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Abstract

Background: Few older adults are able to achieve recommended levels of moderate–vigorous physical activity despite known cognitive 
benefits. Alternatively, less intense activities such as standing can be easily integrated into daily life. No existing study has examined the 
impact of free-living standing activity during daily life as measured by a device on cognition in older adults. Our purpose was to examine the 
association between free-living standing activity and cognitive function in cognitively healthy older adults.
Method: Participants were 98 adults aged 65 years or older from the ongoing MIND trial (NCT02817074) without diagnoses or symptoms of 
mild cognitive impairment or dementia. Linear regression analyses tested cross-sectional associations between standing activity (duration and 
intensity from the MoveMonitor+ accelerometer/gyroscope) and cognition (4 cognitive domains constructed from 12 cognitive performance 
tests).
Results: Participants were on average 69.7 years old (SD = 3.7), 69.4% women, and 73.5% had a college degree or higher. Higher mean 
intensity of standing activity was significantly associated with higher levels of perceptual speed when adjusting for age, gender, and education 
level. Each log unit increase in standing activity intensity was associated with 0.72 units higher of perceptual speed (p =  .023). When we 
additionally adjusted for cognitive activities and moderate–vigorous physical activity, and then also for body mass index, depressive symptoms, 
prescription medication use, and device wear time, the positive association remained.
Conclusions: These findings should be further explored in longitudinal analyses and interventions for cognition that incorporate small changes 
to free-living activity in addition to promoting moderate–vigorous physical activity.
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The benefits of moderate–vigorous physical activity in older adults 
are well known (1,2), including enhancing cognitive health, par-
ticularly better performance in memory and executive function 
(3). However, few older adults achieve the recommended levels of 
moderate–vigorous physical activity (ie, 150 minutes of moderate–
vigorous physical activity per week in the United States) that are 
needed for optimal cognitive health (4,5). There are several bar-
riers to achieving these recommended levels of physical activity in 
older adults, most frequently limitations due to physical function 
and overall health (6,7). However, smaller changes to daily activity 
can yield some cognitive benefits, and smaller changes are easier for 
older adults to achieve, more acceptable, and more sustainable over 
long periods of time (8,9). For instance, light-intensity physical ac-
tivity, or movement activities between 1.5 and 3 metabolic equiva-
lents (METs), is associated with better cognitive function (10–12), 
though findings across studies are mixed (13). Unfortunately, some 
older adults still struggle to achieve levels of light-intensity physical 
activity that are associated with better health outcomes (14).

An example of an even smaller change to daily activity is time 
spent standing, which can easily be integrated into daily routines by 
older adults. Standing interrupts sedentary behavior, that is, activ-
ities completed while sitting, reclining, or lying down with METs of 
1.5 or less (15). In large amounts, sedentary behavior, particularly 
uninterrupted sedentary behavior, is independently associated with 
poor health outcomes (16,17), such as decreased brain volumes and 
worsened cognitive function (18) including processing speed (ie, per-
ceptual speed; ability to perceive and process information rapidly) 
(19). Standing activity involves both the duration and intensity of 
activities completed while in a standing, erect position, but does not 
involve active acceleration like light– or moderate–vigorous phys-
ical activity (20–22). In contrast to sedentary behavior, standing ac-
tivity requires balance and strength in order to maintain the standing 
posture (23,24). Although less physically demanding than light– or 
moderate–vigorous physical activity, standing may still have im-
portant cognitive implications in older adults (25).

Laboratory biomechanical studies that used performance-based 
tests, balance boards, or multiple wearable devices to assess standing 
activity have shown that some standing measures (ie, postural sta-
bility and motor planning) are positively associated with global 
measures of cognitive function (26–28). For example, in a systematic 
review of studies with adults with Alzheimer’s disease dementia, per-
formance and device measures of postural stability were positively 
associated with severity of general cognitive impairment (26), similar 
to findings with patients with chronic kidney disease where poor 
posture stability was associated with worsened general cognitive 
function (27). Likewise, there was greater error in device-assessed 
motor planning when standing in older adults with cognitive im-
pairment compared to cognitively normal older adults (28). Such 
laboratory-based measures of standing capture performance and 
function in highly controlled settings for brief period of times, which 
may not accurately represent typical daily activity or function. This 
is in contrast to free-living activity, which is defined as activity com-
pleted throughout daily life in natural conditions, including commu-
nity settings (29,30). Additionally, these laboratory-based studies of 
standing activity did not utilize a battery of neurocognitive tests to 
obtain information on specific cognitive domains.

In order to accurately assess free-living standing activity 
(including standing activity duration and intensity) in a commu-
nity setting, specific devices that can capture both minute variations 
in postural changes and accelerations must be utilized (21,22,31). 
Unlike the more commonly used piezoelectric accelerometers that 

detect accelerations only (5,32), novel combination devices, such as 
a seismic accelerometer combined with a triaxial gyroscope, can cap-
ture inclination and posture information even during static activity 
when the individual is not dynamically accelerating (ie, walking, 
jogging, ambulation) (33). However, no existing study of cognitive 
function has utilized a device measure of free-living standing ac-
tivity in the community setting. Thus, the purpose of this analysis 
is to examine the association between standing activity (duration 
and intensity as measured by a combined seismic accelerometer and 
triaxial gyroscope) and cognitive function (global cognitive func-
tion and specific cognitive domains) in cognitively healthy older 
adults. We hypothesize significant associations will be present be-
tween standing activity and global cognitive function, with changes 
in memory, executive function, and perceptual speed, consistent with 
existing physical activity and cognitive function literature (3,19).

Method

This is a secondary analysis of data from the MIND (Mediterranean-
Dash intervention for Neurodegenderative Delay) trial 
(NCT02817074), an ongoing study that tests the effects of a 3-year 
diet intervention on cognitive decline in older adults who are cog-
nitively unimpaired, but at greater risk for Alzheimer’s disease due 
to family history (34). Data collection began in 2016 in the Chicago 
and Boston metropolitan areas. The MoveMonitor+ ancillary study 
recruited existing MIND trial participants from the Chicago site to 
wear the MoveMonitor+, starting at the baseline data collection time 
point. The MoveMonitor+ is a small portable device that combines 
a seismic accelerometer and a triaxial gyroscope and that assesses a 
wide range of activity behaviors. In this secondary analysis, we used 
cross-sectional data from the baseline time point of the MIND trial.

Participants
The parent MIND trial participants include 604 community-
dwelling adults 65–84  years of age, either living in the Boston 
(n = 302) or Chicago (n = 302) metropolitan areas. At the time of 
analysis, the MoveMonitor+ ancillary study enrolled 98 participants 
at the baseline visit from the Chicago site. All participants provided 
written informed consent for data collection and participation in the 
parent trial and ancillary study. The study was approved by the Rush 
University Medical Center Institutional Review Board, and a waiver 
of consent was obtained for the current data analysis. The parent 
trial targets older adults who were at risk for dementia but without 
current cognitive impairment, have a family history of dementia, are 
overweight or obese, and have a suboptimal diet as defined below.

Inclusion criteria for the parent trial included that participants 
had to (a) be 65–84 years of age; (b) have a body mass index (BMI) 
of 25 kg/m2 or greater; (c) self-report a first-degree family history 
of dementia; (d) have no mild cognitive impairment or dementia (a 
score of 22 or greater on the Montreal Cognitive Assessment; (35)); 
and (e) have a suboptimal diet (defined as a score of ≤8 out of 14 
on the MIND Diet, which includes frequency of eating from 10 
brain-healthy food groups and 5 unhealthy food groups (36–38)). 
Exclusion criteria included (a) having allergies to nuts, berries, olive 
oil, or fish; (b) having psychosis or bipolar disorder; (c) engaging in 
alcohol or substance abuse within the past 6 months; (d) having un-
stable or recent onset of cardiovascular disease, including a stroke; 
(e) receiving a diagnosis of cancer within the past 5 years; (f) having 
gastrointestinal conditions associated with weight change (eg, colos-
tomy or gastric bypass surgery); (g) having a history of brain injury; 
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(h) having a history of liver disease or Hepatitis C; and (i) taking 
medications for Alzheimer’s disease or Parkinson’s disease.

Measures
MoveMonitor+ seismic accelerometer
The DynaPort MoveMonitor+ (McRoberts BV) is a seismic accel-
erometer and triaxial gyroscope device that provides valid and re-
liable measures of all intensities of physical activity, movements, 
and postures including standing activity (21,22,31,33,39–42). The 
MoveMonitor+ offers several advantages over other device meas-
ures of activity. Unlike triaxial accelerometers, the MoveMonitor+ 
is sensitive to gravitational acceleration in both static and dynamic 
behaviors (33). Thus, the MoveMonitor+ is able to accurately cap-
ture postural changes and characteristics, providing valid and re-
liable data regarding activity in every posture, which is usually 
not available in a traditional triaxial accelerometer (21,33,43). 
The MoveMonitor+ is a slim monitor that is worn at the lower 
back at the waist level. Participants were instructed to wear the 
MoveMonitor+ for 7 consecutive days during all hours of the day, 
including sleeping, except while bathing, showering, or swimming. 
In order to be included in analyses, participants were required to 
wear the device for a minimum of 2 days for 10 hours each day, 
based on previously selected wear time requirements established for 
these measures in validation studies with diverse older adult popula-
tions (21,22,40,42,44,45). The raw MoveMonitor+ data are sent to 
the McRoberts BV secure, cloud-based platform and then analyzed. 
The McRoberts BV MoveMonitor+ algorithms classify all activities 
with a resolution of 1 second. The McRoberts BV database stores 
approximately 200 parameters per measurement, and the daily time 
interval was utilized for the present analyses.

Standing activity included mean daily minutes of standing ac-
tivity duration and mean standing activity intensity (force during the 
standing posture). Standing activity variables did not include periods 
of walking, jogging, or other active ambulation. Intensity of phys-
ical activity was calculated based on accelerations detected by the 
MoveMonitor+. Moderate–vigorous physical activity (included as a 
covariate) was the mean daily number of minutes spent in activity 
above 3 METs. To correct for positively skewed data, all standing 
activity and physical activity variables were log-transformed.

Cognitive function
Cognitive function was assessed using a battery of 12 neurocognitive 
tests (34). The tests evaluated 4 cognitive domains: episodic 
memory—recall ability (Word List Memory, Word List Recall, 
Word List Recognition, East Boston Memory Test, East Boston 
Delayed Recall); semantic memory—accumulated long-term know-
ledge (Verbal Fluency, Multilingual Naming Test); executive func-
tioning—ability to organize thoughts and activities (Trails B, Flanker 
Inhibitory Control); and perceptual speed—ability to quickly and 
accurately make comparison (Trails A, Pattern Comparison, Digit 
Symbol Substitution Test). Raw scores of all tests were converted 
to z-scores. Composite scores for each domain were calculated by 
averaging z-scores of the individual tests. Global cognition was cal-
culated by averaging z-scores for the 4 domains.

Covariates
We included covariates that may confound the association between 
standing activity and cognitive function, including demographics, 
BMI, regular prescription medication use, cognitive activity, 
and total daily minutes of moderate–vigorous physical activity. 

Demographics included age, race, gender, and education. BMI (kg/
m2) was calculated using weight and height measurements that were 
assessed by a trained technician. Regular prescription medication 
use was measured by participants self-reporting any prescription 
medications taken regularly (yes or no to any prescription medica-
tions taken at least 5 days per month for chronic health problems, or 
prescription pain medications). Cognitive activity was assessed with 
a structured self-report questionnaire. The questionnaire assessed 
frequency and duration of 7 activities that involve information 
processing without physical or social demand: reading magazines, 
reading books, reading newspapers, writing letters, visiting a library, 
attending a play, and playing games (eg, chess, checkers, and cards). 
The item scores (range: 1–5) were averaged to calculate the cog-
nitive activity composite score. In an epidemiological cohort study 
with community-dwelling older adults, higher cognitive activity 
scores were associated with slower cognitive decline (46). Total daily 
minutes of moderate–vigorous physical activity as assessed by the 
MoveMonitor+ and percent wear time of the MoveMonitor+ were 
also included as covariates.

Data Analysis
Baseline characteristics of the study population are shown as mean 
and SD, percentages of participants, or medians and quartiles. 
Statistical differences of baseline characteristics among individuals 
with and without accelerometer data were analyzed with the chi-
squared test and Student’s t test as appropriate.

Linear regression analyses were used to quantify the associations 
between standing activity (independent variables) with global cog-
nition and cognitive domains, including executive functioning, per-
ceptual speed, episodic memory, and semantic memory (outcomes/
dependent variables). Measures of standing activity (as assessed by 
the MoveMonitor+ combined seismic accelerometer/triaxial gyro-
scope) included standing activity duration and standing activity in-
tensity. The values of each of these measures were log-transformed 
to stabilize the variance and to obtain normal distribution variables. 
Three linear regression models were conducted. Model 1 was ad-
justed for age, gender, race, and education, and Model 2 was add-
itionally adjusted for BMI category (25–29.9, 30–34.9, and >35 kg/
m2), medication use, late-life cognitive activities, and total daily min-
utes of moderate–vigorous physical activity. Model 2 was extended 
by adjusting for the percentage of the day that the MoveMonitor+ 
was worn (Model 3).

In the sensitivity analysis, further analyses were conducted to 
validate the robustness of the results. Associations between meas-
ures of standing activity, global cognition, and cognitive domains 
were investigated independently in individuals younger and older 
than 70 years old, in women and men, and in those with high (post-
graduate) and lower levels of education.

Results

There were 98 participants with a mean age of 69.7 years (SD = 3.7). 
Of the 98 participants, 69% were women, 84.7% were White, and 
over 73.4% had received a college degree or higher (Supplementary 
Table 1). Participants reported low levels of depressive symptoms 
(median  =  <0.1 [interquartile range  =  1]). Participants reported a 
score of 3.4 of 5 (SD = 0.6) on the measure of self-reported cognitive 
activities, which is comparable to an epidemiological cohort study 
of older adults of similar sociodemographic backgrounds (46), and 
engaged in nearly 14 minutes (SD = 1.4) of daily moderate–vigorous 
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physical activity. Over 90% of participants wore the MoveMonitor+ 
for 6  days or more for a duration of 90% of the 24-hour day. 
There were no significant differences between participants from the 
MoveMonitor+ ancillary study and the remaining 204 participants 
from the Rush site that did not participate in the ancillary study. 
Log-transformed standing activity duration was generally correlated 
with log-transformed standing activity intensity (r = .25) and both 
standing activity variables were moderately correlated with mod-
erate–vigorous physical activity (r = .34–.43).

First, we conducted linear regression analyses (Model 1) to test 
the associations between the 2 standing activity variables (standing 
activity duration, standing activity intensity) and cognitive func-
tion (global cognition, episodic memory, semantic memory, execu-
tive function, perceptual speed), controlling for demographics (age, 
gender, race, education; Table 1). These analyses indicated significant 
positive associations between standing activity intensity and per-
ceptual speed. One log unit increase in standing activity intensity 
was associated with 0.77 unit higher in perceptual speed (β = 0.72, 
SE = 0.31, p = .023).

In Model 2, we additionally adjusted for BMI category (25–29.9, 
30–34.9, and >35 kg/m2), medication use, late-life cognitive activ-
ities, and daily moderate–vigorous physical activity. Significant as-
sociations between standing activity intensity and perceptual speed 
remained (β = 0.72, SE = 0.31, p = .021). These results did not vary in 
Model 3, where we further adjusted for the influence of the percent 
of time the MoveMonitor+ was worn (β = 0.68, SE = 0.33, p = .039).

Across all 3 models, there were no significant associations be-
tween standing activity duration and any cognitive function out-
come. In sensitivity analyses, we found significant associations 
between standing activity intensity and perceptual speed in women 
(β = 0.84, SE = 0.34, p = .017) and in those with higher education 
(β = 1.77, SE = 0.85, p = .043). There were no significant interaction 
effects between demographic and standing activity variables.

Discussion

We tested the association of free-living standing activity (standing 
activity duration and standing activity intensity) as measured by a 
combination device with cognitive function (4 cognitive domains 
and global cognition) in community-dwelling older adults. When 

controlling for demographics, our findings indicated that greater 
standing activity intensity was significantly associated with higher 
levels of perceptual speed. This significant association was consistent 
across 2 additional models that additionally adjusted for BMI cat-
egory, prescription medication use, late-life cognitive activity and 
daily moderate–vigorous physical activity, and then for percent wear 
time of the MoveMonitor+. It is important to note that only models 
with standing activity intensity were significant, so we may cau-
tiously infer that, in contrast to increasing intensity while standing, 
simply standing for longer periods of times may not yield cognitive 
effects.

The findings obtained for perceptual speed may have meaningful 
lifestyle implications. Perceptual speed is vital for daily activities and 
tasks that require accuracy and speed (47), such as taking medica-
tions, fulfilling a grocery list, or handling money in busy stores, tasks 
which are crucial for maintaining independence with age. Perceptual 
speed also plays an important role in memory retrieval and can con-
tribute to the slowing of memory retrieval that occurs with age (48) 
even when controlling for differences in visual acuity and general 
age-related slowing (49). Thus, perceptual speed should be opti-
mized for successful aging. Nonetheless, implications regarding sig-
nificant findings from this analysis must be made cautiously, given 
the lack of significant results across all cognitive domains, with no 
significant associations with standing activity duration.

This is the first study to examine standing activity intensity and 
cognitive function outcomes in a free-living, community context, 
which may be more representative of older adults’ daily life. Yet, 
laboratory-based biomechanical studies may help provide context 
and have the advantage of relatively controlled environments, re-
ducing variability characteristic of free-living settings. Specific 
standing-related factors (eg, balance, stability, coordination) as-
sessed in a laboratory setting are directly related to the ability to 
maintain a standing posture, and better performance in these factors 
may lead to improved standing duration and intensity (20,23,50,51). 
However, such factors are vulnerable to age-related changes. 
Compared to younger adults, older adults experience significant de-
clines in balance, postural stability, and coordination while standing, 
directly impacting standing activity intensity (52–54).

Evidence in older adult samples points to associations between 
important factors related to standing (eg, balance, stability, and 

Table 1.  Associations Between Standing Activity and Cognitive Function in 98 Community-Dwelling Older Adults From the MIND Trial

Cognitive Function Outcomes

Episodic Memory Semantic Memory Executive Function Perceptual Speed Global Cognition

Variable B SE p B SE p B SE p B SE p B SE p

Model 1a

 SA duration 0.08 0.16 .640 0.11 0.17 .512 −0.10 0.18 .597 <−0.01 0.16 .997 0.04 0.11 .751
 SA intensity −0.03 0.32 .919 −0.21 0.34 .541 0.50 0.35 .158 0.72 0.31 .023 0.22 0.21 .315
Model 2b

 SA duration 0.02 0.19 .418 0.20 0.18 .277 −0.16 0.21 .443 −0.09 0.18 .633 0.05 0.13 .700
 SA intensity −0.11 0.34 .754 −0.06 0.34 .868 0.59 0.40 .149 0.70 0.32 .034 0.30 0.24 .216
Model 3c

 SA duration 0.23 0.19 .238 0.18 0.19 .340 −0.06 0.22 .780 −0.04 0.19 .829 0.11 0.13 .413
 SA intensity −0.13 0.34 .704 −0.05 0.34 .896 0.50 0.38 .184 0.68 0.33 .039 0.20 0.23 .394

Notes: SA = standing activity.
aAdjusted for age, gender, race, and education. bAdjusted for age, gender, race, education, cognitive activities, and moderate–vigorous physical activity. cAdjusted 

for age, gender, race, education, body mass index category (25–29.9, 30–34.9, and >35), regular prescription medication use (yes/no), depressive symptoms, cog-
nitive activities, moderate–vigorous physical activity, and MoveMonitor+ wear time.
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coordination) and cognitive function. Better performance in standing-
related factors (eg, balance, coordination, motor planning while 
standing, stability in the standing posture) was related to higher general 
cognition scores (27,28). However, in our analyses, we found significant 
associations only between standing activity intensity and the cognitive 
domain of perceptual speed. A meta-analysis of cross-sectional studies 
of balance and coordination also yielded significant associations in per-
ceptual speed (55), similar to findings from an intervention trial testing 
standing exercises for balance and coordination that also found benefits 
to perceptual speed (56). In sum, important factors related to free-living 
standing activity intensity, such as balance and coordination, may also 
be related to perceptual speed.

A major strength of our study was the assessment of free-living 
standing activity throughout daily life in the community setting 
using a combination device, with high levels of wear time. This is 
in contrast to the earlier biomechanical studies that capture specific 
functions or tasks in highly controlled laboratory settings for brief 
periods of time. By assessing total daily activities, we may be able 
to identify realistic opportunities for behavior change that may be 
used to develop lifestyle interventions. One way to augment standing 
activity intensity is to complete other activities while maintaining a 
standing posture. To our knowledge, existing studies have not delib-
erately tested the influence of participating in lifestyle activities while 
standing (eg, sorting mail, cooking), which may increase standing 
activity intensity. Dual-task activities, which involve completing 2 
tasks concurrently, particularly a motor activity paired with a cog-
nitive activity (eg, completing a puzzle while standing) (57), have 
shown promising benefits to motor coordination and cognitive 
function (58). However, it is unclear if dual-task activities simultan-
eously enhance standing activity intensity, which should be clarified 
in future work.

We must note the limitations of this secondary analysis. First, this 
analysis utilized cross-sectional data, so neither directionality nor 
causality can be established. It is possible that those with better per-
ceptual speed may be more likely to participate in standing activities, 
with greater standing intensity. Moreover, there were no significant 
associations with standing activity duration, so all implications must 
be made with caution. Second, although the MoveMonitor+ pro-
vides comprehensive and accurate data regarding standing activity 
duration and intensity, the MoveMonitor+ does not specify other 
activity types participants may engage in while standing (eg, crafts, 
reading, cooking). There is also no heat sensor or heart rate compo-
nent that could provide precise information about device removal; 
thus, time spent on activities while the device was not worn may be 
calculated as inactivity instead. Third, our sample was comprised 
of participants from an existing trial who were disproportionately 
women and White and had an education level that is significantly 
higher than the average level in the United States. Moreover, older 
adults were excluded for presence of major health problems and 
chronic conditions were assessed by self-report only. These limita-
tions impact our ability to generalize findings to a broader popula-
tion, particularly those with lower levels of education. Additionally, 
this subsample represented volunteers who participated in this par-
ticular ancillary study, which may further diminish generalizability.

To our knowledge, no other study examining cognitive func-
tion has assessed free-living standing activity, which reflects par-
ticipants’ daily life in community settings away from the highly 
controlled laboratory. Our findings on free-living standing activity 
and perceptual speed should be further investigated in longitu-
dinal analyses to further elucidate associations and establish dir-
ectionality. There is potential for standing activity intensity to be 

incorporated in lifestyle-based interventions. This is crucial because 
of older adults’ preference for lifestyle-based activities that involve 
small changes to daily life instead of highly prescriptive and struc-
tured exercise sessions, which often take place in a laboratory or 
gym setting (8,9,59). Although existing evidence certainly supports 
highly structured exercise sessions for cognitive function and brain 
health in older adults (60,61), such interventions may not be attain-
able or realistic for all older adult populations, particularly those 
with chronic health problems or functional limitations (59). Thus, 
researchers should consider future investigation on integrating 
standing activity intensity throughout everyday life and the potential 
benefits to cognitive function.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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