
Minimizer-space de Bruijn graphs: Whole-genome assembly of
long reads in minutes on a personal computer

Barış Ekim1,2, Bonnie Berger1,2,*, Rayan Chikhi3,4,*

1Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of
Technology (MIT), Cambridge, MA 02139, USA

2Department of Mathematics, Massachusetts Institute of Technology (MIT), Cambridge, MA
02139, USA

3Department of Computational Biology, Institut Pasteur, Paris 75015, France

4Lead contact

SUMMARY

DNA sequencing data continue to progress toward longer reads with increasingly lower

sequencing error rates. Here, we define an algorithmic approach, mdBG, that makes use of

minimizer-space de Bruijn graphs to enable long-read genome assembly. mdBG achieves orders

of-magnitude improvement in both speed and memory usage over existing methods without

compromising accuracy. A human genome is assembled in under 10 min using 8 cores and 10 GB

RAM, and 60 Gbp of metagenome reads are assembled in 4 min using 1 GB RAM. In addition, we

constructed a minimizer-space de Bruijn graph-based representation of 661,405 bacterial genomes,

comprising 16 million nodes and 45 million edges, and successfully search it for anti-microbial

resistance (AMR) genes in 12 min. We expect our advances to be essential to sequence analysis,

given the rise of long-read sequencing in genomics, metagenomics, and pangenomics. Code for

constructing mdBGs is freely available for download at https://github.com/ekimb/rust-mdbg/.

In brief

DNA sequencing continues to progress toward longer and more accurate reads. Yet, primary

analyses, such as genome assembly and pangenome graph construction, remain challenging

and energy-inefficient. Here, we introduce the concept of minimizer-space sequencing analysis,

expanding the alphabet of DNA sequences to atomic tokens made of fixed-length words. This

leads to ordersof-magnitude improvements in speed and memory usage for human genome

assembly and metagenome assembly and enables for the first time a representation of a

pangenome made of 661,405 bacterial genomes.

Graphical Abstract

*Correspondence: bab@mit.edu (B.B.), rchikhi@pasteur.fr (R.C.).
AUTHOR CONTRIBUTIONS
All authors conceived of the project, developed the methods, interpreted the results, and wrote the manuscript. B.E. and R.C. wrote the
software.

DECLARATION OF INTERESTS
The authors declare no competing interests.

HHS Public Access
Author manuscript
Cell Syst. Author manuscript; available in PMC 2021 November 02.

Published in final edited form as:
Cell Syst. 2021 October 20; 12(10): 958–968.e6. doi:10.1016/j.cels.2021.08.009.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ekimb/rust-mdbg/

INTRODUCTION

DNA sequencing data continue to improve from long reads of poor quality (Batzoglou

et al., 2002), used to assemble the first human genomes and Illumina short reads with

low error rates (≤1%) to longer reads with low error rates. For instance, recent Pacific

Biosciences (PacBio) instruments can sequence 10to 25-Kbp-long (HiFi) reads at ≤1% error

rate (Wenger et al., 2019). The R10.3 pore of the Oxford Nanopore produces reads of

hundreds of Kbps in length at a ~ 5% error rate. A tantalizing possibility is that DNA

sequencing will eventually converge to long, nearly perfect reads. These new technologies

require algorithms that are both efficient and accurate for important sequence analysis tasks

such as genome assembly (Logsdon et al., 2020).

Efficient algorithms for sequence analysis have played a central role in the era of high

throughput DNA sequencing. Many analyses, such as read mapping (Yorukoglu et al.,

2016; Shajii et al., 2021), genome assembly (Pevzner et al., 2004), and taxonomic profiling

(Lu and Salzberg, 2020; Nazeen et al., 2020), have benefited from milestone advances

that effectively compress, or sketch, the data (Loh et al., 2012), for e.g., fast full-text

search with the Burrows-Wheeler transform (BWT) (Burrows and Wheeler, 1994), space

efficient graph representations with succinct de Bruijn graphs (Chikhi et al., 2019), and

light-weight databases with MinHash sketches (Ondov et al., 2016). Large-scale data

re-analysis initiatives (Edgar et al., 2020; Lachmann et al., 2018) further incentivize the

Ekim et al. Page 2

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

development of efficient algorithms, as they aim to re-analyze petabases of existing public

data.

However, there has traditionally been a trade-off between algorithmic efficiency and loss

of information, at least during the initial sequence-processing steps. Consider short-read

genome assembly: the non-trivial insight of chopping up reads into k-mers, thereby

bypassing the ordering of k-mers within each read, has unlocked fast and memory-efficient

approaches using de Bruijn graphs; yet, the short k-mers—chosen for efficiency—lead to

fragmented assemblies (Berger et al., 2013). In modern sequence similarity estimation and

read mapping approaches, (Yorukoglu et al., 2016) information loss is even more drastic, as

large genomic windows are sketched down to comparatively tiny sets of minimizers—which

index a sequence (window) by its lexicographically smallest k-mer (Ondov et al., 2016)

and enable efficient but sometimes inaccurate comparisons between gigabase-scale sets of

sequences (Jain et al., 2020).

Here, we provide a highly efficient genome assembly tool for state-of-the-art and low-error

long-read data (for a high-level summary, see Box 1: Progress and Potential). We introduce

minimizer-space de Bruijn graphs, mdBGs, which instead of building an assembly over

sequence bases—the standard approach that for clarity we refer to as base space—newly

performs assembly in minimizer space (Figure 1A) and later converts it back to base-space

assemblies. Specifically, each read is initially converted to an ordered sequence of its

minimizers (Roberts et al., 2004; Li and Yan 2015). The order of the minimizers is

important, as our aim is to reconstruct the entire genome as an ordered list. Our method

differs from the classical MinHash technique, which converts sequences into unordered

sets of minimizers to detect pairwise similarities between them (Broder, 1997). To aid in

assembly of higher-error-rate data, we also introduce a variant of the partial order alignment

(POA) algorithm that operates in minimizer space instead of base space and effectively

corrects only the bases corresponding to minimizers in the reads. Sequencing errors

that occur outside minimizers do not affect our representation. Those within minimizers

cause substitutions or indels in minimizer space (Figure 4), which can be identified and

subsequently corrected in minimizer space using POA (Figure 1C).

Our key conceptual advance is that minimizers can themselves make up atomic tokens of

an extended alphabet, which enables efficient long-read assembly that, along with error

correction, leads to preserved accuracy. By performing assembly using a minimizer-space de

Bruijn graph, we drastically reduce the amount of data input to the assembler, preserving

accuracy, lowering running time, and decreasing memory usage by 1 to 2 orders of

magnitude compared with current assemblers. Setting adequate parameters for the order

of the de Bruijn graph and the density of our minimizer scheme allows us to overcome

stochastic variations in sequencing depth and read length, in a similar fashion to traditional

base-space assembly. To handle higher sequencing error rates, we correct for base errors by

introducing the concept of minimizer-space partial order alignment (POA).

With error-prone data, we study two regimes: real PacBio HiFi read data (<1% error rate)

for Drosophila melanogaster and Human, which turn out to require little adjustment for

errors due to the very low rate, and synthetic 1 to 10% error-rate data, which correspond to

Ekim et al. Page 3

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the range of error rates of Oxford Nanopore’s recent technology. We also demonstrate that

despite data reduction, running our rust-mdbg software on synthetic error-free and 4% error

rate data results in near-perfect reconstruction of a genome, the latter entirely due to our

application of POA in minimizer space.

To further demonstrate rust-mdbg’s capabilities, we used it to assemble two PacBio HiFi

metagenomes, achieving runtimes of minutes as opposed to days, and memory usage two

orders of magnitude lower than the current state-of-the-art hifiasm-meta, with comparable

assembly completeness yet lower contiguity. As a versatile use case of minimizer-space

analysis, we construct, to the best of our knowledge, the largest pangenome graph to date

of 661K bacterial genomes and perform minimizer-space queries of anti-microbial resistance

(AMR) genes within this graph, identifying nearly all those with high sequence similarity to

original bacterial genomes. Rapidly detecting AMR genes in a large collection of samples

would facilitate real-time AMR surveillance (Ellington et al., 2017), and mdBG provides a

space-efficient alternative to indexed k-mer searches.

Remarkably, our approach is equivalent to examining a tunable fraction (e.g., only 1%) of

the input bases in the data and should generalize to emerging sequencing technologies.

Comparison with related work

This work is at the confluence of three core ideas that were recently proposed in three

different genome assemblers: Shasta (Shafin et al., 2020), wtdbg2 (Ruan and Li, 2020),

and Peregrine (Chin and Khalak, 2019). (1) Shasta transforms ordered lists of reads into

minimizers (Shasta used the term markers) to produce an efficiently reduced representation

of sequences that facilitates quick detection of overlaps between reads. A similar idea was

previously used for read mapping and assembly in minimap/miniasm (Li, 2016, 2018)

and edit distance calculation with Order Min Hash (OMH) (Març ais et al., 2019). (2)

The wtdbg2 idea extends the usual ∑ = {A, C, T, G} alphabet, which forms the basis of

traditional genome de Bruijn graphs, to 256 bp windows: a “fuzzy” de Bruijn graph is

constructed by “zooming out” of read sequences and considering batches of 256 bps at a

time. (3) The Peregrine idea can be broken down into two parts: (1) pairs of consecutive

minimizers can be indexed—and they are naturally less often repeated across a genome than

isolated minimizers, and (2) a hierarchy of minimizers can be constructed so that fewer

minimizers are selected than in classical methods, thus increasing the distance between

minimizers.

In distantly related independent work, a very recent pre-print (Rautiainen and Marschall,

2020) (MBG) demonstrates a similar idea as Peregrine, performing assembly by finding

pairs of consecutive minimizers on reads. Although MBG does combine the concepts of

minimizers and de Bruijn graphs, it is fundamentally different from the work presented

here. Nodes in the MBG are classical k-mers over the DNA alphabet, whereas nodes in

our representation are k-mers over an alphabet of minimizers. Two other related concepts to

MBG are sparse de Bruijn graphs (Ye et al., 2012) and A-Bruijn graphs (Kolmogorov et al.,

2019; Lin et al., 2016), in which the nodes are a subset of the original de Bruijn graph nodes

and the edge condition is relaxed so that overlaps may be shorter than (k −1) when pairs of

nodes are seen consecutively in a read.

Ekim et al. Page 4

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Conceptually, our advance is in tightly combining both de Bruijn graphs and minimizers,

introducing a non-trivial mix of previously known ingredients (see Box 2). The concept of a

de Bruijn graph was not considered in either the Shasta or the Peregrine assemblers; whereas

in the wtdbg2 assembler, de Bruijn graphs were considered, but not minimizers. Moreover,

reducing the three aforementioned genome assemblers into a single idea for each of them, in

terms of how they achieve algorithmic efficiency, is a contribution in itself and simplifies our

presentation greatly. What we offer is essentially an ultrafast variation of de Bruijn graphs

for long reads.

RESULTS

An overview of our pipeline, implemented in Rust (rust-mdbg), is shown in Figure 1B.

We compared rust-mdbg with three recent assemblers optimized for low-error rate long

reads: Peregrine, HiCanu (Nurk et al., 2020), and hifiasm (Cheng et al., 2020) (see “genome

assembly tools, versions, and parameters“ for versions and parameters).

Ultra-fast, memory-efficient, and highly contiguous assembly of real HiFi reads using rust
mdbg

We evaluated our software, rust-mdbg, on real PacBio HiFi reads from D. melanogaster,
at 100X coverage, and HiFi reads for human (HG002) at ~ 50× coverage, both taken from

the HiCanu publication (https://obj.umiacs.umd.edu/marbl_publications/hicanu/index.html)

(Nurk et al., 2020).

Since our method does not resolve both haplotypes in diploid organisms, we compared

against the primary contigs of HiCanu and hifiasm. In our tests with D. melanogaster,
the reference genome consists of all nuclear chromosomes from the RefSeq accession

(GenBank: GCA_000001215.4). Assembly evaluations were performed using QUAST

(Gurevich et al., 2013) v5.0.2 and run with parameters recommended in HiCanu’s article

(Nurk et al., 2020). QUAST aligns contigs to a reference genome, allowing to compute

contiguity and completeness statistics that are corrected for misassemblies (NGA50 and

Genome fraction metrics respectively in Table 3). Assemblies were all run using 8 threads

on a Xeon 2.60 GHz CPU. For rust-mdbg assemblies, contigs shorter than 50 Kbp were

filtered out similar to as shown in Nurk et al. (2020). We did not report the running time

of the base-space conversion step and graph simplifications, as they are under 15% of

the running CPU time and run on a single thread, taking no more memory than the final

assembly size, which is also less memory than the mdBG.

Table 1 (leftmost) shows assembly statistics for D. melanogaster HiFi reads. Our software

rust-mdbg uses ~ 33× less wall-clock time and 8× less RAM than all other assemblers. In

terms of assembly quality, all tools yielded high-quality results. HiCanu had 66% higher

NGA50 statistics than rust-mdbg, at the cost of making more misassemblies, 385× longer

runtime, and 8× higher memory usage. rust-mdbg reported the lowest Genome fraction

statistics, likely due, in part, to an aggressive tip-clipping graph simplification strategy, also

removing true genomic sequences.

Ekim et al. Page 5

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://obj.umiacs.umd.edu/marbl_publications/hicanu/index.html

Table 1 (rightmost) shows assembly statistics for Human HiFi (HG002) reads. rust-mdbg

performed assembly 81x faster with 18× less memory usage than Peregrine, at the cost of

a 22% lower contiguity and 1.5% lower completeness. Compared with hifiasm, rust-mdbg

performed 338× faster with 19× lower memory, resulting in a less contiguous assembly

(NG50 of 16.1 Mbp versus 88.0 Mbp for hifiasm) and 1.3% higher completeness.

Remarkably, the initial unsimplified mdBG for the Human assembly only had ~12

million k-min-mers (seen at least twice in the reads, out of 40 million seen in total)

and 24 million edges, which should be compared with the 2.2 Gbp length of the

(homopolymer compressed) assembly and the 100-GB total length of input reads in the

uncompressed FASTA format. This highlights that the mdBG allows very efficient storage

and simplification operations over the initial assembly graph in minimizer space.

Minimizer-space POA enables correction of reads with higher sequencing error rates

We introduce minimizer-space partial order alignment (POA) to tackle sequencing errors.

To determine the efficacy of minimizer-space POA and the limits of minimizer-space de

Bruijn graph assembly with higher read error rates, we performed experiments on a smaller

dataset. In a nutshell, we simulated reads for a single Drosophila chromosome at various

error rates and performed mdBG assembly with and without POA (see STAR Methods for

more details).

Figure 2A (left) shows that the original implementation without POA is only able to

reconstruct the complete chromosome into a single contig up to error rates of 1%, after

which the chromosome is assembled into ≥2 contigs. With POA, an accurate reconstruction

as a single contig is obtained with error rates up to 4%. We further verified that, up to a 3%

error rate, the reconstructed contig corresponds structurally exactly to the reference, apart

from the base errors in the reads. At a 4% error rate, a single uncorrected indel in minimizer

space introduces a ~1 Kbp artificial insertion in the assembly.

Figure 2A (right) indicates that the minimizer-space identity of raw reads linearly decreases

with increasing error rate. With POA, near-perfect correction can be achieved up to a ~ 4%

error rate, with a sharp decrease at >5% error rates but still with an improvement in identity

over uncorrected reads.

This highlights the importance of accurate POA correction: to put these results in

perspective, mdBGs appear to be suitable to HiFi-grade data (< 1% error rates) without

POA and our POA implementation is almost, but not quite yet, able to cope with the error

rate of ONT data (5%).

With POA, the runtime of our implementation was around 45 σ and 0.4 GB of memory,

compared with under 1 σ and < 30 MB of memory without POA. Note that we did not use

an optimized POA implementation; thus, we anticipate that further engineering efforts would

significantly lower the runtime and possibly also improve the quality of correction.

Ekim et al. Page 6

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pangenome mdBG of a collection of 661,405 bacterial genomes allows efficient large-scale
search of AMR genes

We applied mdBG to represent a recent collection of 661,405 assembled bacterial genomes

(Blackwell et al., 2021). To the best of our knowledge, this is the first de Bruijn graph

construction of such a large collection of bacterial genomes. Previously only approximate

sketches were created for this collection: a COBS index (Bingmann et al., 2019), allowing

probabilistic membership queries of short k-mers (k = 31) (Blackwell et al., 2021), and

sequence signatures (MinHash) using sourmash (Pierce et al., 2019) and pp-sketch (Lees et

al., 2019), none of which are graph representations.

The mdBG construction with parameters k = 10, ℓ = 12, and δ = 0.001 took 3 h 50 m

wall-clock running time using 8 threads, totaling 8 h CPU time (largely IO-bound). The

memory consumption was 58 GB and the total disk usage was under 150 GB. Increasing δ
to 0.01 yields a finer-resolution mdBG but increases the wall-clock running time to 13h30m,

the memory usage to 481 GB, and the disk usage to 200 GB.

To compare the performance of mdBG with existing state-of-the-art tools for building de

Bruijn graphs, we executed KMC3 (Kokot et al., 2017) to count 63-mers and Cuttlefish

(Khan and Patro, 2020) to construct a de Bruijn graph from the counted k-mers. KMC3 took

22 wall-clock h and 191 GB memory using 8 threads, 2 TB of temporary disk usage, and

758 GB of output (56 billion distinct k-mers). Cuttlefish (Khan and Patro, 2020) did not

terminate within three weeks of execution time. Hence, constructing the mdBG is at least

two orders of magnitude more efficient in running time and one order of magnitude in disk

usage and memory usage.

Figure 3 shows the largest 5 connected components of the δ = 0.001 bacterial pangenome

mdBG. As expected, several similar species are represented within each connected

component. The entire graph consists of 16 million nodes and 45 million edges (5.3

GB compressed GFA), i.e., too large to be rendered, yet much smaller than the original

sequences (1.4 TB lz4-compressed).

To illustrate a possible application of this pangenome graph, we performed queries for

the presence of AMR genes in the δ = 0.01 mdBG. We retrieved 1,502 targets from the

NCBI AMR-FinderPlus “core” database (the whole amr_targets.fa file as of May 2021) and

converted each gene into minimizer space, using parameters k = 10, ℓ = 12, and δ = 0.01.

Of these, 1,279 genes were long enough to have at least one k-min-mer (on average 10

k-min-mers per gene). Querying those k-min-mers on the mdBG, we successfully retrieved

on average 61.2% of the k-min-mers per gene; however, the retrieval distribution is bimodal:

53% of the genes have ≥99% k-min-mers found, and 31% of the genes have ≤10% k-min

mers found.

Further investigation of the genes missing from the mdBG was done by aligning the 661,405

genomes collection to the genes (in base space) using minimap2 (7 h running time over

8 cores). We found that a significant portion of genes (141, 11%) could not be aligned

to the collection. Also, k-min-mers of genes with aligned sequence divergence of 1% or

more (267, 20%) did not match k-min-mers from the collection and, therefore, had zero

Ekim et al. Page 7

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

minimizer-space query coverage. Finally, although we performed sequence queries on a text

representation of the pangenome graph, in principle, the graph could be indexed in memory

to enable instantaneous queries at the expense of higher memory usage.

This experiment illustrates the ability of mdBG to construct pangenomes larger than

supported by any other method, and those pangenomes record biologically useful

information such as AMR genes. Long sequences, such as genes (containing at least 1

k-min-mer), can be quickly searched using k-min-mers as a proxy. There is nevertheless

a trade-off of minimizer-space analysis that is akin to classical k-mer analysis: graph

construction and queries are extremely efficient; however, they do not capture sequence

similarity below a certain identity threshold (in this experiment, around 99%). Yet, the

ability of the mdBG to quickly enumerate which bacterial genomes possess any AMR gene

with high similarity could provide a significant boost to AMR studies.

Highly efficient assembly of real HiFi metagenomes using mdBG

We performed an assembly of two real HiFi metagenome datasets (mock communities

Zymo D6331 and ATCC MSA-1003, accessions GenBank: SRX9569057 and GenBank:

SRX8173258). Rust-mdbg was run with the same parameters as in the human genome

assembly for the ATCC dataset, with slightly tuned parameters for the Zymo dataset (see

“genome assembly tools, versions, and parameters“).

Table 2 shows the results of rust-mdbg assemblies in comparison with hifiasm-meta, a

metagenome-specific flavor of hifiasm. In a nutshell, rust-mdbg achieves roughly two

orders of magnitude faster and more memory-efficient assemblies, while retaining similar

completeness of the assembled genomes. Although rust-mdbg metagenome assemblies are

consistently more fragmented than hifiasm-meta assemblies, the ability of rust-mdbg to very

quickly assemble a metagenome enables instant quality control and preliminary exploration

of gene content of microbiomes at a fraction of the computing costs of current tools.

DISCUSSION

Three areas we hope to tackle in our assembly implementation are: (1) its reliance on

setting adequate assembly parameters, (2) lack of base-level polishing, and (3) haplotype

separation. Regarding (1), we are experimenting with automatic selection of parameters ℓ,

k, and δ. A heuristic formula is presented along with its implementation and results in the

GitHub repository of rust-mdbg; however, it leads to lower-quality results (e.g., 1 Mbp N50

for the HG002 assembly versus 14 Mbp in Table 3). We also provide a preliminary multi-k
assembly script inspired by IDBA (Peng et al., 2010). While automatically setting mdBG

parameters is fundamentally a more complex task than just determining a single parameter

(k) in classical de Bruijn graphs, we anticipate that similar techniques to KmerGenie (Chikhi

and Medvedev, 2014) could be applicable, where optimal values of (ℓ, k, δ) would be found

as a function of the k-min-mer abundance histogram.

Regarding directions (2) and (3), polishing could be performed as an additional step by

feeding the reads and the unpolished assembly to a base-space polishing tool such as

racon (Vaser et al., 2017). Haplotype separation might prove more difficult to incorporate

Ekim et al. Page 8

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

in mdBGs: unlike HiFi assemblers that use overlap graphs with near-perfect overlaps,

minimizer-space de Bruijn graphs cannot differentiate between exact and inexact overlaps

in bases that are not captured by a minimizer. However, an immediate workaround is to

perform haplotype phasing on resulting contigs, using tools such as HapCut2 (Edge et al.,

2017) or HapTree-X (Berger et al., 2020).

We anticipate that k-min-mers could become a drop-in replacement for ubiquitously adopted

k-mers for the comparison and indexing of long, highly similar sequences, e.g., in genome

assembly, transcriptome assembly, and taxonomic profiling.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be

directed to and will be fulfilled by the Lead Contact Rayan Chikhi (rchikhi@pasteur.fr)

Materials availability—This study did not generate new materials.

Data and code availability

• This paper analyzes existing, publicly available data. These accession numbers

for the datasets are listed in the key resources table.

• All original code has been deposited at https://github.com/ekimb/rust-mdbg/ and

is publicly available as of the date of publication. DOIs are listed in the key

resources table.

• Any additional information required to reanalyze the data reported in this paper

is available from the lead contact upon request.

METHOD DETAILS

Minimizer-space de Bruijn graphs—We say that an algorithm or a data structure

operates in minimizer-space when its operations are done on strings over the ∑ℓ alphabet,

with characters from Mℓ,δ. Conversely, it operates in base-space when the strings are over

the usual DNA alphabet ∑DNA.

We introduce the concept of (k, ℓ, δ)-min-mer, or just k-min-mer when clear from the

context, defined as an ordered list of k minimizers from Mℓ,δ. We use this term to avoid

confusion with k-mers over the DNA alphabet. Indeed, a k-min-mer can be seen as a k-mer

over the alphabet ∑ℓ, i.e. a k-mer in minimizer-space. For an integer k>2 and an integer ℓ>1,

we define a minimizer-space de Bruijn graph (mdBG) of order k as de Bruijn graph of order

k over the ∑ℓ alphabet. As per the definition in the previous section, nodes are k-min-mers,

and edges correspond of identical suffix-prefix overlaps of length k − 1 between k-min-mers.

Figure 1A shows an example.

We present our procedure for constructing mdBGs as follows. First, a set M of minimizers

are pre-selected using the universe minimizer scheme from the previous section. Then, reads

are scanned sequentially, and positions of elements in M are identified. A multiset V of

Ekim et al. Page 9

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ekimb/rust-mdbg/

k-min-mers is created by inserting all tuples of k successive elements in Mℓ,δ found in the

reads into a hash table. Each of those tuples is a k-min-mer, i.e., a node of the mdBG.

Edges of the mdBG are discovered through an index of all (k − 1)-min-mers present in the

k-min-mers.

mdBGs can be simplified and compacted similarly to base-space de Bruijn graphs, using

similar rules for removing likely artefactual nodes (tips and bubbles), and performing

path compaction. They are also bidirected, though we present them as directed here

for simplicity. See ‘implementation details‘ for more details on reverse complements and

simplification.

By itself the mdBG is insufficient to fully reconstruct a genome in base-space, as in the

best case it can only provide a sketch consisting of the ordered list of minimizers present in

each chromosome. To reconstruct a genome in base-space, we associate to each k-min-mer

the substring of a read corresponding to that k-min-mer. The substring likely contains

base-space sequencing errors, which we address at the end of this paragraph. To deal with

overlaps, we also keep track of the positions of the second and second-to-last minimizers

in each k-min-mer. After performing compaction, the base sequence of a compacted mdBG

can be reconstructed by concatenating the sequences associated to k-min-mers, making

sure to discard overlaps. Note that in the presence of sequencing errors, or when the same

k-min-mer corresponds to several locations in the genome, the resulting assembled sequence

will be imperfect (similar to the output of miniasm (Li, 2016)) which can be fixed by

additional base-level polishing (not performed here).

How sequencing errors in base-space propagate to minimizer-space—In order

to clarify the difference between base-space and minimizer-space in the presence of

sequencing errors, we newly derive an expression of the expected error rate in minimizer

space (parameterized by k, ℓ, and δ), using a Poisson process model of random site

mutations that was invoked by Mash (Ondov et al., 2016). Given the probability d of a

single base substitution, the probability that no mutation will occur in a given ℓ-mer is e−ℓd

under a Poisson model.

To estimate the number of erroneous k-min-mers in a read, we define for a given read R,

the expected number nR of universe (ℓ,δ)-minimizers (described in Box 2) in the read as

nR = (|R | − ℓ + 1) • δ .. Since a k-min-mer is erroneous whenever at least one of k universe

(ℓ,δ)-minimizers within the k-min-mer is erroneous, the probability that a given k-min-mer

is erroneous is then 1 − e−ℓdk. The number of k-min-mers obtained from the read is nR − k +

1. Thus, the expected number of erroneous k-min-mers in a read is

nR − k + 1 ⋅ 1 − e−ℓdk

For instance, for a base-space mutation rate of d = 0.01, minimizer-space parameters ℓ = 12,

k = 10, and δ = 0.01, and a read length of |R| = 20000, 70% of the k-min-mers in the read are

erroneous. However, lowering the base-space mutation rate to d = 0.001 and keeping other

values of k and ℓ identical renders only 10% of the k-min-mers erroneous within a read.

Ekim et al. Page 10

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

To estimate the average ℓ-mer identity of a read, we provide an approximation of the

minimizer-space error rate given the base-space error rate. As seen above, an ℓ-mer that was

selected as a universe minimizer has probability e−ℓd to be mutated. Mutations that occur

outside of universe minimizers may now still affect the minimizer-space representation

by turning a non-minimizer ℓ-mer into a universe minimizer (see Figure 4). Under the

simplifying assumption that this effect occurs independently at each position in a read, the

probability that an ℓ-mer turns into a universe minimizer is the probability of a mutation

within that ℓ-mer times the probability δ that a random ℓ-mer is a universe minimizer, i.e.,

(1 − e−ℓd)δ. For a universe minimizer m, there are approximately 1 / δ neighboring ℓ-mers

that are candidates for turning into universe minimizers themselves due to a base error. We

will conceptually attach those ℓ-mers to m, and consider that an error in any of those ℓ-mers

leads to an insertion error next to m.

Combining the above terms leads to the following minimizer-space error rate approximation:

1 − e−ℓd 1 − 1 − e−ℓd δ 1/δ
(Equation 1)

For an error rate of d = 5%, i.e. close to that of the Oxford Nanopore R10.3 chemistry, ℓ
= 12, and δ = 0.01, the minimizer-space error rate is 65.1%, dropping to 2.3% when d =

0.1%. This analysis indicates that parameters ℓ, k, δ and the base error rate d together play

an essential role in the performance of a mdBG-guided assembly.

Error correction using minimizer-space partial order alignment (POA)—Long

read sequencing technologies from Pacific Biosciences (PacBio) and Oxford Nanopore

(ONT) recently enabled the production of genome assemblies with high contiguity, albeit

with a relatively high error rate (≥%5) in the reads, requiring either read error correction

and/or assembly polishing, which are both resource-intensive steps (Chin et al., 2013;

Loman et al., 2015). We will demonstrate that our minimizer-space representation is

applicable to error-free sequencing reads and PacBio HiFi reads, which boast error rates

lower than %1; however, in order to work with long reads with a higher error rate such

as PacBio CLR and ONT, we present a resource-frugal error correction step that uses

partial order alignment (POA) (Lee et al., 2002), a graph representation of a multiple

sequence alignment (MSA), in order to rapidly correct sequencing errors that occur in the

minimizer-space representation of reads. Stand-alone error correction modules such as racon

(Vaser et al., 2017) and Nanopolish (Loman et al., 2015) have also relied on POA for error

correction of long reads; however, these methods work in base-space, and as such, are still

resource-intensive. We present an error correction module that uses POA in minimizer-space

that can correct errors in minimizer-space, requiring only the minimizer-space representation

of reads as input.

An overview of the minimizer-space POA procedure is shown in Figure 1C, and the detailed

processes for the stages of the error-correction procedure are shown in Section “Minimizer

space partial order alignment”. The input for the procedure is the collection of ordered lists

of minimizers obtained from all reads in the dataset (one ordered list per read). As seen

earlier, the ordered list of minimizers obtained from a read containing sequencing errors

Ekim et al. Page 11

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

will likely differ from that of an error-free read. However, provided the dataset has enough

coverage, the content of other ordered lists of minimizers in the same genomic region can be

used to correct errors in the query read in minimizer-space. To this end, we first perform a

bucketing procedure for all ordered lists of minimizers using each of their n-tuples, where n
is a user-specified parameter.

After bucketing, in order to initiate the error-correction of a query we collect its neighbors:

other ordered lists likely corresponding to the same genomic region. We use a distance

metric (Jaccard or Mash (Ondov et al., 2016) distance) to pick sufficiently similar neighbors.

Once we obtain the final set of neighbors that will be used to error-correct the query, we

run the partial order alignment (POA) procedure as described in (Lee et al., 2002), with the

modification that a node in the POA graph is now a minimizer instead of an individual base,

directed edges now represent whether two minimizers are adjacent in any of the neighbors,

and edge weights represent the multiplicity of the edge in all of the neighbor ordered lists.

After constructing the minimizer-space POA by aligning all neighbors to the graph, we

generate a consensus (the best-supported traversal through the graph). Once the consensus

is obtained in minimizer-space, we replace the query ordered list of minimizers with the

consensus, and repeat until all reads are error-corrected. In order to recover the base-space

sequence of the obtained consensus after POA, we store the sequence spanned by each

pair of nodes in the edges, and generate the base-space consensus by concatenating the

sequences stored in the edges of the consensus.

Implementation details—Reverse complementation is handled in our method in a natural

way that is similar to classical base-space de Bruijn graphs. Each ℓ-mer is identified with its

reverse complement, and a representative canonical ℓ-mer is chosen as the lexicographically

smaller of the two alternatives. In turn, k-min-mers are identified with their reverse; no

complementation is performed in minimizer-space, as the complement of a canonical

ℓ-mer is itself. Similarly to base-space assembly, any k-min-mer appearing only once in

the multiset V is removed from V due to the likelihood that it is artefactual. Assembly

graph simplifications are performed using gfatools (https://github.com/lh3/gfatools), with

alternating rounds of tip clipping and bubble removal (see “gfatools command line”

Section), except for simulated perfect reads, which were only compacted into base-space

unitigs.

In order to reduce memory usage, we write k-min-mers and the base-space sequences

spanned by k-min-mers on disk, and retrieve them once the contigs are generated in

minimizer-space. rust-mdbg includes a binary program (to_basespace) that transforms a

simplified minimizer-space assembly into a base-space assembly.

Minimizer-space partial order alignment

POA bucketing and preprocessing: In Algorithm 1, all tuples of length n of an ordered

list of minimizers are computed using a sliding window (lines 4–6), and the ordered list of

minimizers itself is stored in the buckets labeled by each n-tuple (line 7). We use bucketing

as a proxy for set similarity, since each pair of reads in the same bucket will have an n-tuple

(the label of the bucket), and will be more likely to come from the same genomic region.

Ekim et al. Page 12

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/lh3/gfatools

Algorithm 1.

Bucketing procedure for all ordered lists of minimizers

Input Set of ordered list of minimizers S, bucket index length n

1: procedure: BUCKET(S, n)

2: B ← {} ▹ Empty hash table of buckets

3: for s∈S do

4: for i = 0 to i = |s| − n + 1 do

5: t ← s[i : i + n] ▹ n-tuple of s starting at position i

6: B[t] ← B[t] ∪ s

7: end for

8: end for

9: return B

10: end procedure

The overview of the collection of neighbors for error-correcting a query ordered list of

minimizers is shown in Algorithm 2. We obtain all n-tuples of a query ordered list, and

collect the ordered lists in the previously populated buckets indexed by its n-tuples (lines

10–15). These ordered lists are viable candidates for neighbors, since they share a tuple of

length at least n with the query ordered list; however, since a query n-tuple may not uniquely

identify a genomic region, we apply a similarity filter to further eliminate candidates

unrelated to the query. Using either Jaccard or Mash distance (Ondov et al., 2016) as a

similarity metric, for a user-specified threshold φ, we filter out all candidates that have

distance ≥ φ to the query ordered list to obtain the final set of neighbors that will be used for

error-correcting the query (lines 1–9).

Algorithm 2.

Collection of neighbors for a given query ordered list

Input: A query ordered list of minimizers q to be error-corrected, collection of buckets B, bucket index length n,
distance function d, distance threshold φ

1: function FILTER(q,C,d,φ)

2: F ← {} ▹ Empty set of candidates that pass
the filter

3: for c∈C do

4: if d(q,c)<φ ▹ Apply distance threshold of φ to a
candidate then

5: F ← F∪c

6: end if

7: end for

8: return F

9: end function

10: procedure COLLECT(q, B, n, d, φ)

11: C ← {} ▹ Empty set of candidate neighbors

12: for i = 0 to i = |q| − n + 1 do

Ekim et al. Page 13

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

13: t ← q[i : i + n] ▹ n-tuple of q starting at position i

14: C ← C ∪ B[t]

15: end for

16: F ← FILTER(q, C, d, φ)

17: return F

18: end procedure

POA graph construction and consensus generation

Algorithm 3.

Minimizer-space POA graph construction and consensus generation

Input: A query ordered list of minimizers q to be error-corrected, collection of query neighbors N

1: procedure POA(q, N)

2: G = (V,E) ← initializeGraph(q) ▹ As described in (Lee et al., 2002)

3: for n∈N do

4: G ← semiGlobalAlign(G,n) ▹ As described in (Lee et al., 2002)

5: end for

6: λ ← {} ▹ Scoring table for nodes

7: P ← {} ▹ Predecessor table for nodes

8: topologicalSort(G) ▹ Topological sorting of nodes

9: for v∈V do

10: e = (u, v) ← max(inEdges(v)) ▹ Find the maximum-weighted incoming edge to v

11: λ[v] ← We + λ[u]

12: P[v] ← u

13: end for

14: C ← CONSENSUS(V, λ; P) ▹ Described in the “Minimizer-space POA”

Section

15: return C

16: end procedure

Algorithm 4 describes a canonical POA consensus generation procedure, similar to racon

(Vaser et al., 2017), except that here consensus is performed in minimizer-space.

Algorithm 4.

Consensus generation on POA graph

Input: The node set V of the POA graph, scoring array λ, predecessor array P

1: function CONSENSUS(V, λ, P)

2: C ← [] ▹ Consensus path to be

obtained

3: vmax ← Ø ▹ Initialize the highest-scoring node

4: for v ∈ V do

5: if λ[v]>λ[vmax] then

Ekim et al. Page 14

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

6: vmax ← v

7: end if

8: end for

9: vcurr ← vmax ▹ Start traceback from highest-scoring node

10: while vcurr ≠ Ø do

11: C ← C + [vcurr]

12: vcurr)←P[vcurr] ▹ Move to predecessor of current node

13: end while

14: return C

15: end function

The minimizer-space POA error-correction procedure is shown in Algorithm 3. For each

neighbor of the query, we perform semi-global alignment between a neighbor ordered list

and the graph, where for two minimizers mi and mj, a match is defined as mi = mj, and

a mismatch is defined as mi ≠ mj (lines 17–19). After building the POA graph G = (V,

E) by aligning all neighbors in minimizer space, we generate a consensus to obtain the

best-supported traversal through the graph. We first initialize a scoring λ, and set λ[v] =

0 for all v∈V. Then, we perform a topological sort of the nodes in the graph, and iterate

through the sorted nodes. For each node v, we select the highest-weighted incoming edge

e = (u, v) with weight we, and set λ[v] = we + λ(u). The node u is then marked as a

predecessor of v (lines 21–28).

Minimizer-space POA evaluation set-up—We extracted chromosome 4 (~ 1.2 Mbp)

of the D. melanogaster reference genome, and simulated reads using the command

randomreads.sh pacbio=t of BBMap (Bushnell, 2014). We generated one dataset per error

rate value from 0% to 10%, keeping other parameters identical (24 Kbp mean read length

and 70X coverage). Reads were then assembled using our implementation with and without

POA, using parameters ℓ = 10, k = 7, and δ = 0.0008 experimentally determined to yield a

perfect assembly with error-free reads. We evaluated the average read identity in minimizer

space using semi-global Smith-Waterman alignment between the sequence of minimizers of

a read and the sequence of minimizers of the reference, taking BLAST-like identity (number

of minimize matches divided by the number of alignment columns). We also evaluated the

length of the longest reconstructed contig in basespace as a proxy for assembly quality.

Exploration of rust-mdbg parameter space on simulated perfect reads—In

order to demonstrate the efficacy of our approach in terms of results quality in an ideal

setting, we simulated error-free reads of length 100 Kbp at 50X coverage of the D.
melanogaster genome. The parameters for the assembly were k = 30, ℓ = 12, and δ =

0.005. Table 3 (center) shows that rust-mdbg is able to assemble these error-free reads nearly

as well as HiCanu and hifiasm, within lower but similar NGA50 (~ 25% lower) and genome

fraction (< 1% lower) values. However, rust-mdbg is 2–3 orders of magnitudes faster and

uses an order of magnitude less memory.

Ekim et al. Page 15

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

For a base-space de Bruijn graph assembler, the quality of the assembly depends on a single

parameter (k), whereas in a rust-mdbg assembly, there are three parameters (ℓ, k, δ) that

can affect assembly quality independently (see STAR Methods). We investigated the effect

of changing k for given ℓ and δ, and changing d for given k and ℓ on the performance of

rust-mdbg on perfect reads. For ℓ = 12 and k = 30, we tested different values for d from

0.001 to 0.005 (increased by 0.0005 in each iteration). For ℓ = 12 and δ = 0.003, we tested

different values of k from 10 to 50 (increased by 1 in each iteration). For each iteration,

we computed the k-min-mer recovery rate (the percentage of k-min-mers obtained from the

reads that also exist in the set of k-min-mers from the reference) as a means of quantifying

the quality of a minimizer-space assembly through a completeness metric.

Figure 2B shows the results of this investigation. For fixed values of k = 30 and ℓ =

12, k-min-mer recovery rate is insufficiently low for δ<0.0025: Since the ordered lists of

minimizers obtained from the reads need to have length >k in order to not be discarded, a

very low density value causes a higher fraction of reads to be skipped, decreasing k-min-mer

recovery rate. For δ≥0.0025, an increasingly smaller portion of the reads are discarded,

consistently yielding k-min-mer recovery rates of >90%. We further observe that for fixed

values of δ = 0.003 and ℓ = 12, k-min-mer recovery rate is consistently above 95% for

k-min-mer lengths of 10 to 35. Since δ = 0.003, a sufficient portion of the reads are

transformed into k-min-mers at this k-min-mer length, and higher values of k will result in a

larger portion of the reads to be discarded.

gfatools command lines—The following (relatively aggressive) GFA assembly

graph simplifications rounds were performed for all mdBG assemblies, using https://

github.com/lh3/gfatools/. Rounds are of two types: -t x,y removes tips having at most x
segments and of maximal length y bp, and -b z removes bubbles of maximal radius z
bp. In addition, gfa_break_loops.py is a custom script (available in the rust-mdbg GitHub

repository) that removes self-loops in the assembly graph, as well as an arbitrary edge in

x y cycles.

gfatools asm -t 10,50000 -t 10,50000 -b 100000 -b 100000 -t 10,50000 \

 -b 100000 -b 100000 -b 100000 -t 10,50000 -b 100000 \

 -t 10,50000 -b 1000000 -t 10,150000 -b 1000000 -u > $base.tmp1.gfa

gfa_break_loops.py $base.tmp1.gfa > $base.tmp2.gfa

gfatools asm $base.tmp2.gfa -t 10,50000 -b 100000 -t 10,100000 \

 -b 1000000 -t 10,150000 -b 1000000 -u > $base.tmp3.gfa

gfa_break_loops.py $base.tmp3.gfa > $base.tmp4.gfa

gfatools asm $base.tmp4.gfa -t 10,50000 -b 100000 -t 10,100000 \

 -b 1000000 -t 10,200000 -b 1000000 -u > $base.msimpl.gfa

Genome assembly tools, versions, and parameters—HiCanu (v2.1) was run with

default parameters, hifiasm (commit 8cb131d) with parameters -l0 -f0, and Peregrine

(commit 008082a) with command line: 8 8 8 8 8 8 8 8 8 –with-consensus –shimmer-r 3

Ekim et al. Page 16

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/lh3/gfatools/
https://github.com/lh3/gfatools/

–best_n_ovlp 8. rust-mdbg was run with parameters k = 35, ℓ = 12, and δ = 0.002 for D.
melanogaster, and k = 21, ℓ = 14, δ = 0.003 for HG002.

For metagenomes, rust-mdbg was run with parameters k = 21, ℓ = 14, δ = 0.003 for the

ATCC MSA-1003 dataset (same parameters as the human dataset), and k = 40, ℓ = 12,

δ = 0.004 for the Zymo D6331 dataset. Hifiasm-meta (commit cda13b8) was run with

parameters -S -lowq-10 50 for ATCC MSA-1003 and default for Zymo.

Locally Consistent Parsing (LCP)—Locally Consistent Parsing (LCP) describes sets

of evenly spaced core substrings of a given length ℓ that cover any string of length

n for any alphabet (Şahinalp and Vishkin, 1994). The set of core substrings can be pre

computed such that a string of length n is covered by ~ n/ℓ core substrings on average.

LCP and the concept of core substrings were used in the first linear-time algorithm for

approximate string matching (Şahinalp and Vishkin, 1994), for string indexing under block

edit distance (Muthukrishnan and Şahinalp, 2000), and for almost linear-time approximate

string alignment (Batu et al., 2006).

SCALCE (Hach et al., 2012) introduced LCP to genome compression, and used the longest

core substring(s) in each read as representatives to group together similar reads, which

are then reordered lexicographically for compression without the need of a reference

genome. In preliminary testing of LCPs as an alternative to minimizers in our pipeline, we

integrated the pre-computed set of core substrings described in SCALCE into the universe

(ℓ,δ)-minimizers scheme in rust-mdbg, where we selected an ℓ-mer m as a minimizer

if m is a universe (ℓ,δ)-minimizer and also appears in the set of core substrings. We

evaluated both minimizer schemes on simulated perfect reads from D. melanogaster at 50X

coverage, real Pacific Biosciences HiFi reads from D. melanogaster at 100X coverage, and

HiFi reads for human (HG002) at ~ 50X coverage, taken from the HiCanu publication

(https://obj.umiacs.umd.edu/marbl_publications/hicanu/index.html) (Nurk et al., 2020). We

did not notice a major difference using LCP versus only universe minimizers, but our

implementation should be seen as a baseline for future optimizations.

ACKNOWLEDGMENTS

B.E. was partially funded by grant NIH R01HG010959 (to B.B.) and B.B. by NIH R35GM141861. R.C. was
funded by grants ANR Inception (ANR-16-CONV-0005), PRAIRIE (ANR-19-P3IA-0001), and PANGAIA (H2020
MSCA RISE 872539). The authors are grateful to A. Limasset, P. Peterlongo, B. Hie, and R. Singh for remarks on
the manuscript and to Simon Barnett for inspiration for the Graphical Abstract.

REFERENCES

Batu T, Ergun F, and Şahinalp C. (2006). Oblivious string embeddings and edit distance
approximations. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithms’, SODA ‘06, Society for Industrial and Applied Mathematics), pp. 792–801.

Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S, Mauceli E, Berger B, Mesirov JP, and Lander
ES (2002). ARACHNE: a whole-genome shotgun assembler. Genome Res. 12, 177–189. [PubMed:
11779843]

Berger B, Peng J, and Singh M. (2013). Computational solutions for omics data. Nat. Rev. Genet 14,
333–346. [PubMed: 23594911]

Ekim et al. Page 17

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://obj.umiacs.umd.edu/marbl_publications/hicanu/index.html

Berger E, Yorukoglu D, Zhang L, Nyquist SK, Shalek AK, Kellis M, Numanagić I, and Berger B.
(2020). Improved haplotype inference by exploiting long-range linking and allelic imbalance in
RNA-seq datasets. Nat. Commun 11, 4662. [PubMed: 32938926]

Bingmann T, Bradley P, Gauger F, and Iqbal Z. (2019). COBS: a compact bit-sliced signature index.
In 26th International Conference on String Processing and Information Retrieval (SPIRE), pp. 285–
303. arXiv:1905. 09624v2.

Blackwell GA, Hunt M, Malone KM, Lima L, Horesh G, Alako BT, Thomson NR, and Iqbal Z.
(2021). Exploring bacterial diversity via a curated and searchable snapshot of archived DNA
sequences. bioRxiv. 10.1101/2021.03.02.433662.

Broder AZ (1997). On the resemblance and containment of documents. In Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171), pp. 21–29. https://
www.cs.princeton.edu/courses/archive/spring13/cos598C/broder97resemblance.pdf.

Burrows M, and Wheeler D. (1994). A block-sorting lossless data compres sion algorithm. In Digital
SRC Research Report (Citeseer).

Bushnell B. (2014). BBMap: a fast, accurate, splice-aware aligner. (Lawrence Berkeley National
Laboratory). https://www.osti.gov/servlets/purl/1241166.

Cheng H, Concepcion GT, Feng X, Zhang H, and Li H. (2020). Haplotype-resolved de novo assembly
with phased assembly graphs. arXiv arXiv:2008.01237.

Chikhi R, Holub J, and Medvedev P. (2019). Data structures to represent sets of k-long DNA
sequences. arXiv, arXiv:1903.12312.

Chikhi R, Limasset A, Jackman S, Simpson JT, and Medvedev P. (2014). On the representation of
de Bruijn graphs. In International Conference on Research in Computational Molecular Biology
(Springer), pp. 35–55.

Chikhi R, and Medvedev P. (2014). Informed and automated k-mer size selection for genome
assembly. Bioinformatics 30, 31–37. [PubMed: 23732276]

Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston
J, Eichler EE, et al. (2013). Nonhybrid, finished microbial genome assemblies from long-read
SMRT sequencing data. Nat. Methods 10, 563–569. [PubMed: 23644548]

Chin C-S, and Khalak A. (2019). Human genome assembly in 100 minutes. bioRxiv. 10.1101/705616.

Edgar R. (2021). Syncmers are more sensitive than minimizers for selecting conserved k-mers in
biological sequences. PeerJ 9, e10805. [PubMed: 33604186]

Edgar RC, Taylor J, Altman T, Barbera P, Meleshko D, Lin V, Lohr D, Novakovsky G, Al-Shayeb B,
Banfield JF, et al. (2020). Petabase-scale sequence alignment catalyses viral discovery. bioRxiv.
10.1101/2020.08.07.241729.

Edge P, Bafna V, and Bansal V. (2017). HapCUT2: robust and accurate haplotype assembly for diverse
sequencing technologies. Genome Res. 27, 801–812. [PubMed: 27940952]

Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, Grundman H, Hasman H,
Holden MTG, Hopkins KL, et al. (2017). The role of whole genome sequencing in antimicrobial
susceptibility testing of bacteria: report from the eucast subcommittee. Clin. Microbiol. Infect 23,
2–22. [PubMed: 27890457]

Gurevich A, Saveliev V, Vyahhi N, and Tesler G. (2013). QUAST: quality assessment tool for genome
assemblies. Bioinformatics 29, 1072–1075. [PubMed: 23422339]

Hach F, Numanagićc I, Alkan C, and Şahinalp SC. (2012). SCALCE: boosting sequence compression
algorithms using locally consistent encoding. Bioinformatics 28, 3051–3057. [PubMed: 23047557]

Jain C, Rhie A, Zhang H, Chu C, Koren S, and Phillippy A. (2020). Weighted
minimizer sampling improves long read mapping. bioRxiv https://www.biorxiv.org/content/
10.1101/2020.02.11.943241v1.full.

Khan J, and Patro R. (2020). Cuttlefish: fast, parallel, and low-memory compaction of de Bruijn graphs
from large-scale genome collections. bioRxiv. 10.1101/2020.10.21.349605.

Kokot M, D1ugosz M, and Deorowicz S. (2017). KMC 3: counting and manipulating k-mer statistics.
Bioinformatics 33, 2759–2761. [PubMed: 28472236]

Kolmogorov M, Yuan J, Lin Y, and Pevzner PA (2019). Assembly of long, error-prone reads using
repeat graphs. Nat. Biotechnol 37, 540–546. [PubMed: 30936562]

Ekim et al. Page 18

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.cs.princeton.edu/courses/archive/spring13/cos598C/broder97resemblance.pdf
https://www.cs.princeton.edu/courses/archive/spring13/cos598C/broder97resemblance.pdf
https://www.osti.gov/servlets/purl/1241166
https://www.biorxiv.org/content/10.1101/2020.02.11.943241v1.full
https://www.biorxiv.org/content/10.1101/2020.02.11.943241v1.full

Lachmann A, Torre D, Keenan AB, Jagodnik KM, Lee HJ, Wang L, Silverstein MC, and Ma’ayan
A. (2018). Massive mining of publicly available RNA-seq data from human and mouse. Nat.
Commun 9, 1366. [PubMed: 29636450]

Lee C, Grasso C, and Sharlow MF (2002). Multiple sequence alignment using partial order graphs.
Bioinformatics 18, 452–464. [PubMed: 11934745]

Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW, Weiser JN, Corander J, Bentley SD, and
Croucher NJ (2019). Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome
Res. 29, 304–316. [PubMed: 30679308]

Li H. (2016). Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
Bioinformatics 32, 2103–2110. [PubMed: 27153593]

Li H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100.
[PubMed: 29750242]

Li Y, and Yan X. (2015). MSPKmerCounter: a fast and memory efficient approach for k-mer counting.
arXiv https://arxiv.org/pdf/1505.06550.pdf.

Lin Y, Yuan J, Kolmogorov M, Shen MW, Chaisson M, and Pevzner PA (2016). Assembly of
long error-prone reads using de Bruijn graphs. Proc. Natl. Acad. Sci. USA 113, E8396–E8405.
[PubMed: 27956617]

Logsdon GA, Vollger MR, and Eichler EE (2020). Long-read human genome sequencing and its
applications. Nat. Rev. Genet 21, 597–614. [PubMed: 32504078]

Loh PR, Baym M, and Berger B. (2012). Compressive genomics. Nat. Biotechnol 30, 627–630.
[PubMed: 22781691]

Loman NJ, Quick J, and Simpson JT (2015). A complete bacterial genome assembled de novo using
only nanopore sequencing data. Nat. Methods 12, 733–735. [PubMed: 26076426]

Lu J, and Salzberg S. (2020). Ultrafast and accurate 16S microbial community analysis using Kraken
2. bioRxiv. 10.1101/2020.03.27.012047.

Marçais G, DeBlasio D, Pandey P, and Kingsford C. (2019). Locality-sensitive hashing for the edit
distance. Bioinformatics 35, i127–i135. [PubMed: 31510667]

Muthukrishnan S, and Şahinalp SC (2000). Approximate nearest neighbors and sequence comparison
with block operations. In STOC ‘00. Proceedings of the thirty-second annual ACM symposium on
Theory of computing, pp. 416–424. 10.1145/335305.335353.

Nazeen S, Yu YW, and Berger B. (2020). Carnelian uncovers hidden functional patterns across diverse
study populations from whole metagenome sequencing reads. Genome Biol. 21, 47. [PubMed:
32093762]

Nurk S, Walenz BP, Rhie A, Vollger MR, Logsdon GA, Grothe R, Miga KH, Eichler EE, Phillippy
AM, and Koren S. (2020). HiCanu: accurate assembly of segmental duplications, satellites, and
allelic variants from high-fidelity long reads. Genome Res. 30, 1291–1305. [PubMed: 32801147]

Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, and Phillippy AM (2016).
Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132.
[PubMed: 27323842]

Peng Y, Leung HCM, Yiu SM, and Chin FYL (2010). IDBA–A practical iterative de Bruijn graph
de novo assembler. In Annual International Conference on Research in Computational Molecular
Biology (Springer), pp. 426–440.

Pevzner PA, Tang H, and Tesler G. (2004). De novo repeat classification and fragment assembly.
Genome Res. 14, 1786–1796. [PubMed: 15342561]

Pierce NT, Irber L, Reiter T, Brooks P, and Brown CT (2019). Large-scale sequence comparisons with
sourmash. F1000Res. 8, 1006. [PubMed: 31508216]

Rautiainen M, and Marschall T. (2020). MBG: minimizer-based sparse de Bruijn graph construction.
bioRxiv https://www.biorxiv.org/content/10.1101/2020.09.18.303156v1.full.

Roberts M, Hayes W, Hunt BR, Mount SM, and Yorke JA (2004). Reducing storage requirements for
biological sequence comparison. Bioinformatics 20, 3363–3369. [PubMed: 15256412]

Ruan J, and Li H. (2020). Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17,
155–158. [PubMed: 31819265]

Ekim et al. Page 19

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/pdf/1505.06550.pdf
https://www.biorxiv.org/content/10.1101/2020.09.18.303156v1.full

Şahinalp SC, and Vishkin U. (1994). Symmetry breaking for suffix tree construction. In Proceedings of
the Twenty-Sixth Annual ACM Symposium on Theory of Computing’, STOC ‘94 (Association for
Computing Machinery), pp. 300–309. 10.1145/195058.195164.

Shafin K, Pesout T, Lorig-Roach R, Haukness M, Olsen HE, Bosworth C, Armstrong J, Tigyi K,
Maurer N, Koren S, et al. (2020). Nanopore sequencing and the Shasta toolkit enable efficient de
novo assembly of eleven human genomes. Nat. Biotechnol 38, 1044–1053. [PubMed: 32686750]

Shajii A, Numanagić I, Leighton AT, Greenyer H, Amarasinghe S, and Berger B. (2021). A python
based programming language for high-performance computational genomics. Nat. Biotechnol
10.1038/s41587-021-00985-6.

Vaser R, Sović I, Nagarajan N, and Šikić M. (2017). Fast and accurate de novo genome assembly from
long uncorrected reads. Genome Res. 27, 737–746. [PubMed: 28100585]

Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, Concepcion GT, Ebler J, Fungtammasan
A, Kolesnikov A, Olson ND, et al. (2019). Accurate circular consensus long-read sequencing
improves variant detection and assembly of a human genome. Nat. Biotechnol 37, 1155–1162.
[PubMed: 31406327]

Ye C, Ma ZS, Cannon CH, Pop M, and Yu DW (2012). Exploiting sparseness in de novo genome
assembly. BMC Bioinformatics 13 (Supplement 6), S1.

Yorukoglu D, Yu YW, Peng J, and Berger B. (2016). Compressive mapping for next-generation
sequencing. Nat. Biotechnol 34, 374–376. [PubMed: 27054987]

Ekim et al. Page 20

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Box 1.

Progress and potential

Progress: third generation sequencing technologies, such as PacBio and Oxford

Nanopore (ONT), can now yield terabytes of long read genomic sequences (contiguous

sequences typically on the order of tens of thousands of base pairs) of higher quality

(1%–4% error rate) to analyze genomes. With these evolving technologies, several

important computational challenges have emerged. A fundamental problem among these

is genome assembly, which is the computational task of assembling (stitching together)

sequencing reads into a single genomic sequence per chromosome. The prevailing

approach, de novo assembly, is naively resource intensive since it requires pairwise

comparisons between all possible pairs of reads. Although the coverage and quality

of sequencing technologies have vastly advanced over the past several years, genome

assembly from sequencing data remains a challenging task due to the size and scope of

genomic data being generated across the tree of life.

More efficient de novo assemblers use graph based data structures, most frequently de
Bruijn graphs, which conceptually encode a set of sequence fragments found in the

reads, as well as their overlaps. The sequence of each complete chromosome corresponds

to a path in this graph. While de Bruijn graphs theoretically scale linearly in the size

of the target genome instead of the number of reads and are, therefore, more efficient,

sequencing errors can cause branching and, thus, increase their size and runtime to

search. Moreover, all k-mers (sequences of length k) that appear in the reads need to

be stored, which is memory intensive. A key insight of language models, which have

emerged as an effective way to model natural languages, is that words (or sentence

fragments), instead of letters, can be used as tokens (small building blocks) in the

computational model of the natural language. Taking inspiration from this concept, our

key conceptual advance is a data structure we call a minimizer-space de Bruijn graph
(mdBG), where, instead of single nucleotides as tokens of the de Bruijn graph, we use

short sequences of nucleotides known as minimizers, which allow for an even more

compact representation of the genome in what we call minimizer space. Minimizer space

de Bruijn graphs store only a small fraction of the nucleotides from the input data while

preserving the overall graph structure, enabling them to be orders of magnitude more

efficient than classical de Bruijn graphs. By doing so, we can reconstruct whole genomes

from accurate long read data in minutes—about a hundred times faster than state-of-the

art approaches—on a personal computer, while using significantly less memory and

achieving similar accuracy.

To enable assembly of reads with up to a 4% error rate (e.g., from emerging Oxford

Nanopore data, which offers high sequencing throughput, low cost and ultra-long read

lengths), we newly correct for read errors by performing minimizer-space partial order

alignment (POA), in which sequencing errors in a query read are corrected by aligning

other reads from the same genomic region to the query in minimizer space.

We also show that we can build very large minimizer-space de Bruijn graphs that can

be queried for biologically useful questions by constructing a graphical pangenome

Ekim et al. Page 21

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of a large and diverse collection of 661,405 bacterial genomes. This collection of

several terabytes has never before been represented as a pangenome graph (a graph

that represents multiple genomes simultaneously). Such a task is computationally nearly

impossible using state-of-the-art methods, which would take weeks and terabytes of

RAM to complete. We show that our method completes the construction in roughly

3 h with low memory usage, and the connected components in the mdBG distinguish

species, allowing us to quickly search for anti-microbial resistance genes inside the entire

pangenome.

Potential: as long-read sequencing technologies mature, they offer the promise of

genome reconstruction with unprecedented accuracy and contiguity. However, the

assembly of these genomes can be memory-intensive and time-consuming (taking days).

This precludes any but the largest centers with nearly unlimited computing power

to assemble metagenomes, large bacterial pangenomes, and the growing number of

human genomes for personalized medicine. If personalized medicine is expected to be

effective and available to everyone in the near future, processing raw data needs to be

done both cheaply and at ultra-fast rates. Consequently, cloud computing for genome

assembly and analysis will likely underpin future large-scale genomics collaborations

and efforts to re-analyze archived data. Our method, mdBG, significantly reduces the

computational resources required for performing whole-genome assembly, making such

analyses possible on desktop computers. We specifically demonstrate its use through

three examples: human genome assembly, metagenome assembly, and the construction

of large pangenome graphs. For microbiome and pangenome analyses, our approach

offers the possibility of constructing graphical pangenomes at the scale of the largest

existing collections quickly and accurately, enabling us to simultaneously analyze the

myriad of genomes available in databases. Given the rise of next-generation sequencing

technologies and faster and less expensive genome assembly, we expect our advances

to be essential to the convergence among next-generation sequencing (NGS), cloud

computing, and precision and personalized medicine, and beneficial in creating the

infrastructure necessary to formulate and test disease mechanisms and develop new

treatments at scale.

Ekim et al. Page 22

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Box 2.

A primer on minimizers and de Bruijn graphs

The variable σ is used as a placeholder for an unspecified alphabet (a non-empty set of

characters). We define ∑DNA = {A, C, T, G} as the alphabet containing the four DNA

bases. Given an integer ℓ>0, ∑ℓ is the alphabet consisting of all possible strings on ∑DNA

of length ℓ. To avoid confusion, we stress that ∑ℓ is an unusual alphabet: any “character”

of ∑ℓ is itself a string of length ℓ over the DNA-alphabet.

Given an alphabet σ,a string is a finite ordered list of characters from σ. Note that our

strings will sometimes be on alphabets where each character cannot be represented by

a single alphanumeric symbol. Given a string x over some alphabet σ and some integer

n>0, the prefix (respectively, the suffix) of x of length n is the string formed by the first

(respectively, the last) n characters of x. We now introduce the concept of a minimizer.
In this paragraph, we consider strings over the alphabet ∑DNA. We consider two types

of minimizers: universe and window. Consider a function f that takes as input a string

of length ℓ and outputs a numeric value within range [0,H], where H>0. Usually, f is a

4-bit encoding of DNA or a random hash function (it does not matter whether the values

of f are integers or whether H is an integer). Given an integer ℓ>1 and a coefficient

0<δ<1, a universe (ℓ, δ)-minimizer is any string m of length ℓ such that f(m)<δ•H.

We define Mℓ,δ to be the set of all universe (ℓ,δ)-minimizers, and we refer to d as

the density of Mℓδ.This definition of a minimizer is in contrast with the classical one

(Roberts et al., 2004), which we recall here, although we will not use it. Consider a string

x of any length and a substring (window) y of length w of x. A window ℓ-minimizer
of x given window y is a substring m of length ℓ of y that has the smallest value

f(m) among all other such substrings in y. Observe that universe minimizers are defined

independently of a reference string, unlike window minimizers. They have been recently

independently termed mincode syncmers (Edgar, 2021). We also performed experiments

with an alternative concept to minimizers, Locally Consistent Parsing (LCP) (Șahinalp

and Vishkin, 1994), which replaces universal minimizers with core substrings: substrings

that can be pre-computed for any given alphabet such that any sequence of length n
includes ~n/ℓ substrings of length ℓ on average (see “locally consistent parsing [LCP]“).

We recall the definition of de Bruijn graphs. Given an alphabet σ and an integer k≥2, a

de Bruijn graph of order k is a directed graph where nodes are strings of length k over

σ (k-mers), and two nodes x, y are linked by an edge if the suffix of x of length k −1 is

equal to the prefix of y of length k − 1. This definition corresponds to the node-centric de

Bruijn graph (Chikhi et al., 2014) generalized to any alphabet.

Ekim et al. Page 23

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Highlights

• We propose a novel graph representation for highly accurate and long

sequencing reads

• It improves the efficiency of genome assembly and pangenome graph

construction

• We construct for the first time a pangenome of 661,405 bacterial genomes

Ekim et al. Page 24

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1. Overview of our methods
(A) An efficient assembly method for state-of-the-art genome sequencing (e.g., PacBio HiFi

data). Illustration of our minimizer-space de Bruijn graph (mdBG, bottom) compared with

the original de Bruijn graph (top) commonly used for genome assembly. Center horizontal

section shows a toy reference genome, along with a collection of sequencing reads. Top box

shows k-mers (k = 4) collected from the reads, which are the nodes of the classical de Bruijn

graph. The input size of 52 nucleotides (nt) is depicted in boldface. Bottom box shows the

position of minimizers in the reads for ℓ = 2, and any ℓ-mer starting with nucleotide “A”

Ekim et al. Page 25

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

is chosen as a minimizer. k′-min-mers (using notation k′ = 3 here to differentiate from

classical k-mers) are tuples of k′ minimizers as ordered in reads, which constitute the nodes

of the minimizer-space de Bruijn graph. Creating k′-min-mers from the minimizer-space

representation of reads allows for a reduction in input size, since the only bases stored in a

k′-min-mer are the bases of the chosen minimizers. The reduced input size to 18 nucleotides

(nt) is depicted in boldface. The minimizer-space representation accelerates the construction

and traversal of the de Bruijn graph while reducing memory consumption.

(B) Overview of the assembly pipeline using mdBG. The region of the figure above

(respectively, below) the dotted line corresponds to analyses taking place in base space

(respectively, minimizer space). The input reads are scanned sequentially, and all [-mers

that belong to a pre-selected set of universe minimizers (see STAR Methods) are identified.

Each read is then represented as an ordered list of the selected minimizers, and k-min-mers

are collected from the minimizer-space representation of reads using a sliding window of

length k. A minimizer-space de Bruijn graph (mdBG) is then constructed from the set of all

k-min-mers and simplified in order to reduce ambiguity and remove errors. The mdBG is

then converted back into base space by concatenating the base-space sequences spanned by

the minimizers in the mdBG, and a set of contigs is reported.

(C) Overview of the minimizer-space partial order alignment (POA) procedure with a toy

dataset of 4 reads. (1) Error-prone reads and their ordered lists of minimizers (ℓ = 2) are

shown, with sequencing errors and the minimizers that are created as a result of errors

denoted in colors (insertion as red, deletion as orange, substitution in blue, no errors in

green). (2) Before minimizer-space error-correction, the ordered lists of minimizers are

bucketed using their n-tuples (n = 1). (3) For a query ordered list (the first read in the

read set in the figure), all ordered lists that share an n-tuple with the query are obtained,

and the final list of query neighbors are obtained by applying a heuristically determined

distance filter dj (Jaccard distance threshold of φ = 0.5). (4) A POA graph in minimizer

space is constructed by initializing the graph with the query and aligning each ordered list

that passed the filter to the graph iteratively (weights of poorlya supported edges are shown

in red). (5) By taking a consensus path of the graph, the error in the query is corrected.

Ekim et al. Page 26

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2. Evaluation of minimizer-space POA correction
(A) Effect of our minimizer-space POA correction on mdBG assembly and reads. Reads

from D. melanogaster chromosome 4 were simulated with base error rates ranging from 0%,

1%, …, up to 10%. Assemblies were run with and without minimizer-space POA correction.

Left panel depicts the length of the longest contig for each assembly (uncorrected in blue,

minimizer-space POA-corrected in orange). Right panel depicts the average read identity to

the reference, computed in minimizer space, for raw reads (observed in blue, and predicted

by Equation 1 in green), and reads corrected by POA in minimizer space (in orange).

(B) Robustness of rust-mdbg assemblies by varying the k and δ parameters, on whole

genome D. melanogaster simulated perfect reads. The proportion of recovered k-min-mer

values is reported in both plots. Left panel shows recovery rates for k = 30, ℓ = 12, and

varying δ from 0.001 to 0.005, with good recovery (≥ 90%) occurring with δ≥0.0025). Right

panel shows recovery rates for ℓ = 12, δ = 0.003, and varying k from 10 to 50, again with

good recovery with k ≥ 40.

Ekim et al. Page 27

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3. Pangenome mdBG of 661,405 bacterial genomes and retrieval of anti-microbial
resistance genes
Top panel: a complete δ = 0.001 pangenome mdBG is constructed for the whole 661,405

bacterial collection and the first five connected components are displayed here (using Gephi

software). Each node is a k-min-mer, and edges are exact overlaps of k − 1 minimizers

between k-min-mers. Middle panel: a collection of anti-microbial resistance gene targets

was converted into minimizer space, then each k-min-mer is queried in a 661,405 bacterial

pangenome graph (δ = 0.01) yielding a bimodal distribution of gene retrieval: genes with

high identity (99%+) to those in the pangenome are found, while those with lower identity

are not found. The histogram is annotated by the minimal sequence divergence of each gene

as aligned by minimap2 to the pangenome over 90% of its length. Bottom panel: runtime

and memory usage for the δ = 0.01 graph construction and query. Note that the graph need

only be constructed once in a preprocessing step.

Ekim et al. Page 28

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4. Propagation of sequencing errors in base space to minimizer space
We consider a sequence along with its minimizers (left of the box). Each panel inside the

box depicts the effect of a different mutation on this sequence. Top left panel: G → C

(in purple) leads to no change in the minimizer-space representation as the mutation did

not change or create any minimizer. Bottom left: A → G led to the disappearance of m2.

Top right: C → A made the m3 minimizer appear. Bottom right: T → A affected two

minimizers: m4 was substituted for m1, and m3 was inserted.

Ekim et al. Page 29

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ekim et al. Page 30

Ta
b

le
 1

.

A
ss

em
bl

y
st

at
is

tic
s

of
 D

. m
el

an
og

as
te

r r
ea

l H
iF

i r
ea

ds
 (

le
ft

),
 s

im
ul

at
ed

 p
er

fe
ct

 r
ea

ds
 (

ce
nt

er
),

 a
nd

 H
um

an
 r

ea
l H

iF
i r

ea
ds

 (
ri

gh
t)

, a
ll

ev
al

ua
te

d
us

in
g

th
e

co
m

m
on

ly
 u

se
d

Q
U

A
ST

 p
ro

gr
am

D
. m

el
 1

00
x

re
al

 H
iF

i r
ea

ds
D

. m
el

 5
0x

 s
im

ul
at

ed
 p

er
fe

ct
 r

ea
ds

H
um

an
 r

ea
l H

iF
i r

ea
ds

To
ol

P
er

eg
ri

ne
H

iC
an

u
H

if
ia

sm
R

us
t-

m
db

g
P

er
eg

ri
ne

H
iC

an
u

H
if

ia
sm

R
us

t-
m

db
g

P
er

eg
ri

ne
H

if
ia

sm
R

us
t-

m
db

g

T
im

e
40

 m
in

 1
1s

7
h

43
m

in
5

h
17

m
in

1
m

in
 9

 s
23

 m
in

 3
1

s
8

h
12

 m
in

19
 h

 3
8

m
in

21
 s

14
 h

 8
 m

in
58

 h
 4

1m
in

10
 m

in
 2

3
s

M
em

or
y

12
 G

B
12

 G
B

21
 G

B
1.

5
G

B
16

 G
B

18
 G

B
51

 G
B

<1
 G

B
18

8
G

B
19

5
G

B
10

 G
B

C

on
tig

s
68

2
92

8
53

8
93

63
45

48
34

8,
10

9
43

1
80

5

N
G

A
50

 (
M

)
5.

2
10

.1
4.

8
6.

0
6.

3
19

.4
21

.5
15

.4
18

.2
*

88
.0

*
16

.1
*

C
om

pl
et

e
(%

)
93

.9
%

96
.6

%
96

.6
%

90
.8

%
98

.2
%

98
.1

%
98

.2
%

96
.2

%
97

.0
%

94
.2

%
95

.5
%

M

is
as

m
.

10
5

0
0

3
5

0
1

N
/A

*
N

/A
*

N
/A

*

A
ll

as
se

m
bl

ie
s

w
er

e
ho

m
op

ol
ym

er
 c

om
pr

es
se

d.
 W

al
l-

cl
oc

k
tim

e
is

 r
ep

or
te

d
fo

r
8

th
re

ad
s.

 N
G

A
50

 is
 a

 c
on

tig
ui

ty
 m

et
ri

c
re

po
rt

ed
 in

 m
eg

ab
as

es
 (

M
bp

)
by

 Q
U

A
ST

 a
s

th
e

lo
ng

es
t c

on
tig

 a
lig

nm
en

t t
o

th
e

re
fe

re
nc

e
ge

no
m

e
so

 th
at

 s
ho

rt
er

 c
on

tig
 a

lig
nm

en
ts

 c
ol

le
ct

iv
el

y
m

ak
e

up
 5

0%
 o

f
th

e
ge

no
m

e
le

ng
th

. T
he

 n
um

be
r

of
 m

is
as

se
m

bl
ie

s
is

 r
ep

or
te

d
by

 Q
U

A
ST

. N
G

A
50

/N
G

50
 a

nd
 G

en
om

e
fr

ac
tio

n
(C

om
pl

et
e%

)
sh

ou
ld

 b
e

m
ax

im
iz

ed
, w

he
re

as
 a

ll
ot

he
r

m
et

ri
cs

 s
ho

ul
d

be
 m

in
im

iz
ed

. O
nl

y
Pe

re
gr

in
e,

 h
if

ia
sm

, a
nd

 o
ur

 m
et

ho
d

ru
st

-m
db

g
w

er
e

ev
al

ua
te

d
on

 H
um

an
 a

ss
em

bl
ie

s,
 s

in
ce

 H
iC

an
u

re
qu

ir
es

 a
ro

un
d

an
 o

rd
er

 o
f

m
ag

ni
tu

de
 m

or
e

ru
nn

in
g

tim
e.

* Fo
r

th
e

H
um

an
 a

ss
em

bl
ie

s,
 N

G
50

 is
 r

ep
or

te
d

in
st

ea
d

of
 N

G
A

50
, a

nd
 m

is
as

se
m

bl
ie

s
ar

e
no

t r
ep

or
te

d
du

e
to

 s
tr

uc
tu

ra
l d

if
fe

re
nc

es
 b

et
w

ee
n

H
G

00
2

an
d

th
e

hg
38

 r
ef

er
en

ce
.

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ekim et al. Page 31

Ta
b

le
 2

.

M
et

ag
en

om
e

as
se

m
bl

y
st

at
is

tic
s

of
 th

e
Z

ym
o

D
63

31
 d

at
as

et
 (

le
ft

)
an

d
th

e
A

T
C

C
 M

SA
-1

00
3

da
ta

se
t (

ri
gh

t)
 u

si
ng

 h
if

ia
sm

-m
et

a
an

d
ru

st
-m

db
g

Z
ym

o
D

63
31

 S
pe

ci
es

A
bu

nd
an

ce
hi

fi
as

m
ru

st
-m

db
g

A
T

C
C

 M
SA

-1
00

3
Sp

ec
ie

s
A

bu
nd

an
ce

hi
fi

as
m

ru
st

-m
db

g

A
. m

uc
in

ip
hi

la
1.

36
%

10
0.

00
%

10
0.

00
%

A
. b

au
m

an
ni

i
0.

18
%

99
.8

4%
99

.9
6%

B
. f

ra
gi

lis
13

.1
3%

99
.9

9%
10

0.
00

%
B

. p
ac

if
ic

us
1.

80
%

10
0.

00
%

10
0.

00
%

B
. a

do
le

sc
en

tis
1.

34
%

10
0.

00
%

99
.7

3%
B

. v
ul

ga
tu

s
0.

02
%

81
.8

5%
70

.9
0%

C
. a

lb
ic

an
s

1.
61

%
67

.8
3%

39
.8

2%
B

. a
do

le
sc

en
tis

0.
02

%
5.

24
%

0.
64

%

C
. d

iff
ic

ile
1.

83
%

10
0.

00
%

99
.9

8%
C

. b
ei

je
ri

nc
ki

i
1.

80
%

99
.9

9%
99

.9
9%

C
. p

er
fr

in
ge

ns
0.

00
%

0.
01

%
0.

01
%

C
. a

cn
es

0.
18

%
10

0.
00

%
10

0.
00

%

E
. f

ae
ca

lis
0.

00
%

0.
01

%
0.

01
%

D
. r

ad
io

du
ra

ns
0.

02
%

82
.5

0%
53

.6
6%

E
. c

ol
i B

11
09

8.
44

%
10

0.
00

%
97

.9
2%

E
. f

ae
ca

lis
0.

02
%

54
.9

8%
21

.0
5%

E
. c

ol
i b

22
07

8.
32

%
10

0.
00

%
98

.6
6%

E
. c

ol
i

18
.0

0%
10

0.
00

%
10

0.
00

%

E
. c

ol
i B

30
08

8.
25

%
10

0.
00

%
99

.5
6%

H
. p

yl
or

i
0.

18
%

10
0.

00
%

10
0.

00
%

E
. c

ol
i B

76
6

7.
83

%
96

.9
1%

96
.2

7%
L

. g
as

se
ri

0.
18

%
97

.7
8%

98
.1

4%

E
. c

ol
i J

M
10

9
8.

37
%

10
0.

00
%

97
.8

5%
N

. m
en

in
gi

tid
is

0.
18

%
98

.5
9%

99
.0

3%

F.
 p

ra
us

ni
tz

ii
14

.3
9%

10
0.

00
%

10
0.

00
%

P.
 g

in
gi

va
lis

18
.0

0%
91

.7
4%

99
.9

4%

F.
 n

uc
le

at
um

3.
78

%
10

0.
00

%
99

.9
6%

P.
 a

er
ug

in
os

a
1.

80
%

99
.7

1%
99

.7
3%

L
. f

er
m

en
tu

m
0.

86
%

10
0.

00
%

10
0.

00
%

R
. s

ph
ae

ro
id

es
18

.0
0%

99
.7

5%
10

0.
00

%

M
. s

m
ith

ii
0.

04
%

99
.8

4%
87

.1
8%

S.
 o

do
nt

ol
yt

ic
a

0.
02

%
8.

18
%

1.
05

%

P.
 c

or
po

ri
s

5.
37

%
99

.5
6%

99
.5

6%
S.

 a
ur

eu
s

1.
80

%
10

0.
00

%
10

0.
00

%

R
. h

om
in

is
3.

88
%

10
0.

00
%

10
0.

00
%

S.
 e

pi
de

rm
id

is
18

.0
0%

10
0.

00
%

10
0.

00
%

S.
 c

er
ev

is
ia

e
0.

18
%

69
.5

2%
39

.5
6%

S.
 a

ga
la

ct
ia

e
1.

80
%

99
.5

0%
99

.9
8%

S.
 e

nt
er

ic
a

0.
02

%
6.

23
%

4.
62

%
S.

 m
ut

an
s

18
.0

0%
10

0.
00

%
10

0.
00

%

V
. r

og
os

ae
11

.0
2%

10
0.

00
%

10
0.

00
%

–
–

–
–

R
un

ni
ng

 ti
m

e
–

34
 h

 2
9

m
in

55
s

–
–

59
 h

 1
6

m
in

3
m

in
 5

1
s

M
em

or
y

us
ag

e
–

83
 G

B
0.

9
G

B
–

–
31

3
G

B
1.

3
G

B

T
he

 A
bu

nd
an

ce
 c

ol
um

n
sh

ow
s

th
e

re
la

tiv
e

ab
un

da
nc

e
of

 th
e

sp
ec

ie
s

in
 th

e
sa

m
pl

e.
 T

he
 tw

o
ri

gh
tm

os
t c

ol
um

ns
 s

ho
w

 th
e

sp
ec

ie
s

co
m

pl
et

en
es

s
of

 th
e

as
se

m
bl

ie
s

as
 r

ep
or

te
d

by
 m

et
aQ

U
A

ST
.

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ekim et al. Page 32

Ta
b

le
 3

.

C
om

pa
ri

so
n

of
 a

ss
em

bl
y

st
at

is
tic

s
be

tw
ee

n
or

ig
in

al
 u

ni
ve

rs
e

m
in

im
iz

er
s

an
d

un
iv

er
se

 m
in

im
iz

er
s

w
ith

 L
C

P

D
. m

el
 1

00
x

re
al

 H
iF

i r
ea

ds
D

. m
el

 5
0x

 s
im

ul
at

ed
 p

er
fe

ct
 r

ea
ds

H
um

an
 r

ea
l H

iF
i r

ea
ds

M
in

im
iz

er
s

sc
he

m
e

U
ni

ve
rs

e
U

ni
ve

rs
e

+
L

C
P

U
ni

ve
rs

e
U

ni
ve

rs
e

+
L

C
P

U
ni

ve
rs

e
U

ni
ve

rs
e

+
L

C
P

T
im

e
1

m
 9

 s
1

m
 1

3
s

21
 s

22
 s

10
 m

 2
3

s
10

 m
 3

1
s

M
em

or
y

1.
5

G
B

1
G

B
<

1
G

B
<

1
G

B
10

 G
B

10
 G

B

co

nt
ig

s
93

10
6

34
35

80
5

80
7

N
G

A
50

 (
M

)
6.

0
5.

4
15

.4
15

.4
16

.1
*

13
.9

*

C
om

pl
et

e
(%

)
90

.8
%

91
.1

%
96

.2
%

96
.3

%
95

.5
%

95
.5

%

m

is
as

m
.

0
0

1
2

N
/A

*
N

/A
*

A
ss

em
bl

y
st

at
is

tic
s

us
in

g
bo

th
 u

ni
ve

rs
e

m
in

im
iz

er
s

(d
en

ot
ed

 b
y

“U
ni

ve
rs

e,
”

sa
m

e
da

ta
se

ts
 a

s
in

 T
ab

le
 1

)
an

d
un

iv
er

se
 m

in
im

iz
er

s
w

ith
 L

C
P

(d
en

ot
ed

 b
y

“U
ni

ve
rs

e
+

 L
C

P”
)

of
 D

. m
el

an
og

as
te

r r
ea

l H
iF

i
re

ad
s

(l
ef

t)
, s

im
ul

at
ed

 p
er

fe
ct

 r
ea

ds
 (

ce
nt

er
),

 a
nd

 H
um

an
 r

ea
l H

iF
i r

ea
ds

 (
ri

gh
t)

, e
va

lu
at

ed
 u

si
ng

 th
e

sa
m

e
m

et
ri

cs
 in

 T
ab

le
 1

. P
ar

am
et

er
s

fo
r

bo
th

 s
ch

em
es

 w
er

e
k

=
 3

5,
 ℓ

 =
 1

2,
 a

nd
 δ

 =
 0

.0
02

 f
or

 D
.

m
el

an
og

as
te

r,
an

d
k

=
 2

1,
 ℓ

 =
 1

4,
 a

nd
 δ

 =
 0

.0
03

 f
or

 H
um

an
.

* Fo
r

th
e

H
um

an
 a

ss
em

bl
ie

s,
 N

G
50

 is
 r

ep
or

te
d

in
st

ea
d

of
 N

G
A

50
, a

nd
 m

is
as

se
m

bl
ie

s
ar

e
no

t r
ep

or
te

d
du

e
to

 s
tr

uc
tu

ra
l d

if
fe

re
nc

es
 b

et
w

ee
n

H
G

00
2

an
d

th
e

hg
38

 r
ef

er
en

ce
.

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ekim et al. Page 33

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

D. melanogaster and H. sapiens HiFi reads Nurk et al., 2020 Table 1; https://doi.org/10.1101/gr.263566.120

ATCC MSA-1003 and Zymo D6331 HiFi reads N/A Table 2; SRA identifiers SRX9569057 and SRX8173258

Software and algorithms

mdBG code This paper https://doi.org/10.5281/zenodo.5145931; https://github.com/ekimb/rust
mdbg

Cell Syst. Author manuscript; available in PMC 2021 November 02.

https://github.com/ekimb/rust-mdbg
https://github.com/ekimb/rust-mdbg

	SUMMARY
	In brief
	Graphical Abstract
	INTRODUCTION
	Comparison with related work

	RESULTS
	Ultra-fast, memory-efficient, and highly contiguous assembly of real HiFi reads using rust-mdbg
	Minimizer-space POA enables correction of reads with higher sequencing error rates
	Pangenome mdBG of a collection of 661,405 bacterial genomes allows efficient large-scale search of AMR genes
	Highly efficient assembly of real HiFi metagenomes using mdBG

	DISCUSSION
	STAR★METHODS
	RESOURCE AVAILABILITY
	Lead contact
	Materials availability
	Data and code availability

	METHOD DETAILS
	Minimizer-space de Bruijn graphs
	How sequencing errors in base-space propagate to minimizer-space
	Error correction using minimizer-space partial order alignment (POA)
	Implementation details
	Minimizer-space partial order alignment
	POA bucketing and preprocessing

	Algorithm 1.
	Algorithm 2.
	Algorithm 3.
	Algorithm 4.
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.
	Table 2.
	Table 3.
	Table T8

