑
oped by Zou et al (21), with a deletion between exon 2 and 
exon 3, remain viable and fertile on the C57BL/6 background. 
However, when bred on the FVB/N background, both males 
and females show increased rates of mortality and females 
showed reduced fertility and abnormal mammary gland 
development. It is possible that targeting different domains in 
KDM5B can explain different phenotypes (21).

A Kdm5b transgenic mouse model was previously devel‑
oped (20), where a splicing event led to the removal of exons 2, 
3 and 4 via the splicing of exon 1 to 5. This mouse genotype 
is known as the ΔARID mouse, which is viable and fertile, 
with the only phenotype being a transient delay in mammary 
gland development (20). In this mouse, in‑frame splicing of 
the primary transcript from exons 1‑5 resulted in the deletion 
of the entire ARID domain. However, this splicing event also 
resulted in the truncation of the JmjN domain, with amino 
acids Asp69, Trp70, Gln71, Pro72 and Pro73 deleted from the 
carboxyl end. However, all other domains, including the PHD1 
and JmjC domains, remain intact (Fig. 1B).

Whilst the JmjN domain is clearly required for demethylase 
activity, neither the deletion nor the mutation studies afore‑
mentioned examined whether the partial deletion of the JmjN 
domain together with the ARID domain affects demethylase 
activity. Since the ΔARID mice with this deletion remain viable 
and fertile (20), it is important to establish whether the KDM5B 
protein they express has demethylase activity. In the present 
study this question was addressed by developing a plasmid 
construct encoding ΔARID‑KDM5B and assaying demeth‑
ylase activity in Cos‑1 cells transfected with this construct. 
In silico homology modelling followed by molecular dynamics 
(MD) simulations was then applied to document any changes 
in the domains of ΔARID‑KDM5B, with the aim of providing 
supportive evidence for the loss of demethylase activity.

Materials and methods

Construction of the Kdm5b‑ΔARID construct in the 
pcDNA3.1 plasmid. Mouse WT‑Kdm5b cDNA was originally 

isolated from a mouse mammary cell line 410.4 (obtained 
from the originator, Dr Gloria Heppner, Michigan Cancer 
Foundation, Detroit, USA) by Madsen et al (22). To create the 
KDM5B‑ΔARID construct, as previously seen in the ΔARID 
mice (20), the KDM5B sequence corresponding to the splicing 
of exon 1 to exon 5 was designed by the authors and synthe‑
sised by GenScript for ligation into the pcDNA3.1 plasmid 
(cat. no. V87020; Thermo Fisher Scientific, Inc.), which was 
originally carrying the WT‑KDM5B sequence but was cut out 
using NotI and Bsu36I. Fig. 1C shows the effect of this splicing 
event on the protein sequence.

Immunofluorescence staining. Mouse WT‑Kdm5b, mouse 
ΔARID‑Kdm5b cDNA and a human ΔJmjC construct were 
all encoded in the pcDNA3.1 plasmid (Sigma‑Aldrich; 
Merck KGaA). They were transfected into Cos‑1 cells using 
Lipofectamine® 2000 (Invitrogen; Thermo Fisher Scientific, 
Inc.) according to the manufacturer's protocol. In total, 0.5 µg 
plasmids were used per transfection. Cos‑1 (cat. no. CRL‑1650; 
American Type Culture Collection) were routinely cultured in 
DMEM (Thermo Fisher Scientific, Inc.) with 10% foetal calf 
serum (Thermo Fisher Scientific, Inc.), at 37˚C and 5% CO2, 
The plasmid containing KDM5B with a deletion in the JmjC 
domain, derived from the WT‑Kdm5b cDNA, was provided by 
Dr Degui Chen, State Key Laboratory of Molecular Biology, 
Shanghai Institutes for Biological Sciences (Shanghai, 
China) (8). In total, 24 h after transfection the cells were fixed 
in 4% paraformaldehyde for 15 min at room temperature, 
permeabilised with Triton X‑100 for 10 min at room tempera‑
ture, washed and sequentially stained with an antibody to 
KDM5B at a dilution of 1:700 for 2 h at room temperature. 
This antibody was an in‑house rabbit antiserum that was raised 
to the C‑terminal domain of human KDM5B corresponding 
to amino acid residues 1283‑1473 (expressed and produced 
in E coli M15). This antibody shows specificity for KDM5B 
and reacts with both human and mouse KDM5B  (23). To 
identify H3K4me3 staining, a mouse monoclonal antibody 
(cat. no. ab1012; dilution, 1:100; Abcam) was used, with incu‑
bation for 2 h at room temperature. Binding of the primary 
antibodies was visualised using Alexa Fluor® 546 donkey 
anti‑rabbit IgG (cat. no. A10040) and Alexa Fluor® 488 goat 
anti‑mouse IgG (cat. no. A‑10680; Molecular Probes; Thermo 
Fisher Scientific, Inc.) secondary antibodies, both diluted to 
1:500 and incubation was for 1 h at room temperature. Cells 
were then mounted in mounting medium containing DAPI 
(cat. no. ab104139; Abcam) and visualized under a Zeiss AX10 
immunofluorescence microscope (magnification, x630).

Histone demethylation analysis. Mouse WT‑Kdm5b and 
mouse ΔARID‑Kdm5b cDNA both encoded in the pcDNA3.1 
plasmid and the vector control (pcDNA3.1; Sigma‑Aldrich; 
Merck  KGaA), were transfected into 293T cells using 
Polyethylenimine (cat. no. 23966‑2; Polysciences, Inc.) with 
10 µg plasmid used per transfection. 293T cells (ATCC; cat. 
no. CRL‑3216) were routinely cultured in DMEM with 10% 
foetal calf serum, at 37˚C and 5% CO2. After 48 h cells were 
suspended in a hypotonic cell lysis buffer (5 mM HEPES, 
50 mM KCl, 10 mM MgSO4

.7H2O, 0.05% NP‑40, 3 mM 
DTT, 1 mM PMSF and a cocktail of protease inhibitors), 
incubated at room temperature for 1 min and centrifuged 
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for 5 min at 1,000 x g at 4˚C. The cell pellet was then resus‑
pended and washed three times in ice‑cold RSB washing 
buffer (10 mM NaCl, 10 mM Tris‑HCl pH 8.0 and 3 mM 
MgCl2). Subsequently, 0.4% trypan blue staining was used 
to check for complete nuclear extraction as viewed under 
a light microscope. After nuclear extraction, intact nuclei 
were positive for trypan blue staining under the microscope 
and are smaller in size compared with those in control 293T 
cells. Intact cells with whole nuclei were stained negative.

Finally, nuclear proteins were extracted using RIPA buffer 
(50 mM Tris HCl, 150 mM NaCl, 1.0% (v/v) NP‑40, 0.5% (w/v) 
sodium deoxycholate, 1.0 mM EDTA, 0.1% (w/v) SDS and 
0.01% (w/v) sodium azide, pH 7.4) with protease inhibitors. 
The nuclear extracts were incubated on ice for 10 min before 
being cleared by centrifugation at 100,000 x g for 10 min 
at 4˚C. Protein concentration was measured using Bradford 
Assay (Bio‑Rad Laboratories, Inc.). The demethylation activity 
was measured using the histone H3(K4) demethylase activity 
quantification assay kit from Abcam (cat. no. ab113455) using 
5 µg each extract.

Statistical analysis. A two‑tailed student's t‑test was used 
to analyse the difference between the WT‑KDM5B and 
ΔARID‑KDM5B results from the demethylase assay. Data 
are presented as the mean ± standard deviation. P≤0.05 was 

considered to indicate a statistically significant difference. The 
results presented represent three biological replicates.

Homology modelling. The Swiss‑Model webserver 
(https://swissmodel.expasy.org)  (24,25) was used for the 
homology modelling of the mouse WT‑KDM5B structural 
model using the FASTA‑formatted target protein sequence 
with the UniProt entry number ‘Q80Y84’ (https://www.
uniprot.org/uniprot/Q80Y84). The crystal structure of human 
WT‑KDM5A with the PDB ID 5K4L was used as the 
template (16). The template and KDM5B shared a sequence 
identity of 64.43%. The 3D structure of the KDM5A in the 
PDB format was without any gaps and all of the segments 
were solved. The mutant ΔARID‑KDM5B (missing amino 
acid residues 69‑191; Fig. 1C) was generated by manipulating 
the primary file in a text editor. All systems were minimised 
and equilibrated using the AMBER version 16 software 
(https://ambermd.org/) (26) before performing the MD simu‑
lations. Evaluation of the homology model was performed by 
calculating the Z‑score using AMBER 16. The Z‑score is an 
estimation of the comparability of the model to the experimen‑
tally‑derived structures with similar sizes of the target protein. 
The Z‑score for the ΔARID‑KDM5B model was 0.68±0.05. 
Z‑scores ~0.0 would indicate a native‑like structure, whilst 
Z‑scores <‑4.0 would indicate a low‑quality model. Therefore, 

Figure 1. Kdm5B RNA is spliced from exon 1 to exon 5 in the mouse ΔARID‑Kdm5B construct. (A) Linear domain structure of mouse KDM5B. (B) Schematic 
representation depicting the mRNA splicing event of the WT‑Kdm5b primary transcript that results in the production of the ΔARID‑Kdm5B transcript. Left, 
red areas in exons 1, 2 and 3 represent the JmjN domain; blue areas in exons 3 and 4 represent the ARID domain. Right, the mRNA splicing event of the 
engineered Kdm5b primary transcript resulting in the splicing together of exons 1 and 5, which deletes the ARID domain and part of the JmjN domain. (C) WT 
murine KDM5B protein sequence showing the JmjN domain (red, residues 32‑73), the ARID domain (blue, 97‑187), and the beginning of the JmjC domain 
(green, 453‑619). Arrows indicate the beginning and end of the spliced region observed in the ΔARID‑KDM5. Jmj, Jumonji; ARID, A‑T rich interaction 
domain; PHD1, plant homeodomain 1; KDM5, lysine‑specific demethylase 5B; WT, wild‑type.
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the Z score of the present model lied within the range of scores 
calculated for proteins of similar size with experimentally 
determined structures, indicating a good overall quality of the 
built model.

MD simulations. Topology and coordinate files for the 
WT‑KDM5B and ΔARID‑KDM5B systems were generated 
in TIP3P water using AMBER16 (https://ambermd.org/) (26) 
with the ‘tLEaP module' of AMBER 16 (26). The systems 
were minimised in two stages using the AMBER 16 package 
program. In the first step, 1,000 steps of minimisation with 
restraint on solvent were performed, which this was followed 
by 2,500 steps of minimisation without restraint. MD was 
performed in three stages using the AMBER program. First, 
500‑psec heating steps were accomplished from 0‑300K with 
restraint on solvents. Subsequently, 500 ps equilibration steps 
in constant temperature was run before 100 ns sampling or 
production steps (NPT) finally completed the simulation.

Periodic boundary conditions were applied during the 
simulations. The NPT runs used the Langevin algorithm 
(https://ambermd.org/) (26), whilst the pressure was controlled 
using the isotropic position scaling protocol in the AMBER 
barostat. The Particle Mesh Ewald method was employed with 
a cut‑off radius of 12 Å for electrostatic and van der Waals 
interactions for proteins (27).

Results

Mouse ΔARID‑KDM5B does not have demethylase activity. 
The deletion that occurred in the ΔARID‑KDM5B by 
splicing out exons 2‑4 resulted in the expression of a smaller 
transcript and protein with the ARID domain (residues 
96‑188) and part of the JmjN domain deleted (residues 
69‑73; Fig. 1B). cDNAs encoding the WT‑Kdm5b and the 
ΔARID‑Kdm5b sequence were transfected into Cos‑1 cells, 
which do not endogenously express KDM5B  (23). The 
cells were co‑stained with antibodies for H3K4me3 and 
KDM5B. A human KDM5B construct with the JmjC domain 
deleted, which was known to lack demethylase activity (7,8), 
was also transfected into Cos‑1 cells. Cells expressing the 
ΔARID‑KDM5B protein showed no clear reduction in the 
level of H3K4me3, which was also observed in cells trans‑
fected with the catalytically‑dead JmjC mutant construct 
(Fig. 2A). However, H3K4me3 was markedly downregulated 
in cells expressing WT‑KDM5B. These data indicate that the 
deletion that occurred in murine ΔARID‑KDM5B results in 
the loss of demethylase activity.

To further confirm these findings, in vitro demethylase 
assays were performed on 293T cells transfected with 
WT‑Kdm5b, ΔARID‑Kdm5b or vector control construct. 
The nuclear proteins were extracted and subjected to an 
ELISA‑based demethylase activity assay. As shown in Fig. 2B, 
there was a significant loss of demethylase activity in the 
ΔARID‑KDM5B protein compared with that in the wild‑type 
protein, with the ΔARID‑Kdm5b nuclear extract yielding 
similar results to the vector control. Together with the results 
from immunofluorescence staining, these data indicate that 
the loss of five amino acids from the JmjN, in addition to the 
ARID domain, results in the loss of enzymatic activity of 
KDM5B.

MD simulation reveals conformational changes between 
wild type KDM5B and DARID‑KDM5B. Molecular model‑
ling of WT‑KDM5B and ΔARID‑KDM5B after 100  ns 
MD simulation was performed (Fig.  3A  and  B). As with 
the structural models, the JmjN and JmjC domains are in 
close proximity to each other in WT‑KDM5B, whereas this 
association appeared to be disturbed in ΔARID‑KDM5B 
(Fig. 3A and B). Further comparison of these two models 
obtained from the last frame of 100 nsec MD simulation 
revealed that the JmjC domain appeared more compact in the 
ΔARID‑KDM5B model compared with that of WT‑KDM5B 
(Fig. 3A and B). This observation was further evidenced by 
comparing the atomic positional fluctuations of the Cα atoms 
in WT‑KDM5B compared with those in ΔARID‑KDM5B 
during the MD simulation (Fig. 3C). Although there were 
differences in the root mean square fluctuations within the 
truncated JmjN domain of ΔARID‑KDM5B, these positional 
fluctuations were particularly pronounced in the JmjC domain 
compared with WT‑KDM5B (Fig. 3C and D). This suggests 
that deletion of the 69‑DWQPP‑73 sequence and the ARID 
domain resulted in conformational changes in the JmjC 
domain (residues 453‑619) that increased the flexibility of this 
domain (Fig. 3D). This observation was further supported by 

Figure 2. ΔARID‑KDM5B protein lacks demethylase activity. (A) Mouse 
Kdm5B cDNA was constructed with an exon 2 to 4 deletion to produce 
the ΔARID‑Kdm5B product before being transfected into Cos‑1 cells. 
Mouse WT‑KDM5B cDNA and human ΔJMJC‑KDM5B, which has the 
JmjC domain deleted, were also transfected into Cos‑1 cells. Cells were 
then stained for KDM5B and H3K4Me3 and the nucleus along with DAPI. 
Magnification, x630, defined by x63 lens and x10 eye piece. (B) WT‑Kdm5B, 
ΔARID‑Kdm5B and the vector control were transfected into 293T cells 
before the nuclear proteins were extracted. Demethylase activity was 
measured using a commercial kit. **P<0.01 vs. WT‑KDM5B. Jmj, Jumonji; 
ARID, A‑T rich interaction domain; KDM5, lysine‑specific demethylase 5B; 
WT, wild‑type.
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the time dependence of root mean square deviation (RMSD) 
for the backbone atoms relative to the starting structure 
during 50  ns MD simulations in both WT‑KDM5B and  
ΔARID‑KDM5B (Fig. 3E). The RMSD curves show that both 

simulations have reached equilibrium after ~30 nsec, which 
was indicated by the relatively stable RMSD values from 
30 nsec onwards until the end of the simulations (Fig. 3E). 
However, the ΔARID‑KDM5B had a much higher RMSD 

Figure 3. ΔARID‑KDM5B shows changes in the conformation of the JmjC domain. Molecular models of (A) WT‑KDM5B and (B) ΔARID‑KDM5B obtained 
from the last frame of the 100 nsec MD simulation. (C) Atomic positional fluctuations, in Å, of Cα atoms in the WT‑KDM5B, represented by the blue line, 
compared with those in the ΔARID‑KDM5B, represented by the brown line. (D) The residues in the JmjC domain of the ΔARID‑KDM5B show notably 
increased degrees of flexibility compared with that in WT‑KDM5B. (E) Time dependence of root mean square deviation (RMSD), also in Å, for the backbone 
atoms relative to the starting structure during 100 nsec MD simulations of both WT‑KDM5B (blue) and ΔARID‑KDM5B (brown). Jmj, Jumonji; ARID, A‑T 
rich interaction domain; KDM5, lysine‑specific demethylase 5B; RMSF, root mean square fluctuations; RMSD, root mean square deviation; WT, wild‑type; 
MD, molecular dynamics.
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value of of 8‑10 Å, compared with 4‑5 Å for WT‑KDM5B 
(Fig. 3E), meaning that ΔARID‑KDM5B initially had a higher 
degree of instability but with time reached a stable state. This 
suggests greater fluctuations and altered dynamics in the 
protein structure of ΔARID‑KDM5B.

Discussion

Both JmjN and JmjC are required for the core demethylase 
enzymatic activity  (7,8). Although separated by other 
sequences, in the 3‑D protein structure these domains lie 
adjacent to each other (14‑18). The present study revealed that 
the ΔARID‑KDM5B protein, where the ARID domain and 
five amino acids from the carboxyl end of the JmjN domain 
are deleted, has lost its demethylase activity. While previous 
mutational experiments show that deletion of the JmjN domain 
results in loss of enzyme activity (7,8), the downstream effects 
of the partial deletion the JmjN domain as previously seen in 
the ΔARID mouse has not been previously investigated. The 
splice variant of KDM5B expressed in the ΔARID mouse is the 
only form of KDM5B RNA expressed and produced by using a 
targeting vector designed to remove exons 2‑4 (20). Compared 
with the embryonic lethal KDM5B KO strains where several 
strains were identified, only one strain of ΔARID mouse could 
be identified, indicating that the splicing of exon 1 to exon 5 
is a rare event (20). Since the last 15 bases in exon 2 translate 
into the final five amino acid residues (Asp69, Trp70, Gln71, 
Pro72 and Pro73) of the JmjN domain, these amino acids were 
deleted from the expressed protein (20). These five amino 
acids are 100% conserved between the mouse and human 
KDM5 families (6) and tend to pack closely with the JmjC 
domain (14‑16), suggesting that the deletion of these amino 
acids would negatively affect catalytic function.

Previous studies by Horton et al (17) and Johansson et al (14) 
strongly support the concept that deletion of the ARID and 
PHD1 domains from KDM5B would not abolish demethylase 
activity per se. However, the PHD1 domain can be crucial for 
the recruitment of KDM5A or KDM5B to H3K4me0 (13‑15). 
The PHD1 domain is not deleted in ΔARID‑KDM5B.

Modelling and subsequent MD simulation of the protein 
confirms that the JmjN and JmjC regions of the protein are 
juxtaposed in WT‑KDM5B  (14,17). In addition, the resi‑
dues in the truncated JmjN domain of ΔARID‑KDM5B 
showed increased degrees of fluctuations compared with 
WT‑KDM5B, suggesting a change in conformation. Changes 
in the atomic positional fluctuations of the JmjC domain were 
also observed during the MD simulation, which provides 
in silico findings that support the experimental observation 
that ΔARID‑KDM5B has no demethylase activity. However, 
deletion of the ΔARID domain and five amino acids in the 
JmjN domain did not result in differences in the conformation 
of other domains flanking the JmjC domain, highlighting the 
importance of the JmjN and JmjC domains in the catalytic 
activity of KDM5B. Indeed, the fact that the PHD1 domain 
did not show any significant fluctuations suggests that this 
demethylase‑null KDM5B protein retains its function in the 
PHD1 domain, including its recruitment to H3K4me0 (13). 
RMSD analysis in the present study suggests that despite 
the greater fluctuations, ΔARID‑KDM5B is a stable protein, 
since both the WT‑KDM5B and ΔARID‑KDM5B systems 

reached equilibrium after 30 nsec and remained stable for the 
remaining 70 nsec of the simulation.

To the best of our knowledge, ΔARID mice express an 
experimentally‑induced variant of KDM5B (20) that has not 
been reported to be observed in humans. However, other 
variants of KDM5B have been reported in patients with intel‑
lectual disability (ID) (28). One such variant showing the loss 
of exon 4, which encodes a part of the ARID domain and 
leads to an in‑frame change, has been identified in identical 
twins with ID (28). Since sufficient amounts of variant protein 
could not be isolated, its effect on demethylase activity could 
not be assayed. Nevertheless, this finding from a patient with 
ID emphasises the importance of checking brain function in 
mice expressing ΔARID‑KDM5B. Indeed, KDM5B is highly 
expressed in embryonic mouse brain (22), and in the adult 
brain KDM5B negatively regulates the neurogenesis of neural 
stem cells (29). In addition, in Drosophila, flies lacking the 
KDM5 demethylase activity (LID) remain viable and fertile 
but show behavioural defects (30).

KDM5B was identified as being upregulated in breast and 
prostate cancer (6‑8) and it has been widely studied in these 
cancers. A KDM5B variant (RBP2‑H1), which can be found 
at lower levels in some normal tissues, such as testis  (23), 
has also been found to be expressed at higher levels in the 
majority of melanomas (31). This isoform contains additional 
amino acids (aa238‑274) corresponding to exon 6 (31), which 
is normally absent in the dominant form of KDM5B. In breast 
cancer, KDM5B is expressed most highly in the estrogen 
receptor‑positive subgroup and is classified as a luminal 
lineage driving oncogene (32). However, it was also found to be 
upregulated in other cancers, including bladder, lung, gastric 
and liver (9,33‑35). Evidence that KDM5B can drive cancer 
cell proliferation comes from previous observations that its 
levels of expression correlated with poor prognosis and that 
knocking down its expression resulted in the inhibition of cell 
proliferation in some cancer cell lines, including colorectal 
and hepatocellular carcinoma lines (36‑38). These data have 
led to the search for small‑molecule weight inhibitors of 
KDM5B for potential clinical applications (14,16,39‑42). The 
inhibitors that are being developed, with a view to targeting 
the KDM5 proteins for cancer therapy, are primarily focused 
on the inhibition of demethylase function (14,16,39‑42).

In the present study, the importance of the ARID domain 
and the five amino acids of the C‑terminus of the JmjN domain 
on the demethylase function were not compared. This should 
be addressed in a future study. However, results from the 
present study show that the ΔARID‑KDM5B is catalytically 
inactive for the demethylation of methylated H3K4, yet mice 
expressing this mutant remain healthy and fertile  (20). By 
contrast, Kdm5b‑knockout is either embryonic lethal (20) or 
results in neonatal lethality (19). This indicates that although 
the KDM5B protein serves crucial functions in development, 
its demethylase activity is dispensable. It is therefore impor‑
tant to evaluate if these functions and the domains responsible 
for their activity are involved in oncogenesis. The ΔARID 
mouse model could provide a model for investigating this 
and for addressing other questions, including whether the 
demethylase‑independent effect on mitochondrial function 
seen in the Drosophila KDM5 analogue LID, is also seen in 
mammalian KDM5B (30).
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