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SUMMARY

DNA sequencing data continue to progress toward longer reads with increasingly lower 

sequencing error rates. Here, we define an algorithmic approach, mdBG, that makes use of 

minimizer-space de Bruijn graphs to enable long-read genome assembly. mdBG achieves orders­

of-magnitude improvement in both speed and memory usage over existing methods without 

compromising accuracy. A human genome is assembled in under 10 min using 8 cores and 10 GB 

RAM, and 60 Gbp of metagenome reads are assembled in 4 min using 1 GB RAM. In addition, we 

constructed a minimizer-space de Bruijn graph-based representation of 661,405 bacterial genomes, 

comprising 16 million nodes and 45 million edges, and successfully search it for anti-microbial 

resistance (AMR) genes in 12 min. We expect our advances to be essential to sequence analysis, 

given the rise of long-read sequencing in genomics, metagenomics, and pangenomics. Code for 

constructing mdBGs is freely available for download at https://github.com/ekimb/rust-mdbg/.

In brief

DNA sequencing continues to progress toward longer and more accurate reads. Yet, primary 

analyses, such as genome assembly and pangenome graph construction, remain challenging 

and energy-inefficient. Here, we introduce the concept of minimizer-space sequencing analysis, 

expanding the alphabet of DNA sequences to atomic tokens made of fixed-length words. This 

leads to ordersof-magnitude improvements in speed and memory usage for human genome 

assembly and metagenome assembly and enables for the first time a representation of a 

pangenome made of 661,405 bacterial genomes.
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INTRODUCTION

DNA sequencing data continue to improve from long reads of poor quality (Batzoglou 

et al., 2002), used to assemble the first human genomes and Illumina short reads with 

low error rates (≤1%) to longer reads with low error rates. For instance, recent Pacific 

Biosciences (PacBio) instruments can sequence 10to 25-Kbp-long (HiFi) reads at ≤1% error 

rate (Wenger et al., 2019). The R10.3 pore of the Oxford Nanopore produces reads of 

hundreds of Kbps in length at a ~ 5% error rate. A tantalizing possibility is that DNA 

sequencing will eventually converge to long, nearly perfect reads. These new technologies 

require algorithms that are both efficient and accurate for important sequence analysis tasks 

such as genome assembly (Logsdon et al., 2020).

Efficient algorithms for sequence analysis have played a central role in the era of high­

throughput DNA sequencing. Many analyses, such as read mapping (Yorukoglu et al., 

2016; Shajii et al., 2021), genome assembly (Pevzner et al., 2004), and taxonomic profiling 

(Lu and Salzberg, 2020; Nazeen et al., 2020), have benefited from milestone advances 

that effectively compress, or sketch, the data (Loh et al., 2012), for e.g., fast full-text 

search with the Burrows-Wheeler transform (BWT) (Burrows and Wheeler, 1994), space­

efficient graph representations with succinct de Bruijn graphs (Chikhi et al., 2019), and 

light-weight databases with MinHash sketches (Ondov et al., 2016). Large-scale data 

re-analysis initiatives (Edgar et al., 2020; Lachmann et al., 2018) further incentivize the 
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development of efficient algorithms, as they aim to re-analyze petabases of existing public 

data.

However, there has traditionally been a trade-off between algorithmic efficiency and loss 

of information, at least during the initial sequence-processing steps. Consider short-read 

genome assembly: the non-trivial insight of chopping up reads into k-mers, thereby 

bypassing the ordering of k-mers within each read, has unlocked fast and memory-efficient 

approaches using de Bruijn graphs; yet, the short k-mers—chosen for efficiency—lead to 

fragmented assemblies (Berger et al., 2013). In modern sequence similarity estimation and 

read mapping approaches, (Yorukoglu et al., 2016) information loss is even more drastic, as 

large genomic windows are sketched down to comparatively tiny sets of minimizers—which 

index a sequence (window) by its lexicographically smallest k-mer (Ondov et al., 2016) 

and enable efficient but sometimes inaccurate comparisons between gigabase-scale sets of 

sequences (Jain et al., 2020).

Here, we provide a highly efficient genome assembly tool for state-of-the-art and low-error 

long-read data (for a high-level summary, see Box 1: Progress and Potential). We introduce 

minimizer-space de Bruijn graphs, mdBGs, which instead of building an assembly over 

sequence bases—the standard approach that for clarity we refer to as base space—newly 

performs assembly in minimizer space (Figure 1A) and later converts it back to base-space 

assemblies. Specifically, each read is initially converted to an ordered sequence of its 

minimizers (Roberts et al., 2004; Li and Yan 2015). The order of the minimizers is 

important, as our aim is to reconstruct the entire genome as an ordered list. Our method 

differs from the classical MinHash technique, which converts sequences into unordered 

sets of minimizers to detect pairwise similarities between them (Broder, 1997). To aid in 

assembly of higher-error-rate data, we also introduce a variant of the partial order alignment 

(POA) algorithm that operates in minimizer space instead of base space and effectively 

corrects only the bases corresponding to minimizers in the reads. Sequencing errors 

that occur outside minimizers do not affect our representation. Those within minimizers 

cause substitutions or indels in minimizer space (Figure 4), which can be identified and 

subsequently corrected in minimizer space using POA (Figure 1C).

Our key conceptual advance is that minimizers can themselves make up atomic tokens of 

an extended alphabet, which enables efficient long-read assembly that, along with error 

correction, leads to preserved accuracy. By performing assembly using a minimizer-space de 

Bruijn graph, we drastically reduce the amount of data input to the assembler, preserving 

accuracy, lowering running time, and decreasing memory usage by 1 to 2 orders of 

magnitude compared with current assemblers. Setting adequate parameters for the order 

of the de Bruijn graph and the density of our minimizer scheme allows us to overcome 

stochastic variations in sequencing depth and read length, in a similar fashion to traditional 

base-space assembly. To handle higher sequencing error rates, we correct for base errors by 

introducing the concept of minimizer-space partial order alignment (POA).

With error-prone data, we study two regimes: real PacBio HiFi read data (<1% error rate) 

for Drosophila melanogaster and Human, which turn out to require little adjustment for 

errors due to the very low rate, and synthetic 1 to 10% error-rate data, which correspond to 
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the range of error rates of Oxford Nanopore’s recent technology. We also demonstrate that 

despite data reduction, running our rust-mdbg software on synthetic error-free and 4% error 

rate data results in near-perfect reconstruction of a genome, the latter entirely due to our 

application of POA in minimizer space.

To further demonstrate rust-mdbg’s capabilities, we used it to assemble two PacBio HiFi 

metagenomes, achieving runtimes of minutes as opposed to days, and memory usage two 

orders of magnitude lower than the current state-of-the-art hifiasm-meta, with comparable 

assembly completeness yet lower contiguity. As a versatile use case of minimizer-space 

analysis, we construct, to the best of our knowledge, the largest pangenome graph to date 

of 661K bacterial genomes and perform minimizer-space queries of anti-microbial resistance 

(AMR) genes within this graph, identifying nearly all those with high sequence similarity to 

original bacterial genomes. Rapidly detecting AMR genes in a large collection of samples 

would facilitate real-time AMR surveillance (Ellington et al., 2017), and mdBG provides a 

space-efficient alternative to indexed k-mer searches.

Remarkably, our approach is equivalent to examining a tunable fraction (e.g., only 1%) of 

the input bases in the data and should generalize to emerging sequencing technologies.

Comparison with related work

This work is at the confluence of three core ideas that were recently proposed in three 

different genome assemblers: Shasta (Shafin et al., 2020), wtdbg2 (Ruan and Li, 2020), 

and Peregrine (Chin and Khalak, 2019). (1) Shasta transforms ordered lists of reads into 

minimizers (Shasta used the term markers) to produce an efficiently reduced representation 

of sequences that facilitates quick detection of overlaps between reads. A similar idea was 

previously used for read mapping and assembly in minimap/miniasm (Li, 2016, 2018) 

and edit distance calculation with Order Min Hash (OMH) (Març ais et al., 2019). (2) 

The wtdbg2 idea extends the usual ∑ = {A, C, T, G} alphabet, which forms the basis of 

traditional genome de Bruijn graphs, to 256 bp windows: a “fuzzy” de Bruijn graph is 

constructed by “zooming out” of read sequences and considering batches of 256 bps at a 

time. (3) The Peregrine idea can be broken down into two parts: (1) pairs of consecutive 

minimizers can be indexed—and they are naturally less often repeated across a genome than 

isolated minimizers, and (2) a hierarchy of minimizers can be constructed so that fewer 

minimizers are selected than in classical methods, thus increasing the distance between 

minimizers.

In distantly related independent work, a very recent pre-print (Rautiainen and Marschall, 

2020) (MBG) demonstrates a similar idea as Peregrine, performing assembly by finding 

pairs of consecutive minimizers on reads. Although MBG does combine the concepts of 

minimizers and de Bruijn graphs, it is fundamentally different from the work presented 

here. Nodes in the MBG are classical k-mers over the DNA alphabet, whereas nodes in 

our representation are k-mers over an alphabet of minimizers. Two other related concepts to 

MBG are sparse de Bruijn graphs (Ye et al., 2012) and A-Bruijn graphs (Kolmogorov et al., 

2019; Lin et al., 2016), in which the nodes are a subset of the original de Bruijn graph nodes 

and the edge condition is relaxed so that overlaps may be shorter than (k −1) when pairs of 

nodes are seen consecutively in a read.

Ekim et al. Page 4

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conceptually, our advance is in tightly combining both de Bruijn graphs and minimizers, 

introducing a non-trivial mix of previously known ingredients (see Box 2). The concept of a 

de Bruijn graph was not considered in either the Shasta or the Peregrine assemblers; whereas 

in the wtdbg2 assembler, de Bruijn graphs were considered, but not minimizers. Moreover, 

reducing the three aforementioned genome assemblers into a single idea for each of them, in 

terms of how they achieve algorithmic efficiency, is a contribution in itself and simplifies our 

presentation greatly. What we offer is essentially an ultrafast variation of de Bruijn graphs 

for long reads.

RESULTS

An overview of our pipeline, implemented in Rust (rust-mdbg), is shown in Figure 1B. 

We compared rust-mdbg with three recent assemblers optimized for low-error rate long 

reads: Peregrine, HiCanu (Nurk et al., 2020), and hifiasm (Cheng et al., 2020) (see “genome 

assembly tools, versions, and parameters“ for versions and parameters).

Ultra-fast, memory-efficient, and highly contiguous assembly of real HiFi reads using rust­
mdbg

We evaluated our software, rust-mdbg, on real PacBio HiFi reads from D. melanogaster, 
at 100X coverage, and HiFi reads for human (HG002) at ~ 50× coverage, both taken from 

the HiCanu publication (https://obj.umiacs.umd.edu/marbl_publications/hicanu/index.html) 

(Nurk et al., 2020).

Since our method does not resolve both haplotypes in diploid organisms, we compared 

against the primary contigs of HiCanu and hifiasm. In our tests with D. melanogaster, 
the reference genome consists of all nuclear chromosomes from the RefSeq accession 

(GenBank: GCA_000001215.4). Assembly evaluations were performed using QUAST 

(Gurevich et al., 2013) v5.0.2 and run with parameters recommended in HiCanu’s article 

(Nurk et al., 2020). QUAST aligns contigs to a reference genome, allowing to compute 

contiguity and completeness statistics that are corrected for misassemblies (NGA50 and 

Genome fraction metrics respectively in Table 3). Assemblies were all run using 8 threads 

on a Xeon 2.60 GHz CPU. For rust-mdbg assemblies, contigs shorter than 50 Kbp were 

filtered out similar to as shown in Nurk et al. (2020). We did not report the running time 

of the base-space conversion step and graph simplifications, as they are under 15% of 

the running CPU time and run on a single thread, taking no more memory than the final 

assembly size, which is also less memory than the mdBG.

Table 1 (leftmost) shows assembly statistics for D. melanogaster HiFi reads. Our software 

rust-mdbg uses ~ 33× less wall-clock time and 8× less RAM than all other assemblers. In 

terms of assembly quality, all tools yielded high-quality results. HiCanu had 66% higher 

NGA50 statistics than rust-mdbg, at the cost of making more misassemblies, 385× longer 

runtime, and 8× higher memory usage. rust-mdbg reported the lowest Genome fraction 

statistics, likely due, in part, to an aggressive tip-clipping graph simplification strategy, also 

removing true genomic sequences.
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Table 1 (rightmost) shows assembly statistics for Human HiFi (HG002) reads. rust-mdbg 

performed assembly 81x faster with 18× less memory usage than Peregrine, at the cost of 

a 22% lower contiguity and 1.5% lower completeness. Compared with hifiasm, rust-mdbg 

performed 338× faster with 19× lower memory, resulting in a less contiguous assembly 

(NG50 of 16.1 Mbp versus 88.0 Mbp for hifiasm) and 1.3% higher completeness.

Remarkably, the initial unsimplified mdBG for the Human assembly only had ~12 

million k-min-mers (seen at least twice in the reads, out of 40 million seen in total) 

and 24 million edges, which should be compared with the 2.2 Gbp length of the 

(homopolymer compressed) assembly and the 100-GB total length of input reads in the 

uncompressed FASTA format. This highlights that the mdBG allows very efficient storage 

and simplification operations over the initial assembly graph in minimizer space.

Minimizer-space POA enables correction of reads with higher sequencing error rates

We introduce minimizer-space partial order alignment (POA) to tackle sequencing errors. 

To determine the efficacy of minimizer-space POA and the limits of minimizer-space de 

Bruijn graph assembly with higher read error rates, we performed experiments on a smaller 

dataset. In a nutshell, we simulated reads for a single Drosophila chromosome at various 

error rates and performed mdBG assembly with and without POA (see STAR Methods for 

more details).

Figure 2A (left) shows that the original implementation without POA is only able to 

reconstruct the complete chromosome into a single contig up to error rates of 1%, after 

which the chromosome is assembled into ≥2 contigs. With POA, an accurate reconstruction 

as a single contig is obtained with error rates up to 4%. We further verified that, up to a 3% 

error rate, the reconstructed contig corresponds structurally exactly to the reference, apart 

from the base errors in the reads. At a 4% error rate, a single uncorrected indel in minimizer 

space introduces a ~1 Kbp artificial insertion in the assembly.

Figure 2A (right) indicates that the minimizer-space identity of raw reads linearly decreases 

with increasing error rate. With POA, near-perfect correction can be achieved up to a ~ 4% 

error rate, with a sharp decrease at >5% error rates but still with an improvement in identity 

over uncorrected reads.

This highlights the importance of accurate POA correction: to put these results in 

perspective, mdBGs appear to be suitable to HiFi-grade data (< 1% error rates) without 

POA and our POA implementation is almost, but not quite yet, able to cope with the error 

rate of ONT data (5%).

With POA, the runtime of our implementation was around 45 σ and 0.4 GB of memory, 

compared with under 1 σ and < 30 MB of memory without POA. Note that we did not use 

an optimized POA implementation; thus, we anticipate that further engineering efforts would 

significantly lower the runtime and possibly also improve the quality of correction.
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Pangenome mdBG of a collection of 661,405 bacterial genomes allows efficient large-scale 
search of AMR genes

We applied mdBG to represent a recent collection of 661,405 assembled bacterial genomes 

(Blackwell et al., 2021). To the best of our knowledge, this is the first de Bruijn graph 

construction of such a large collection of bacterial genomes. Previously only approximate 

sketches were created for this collection: a COBS index (Bingmann et al., 2019), allowing 

probabilistic membership queries of short k-mers (k = 31) (Blackwell et al., 2021), and 

sequence signatures (MinHash) using sourmash (Pierce et al., 2019) and pp-sketch (Lees et 

al., 2019), none of which are graph representations.

The mdBG construction with parameters k = 10, ℓ = 12, and δ = 0.001 took 3 h 50 m 

wall-clock running time using 8 threads, totaling 8 h CPU time (largely IO-bound). The 

memory consumption was 58 GB and the total disk usage was under 150 GB. Increasing δ 
to 0.01 yields a finer-resolution mdBG but increases the wall-clock running time to 13h30m, 

the memory usage to 481 GB, and the disk usage to 200 GB.

To compare the performance of mdBG with existing state-of-the-art tools for building de 

Bruijn graphs, we executed KMC3 (Kokot et al., 2017) to count 63-mers and Cuttlefish 

(Khan and Patro, 2020) to construct a de Bruijn graph from the counted k-mers. KMC3 took 

22 wall-clock h and 191 GB memory using 8 threads, 2 TB of temporary disk usage, and 

758 GB of output (56 billion distinct k-mers). Cuttlefish (Khan and Patro, 2020) did not 

terminate within three weeks of execution time. Hence, constructing the mdBG is at least 

two orders of magnitude more efficient in running time and one order of magnitude in disk 

usage and memory usage.

Figure 3 shows the largest 5 connected components of the δ = 0.001 bacterial pangenome 

mdBG. As expected, several similar species are represented within each connected 

component. The entire graph consists of 16 million nodes and 45 million edges (5.3 

GB compressed GFA), i.e., too large to be rendered, yet much smaller than the original 

sequences (1.4 TB lz4-compressed).

To illustrate a possible application of this pangenome graph, we performed queries for 

the presence of AMR genes in the δ = 0.01 mdBG. We retrieved 1,502 targets from the 

NCBI AMR-FinderPlus “core” database (the whole amr_targets.fa file as of May 2021) and 

converted each gene into minimizer space, using parameters k = 10, ℓ = 12, and δ = 0.01. 

Of these, 1,279 genes were long enough to have at least one k-min-mer (on average 10 

k-min-mers per gene). Querying those k-min-mers on the mdBG, we successfully retrieved 

on average 61.2% of the k-min-mers per gene; however, the retrieval distribution is bimodal: 

53% of the genes have ≥99% k-min-mers found, and 31% of the genes have ≤10% k-min­

mers found.

Further investigation of the genes missing from the mdBG was done by aligning the 661,405 

genomes collection to the genes (in base space) using minimap2 (7 h running time over 

8 cores). We found that a significant portion of genes (141, 11%) could not be aligned 

to the collection. Also, k-min-mers of genes with aligned sequence divergence of 1% or 

more (267, 20%) did not match k-min-mers from the collection and, therefore, had zero 
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minimizer-space query coverage. Finally, although we performed sequence queries on a text 

representation of the pangenome graph, in principle, the graph could be indexed in memory 

to enable instantaneous queries at the expense of higher memory usage.

This experiment illustrates the ability of mdBG to construct pangenomes larger than 

supported by any other method, and those pangenomes record biologically useful 

information such as AMR genes. Long sequences, such as genes (containing at least 1 

k-min-mer), can be quickly searched using k-min-mers as a proxy. There is nevertheless 

a trade-off of minimizer-space analysis that is akin to classical k-mer analysis: graph 

construction and queries are extremely efficient; however, they do not capture sequence 

similarity below a certain identity threshold (in this experiment, around 99%). Yet, the 

ability of the mdBG to quickly enumerate which bacterial genomes possess any AMR gene 

with high similarity could provide a significant boost to AMR studies.

Highly efficient assembly of real HiFi metagenomes using mdBG

We performed an assembly of two real HiFi metagenome datasets (mock communities 

Zymo D6331 and ATCC MSA-1003, accessions GenBank: SRX9569057 and GenBank: 

SRX8173258). Rust-mdbg was run with the same parameters as in the human genome 

assembly for the ATCC dataset, with slightly tuned parameters for the Zymo dataset (see 

“genome assembly tools, versions, and parameters“).

Table 2 shows the results of rust-mdbg assemblies in comparison with hifiasm-meta, a 

metagenome-specific flavor of hifiasm. In a nutshell, rust-mdbg achieves roughly two 

orders of magnitude faster and more memory-efficient assemblies, while retaining similar 

completeness of the assembled genomes. Although rust-mdbg metagenome assemblies are 

consistently more fragmented than hifiasm-meta assemblies, the ability of rust-mdbg to very 

quickly assemble a metagenome enables instant quality control and preliminary exploration 

of gene content of microbiomes at a fraction of the computing costs of current tools.

DISCUSSION

Three areas we hope to tackle in our assembly implementation are: (1) its reliance on 

setting adequate assembly parameters, (2) lack of base-level polishing, and (3) haplotype 

separation. Regarding (1), we are experimenting with automatic selection of parameters ℓ, 

k, and δ. A heuristic formula is presented along with its implementation and results in the 

GitHub repository of rust-mdbg; however, it leads to lower-quality results (e.g., 1 Mbp N50 

for the HG002 assembly versus 14 Mbp in Table 3). We also provide a preliminary multi-k 
assembly script inspired by IDBA (Peng et al., 2010). While automatically setting mdBG 

parameters is fundamentally a more complex task than just determining a single parameter 

(k) in classical de Bruijn graphs, we anticipate that similar techniques to KmerGenie (Chikhi 

and Medvedev, 2014) could be applicable, where optimal values of (ℓ, k, δ) would be found 

as a function of the k-min-mer abundance histogram.

Regarding directions (2) and (3), polishing could be performed as an additional step by 

feeding the reads and the unpolished assembly to a base-space polishing tool such as 

racon (Vaser et al., 2017). Haplotype separation might prove more difficult to incorporate 
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in mdBGs: unlike HiFi assemblers that use overlap graphs with near-perfect overlaps, 

minimizer-space de Bruijn graphs cannot differentiate between exact and inexact overlaps 

in bases that are not captured by a minimizer. However, an immediate workaround is to 

perform haplotype phasing on resulting contigs, using tools such as HapCut2 (Edge et al., 

2017) or HapTree-X (Berger et al., 2020).

We anticipate that k-min-mers could become a drop-in replacement for ubiquitously adopted 

k-mers for the comparison and indexing of long, highly similar sequences, e.g., in genome 

assembly, transcriptome assembly, and taxonomic profiling.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact Rayan Chikhi (rchikhi@pasteur.fr)

Materials availability—This study did not generate new materials.

Data and code availability

• This paper analyzes existing, publicly available data. These accession numbers 

for the datasets are listed in the key resources table.

• All original code has been deposited at https://github.com/ekimb/rust-mdbg/ and 

is publicly available as of the date of publication. DOIs are listed in the key 

resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

METHOD DETAILS

Minimizer-space de Bruijn graphs—We say that an algorithm or a data structure 

operates in minimizer-space when its operations are done on strings over the ∑ℓ alphabet, 

with characters from Mℓ,δ. Conversely, it operates in base-space when the strings are over 

the usual DNA alphabet ∑DNA.

We introduce the concept of (k, ℓ, δ)-min-mer, or just k-min-mer when clear from the 

context, defined as an ordered list of k minimizers from Mℓ,δ. We use this term to avoid 

confusion with k-mers over the DNA alphabet. Indeed, a k-min-mer can be seen as a k-mer 

over the alphabet ∑ℓ, i.e. a k-mer in minimizer-space. For an integer k>2 and an integer ℓ>1, 

we define a minimizer-space de Bruijn graph (mdBG) of order k as de Bruijn graph of order 

k over the ∑ℓ alphabet. As per the definition in the previous section, nodes are k-min-mers, 

and edges correspond of identical suffix-prefix overlaps of length k − 1 between k-min-mers. 

Figure 1A shows an example.

We present our procedure for constructing mdBGs as follows. First, a set M of minimizers 

are pre-selected using the universe minimizer scheme from the previous section. Then, reads 

are scanned sequentially, and positions of elements in M are identified. A multiset V of 
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k-min-mers is created by inserting all tuples of k successive elements in Mℓ,δ found in the 

reads into a hash table. Each of those tuples is a k-min-mer, i.e., a node of the mdBG. 

Edges of the mdBG are discovered through an index of all (k − 1)-min-mers present in the 

k-min-mers.

mdBGs can be simplified and compacted similarly to base-space de Bruijn graphs, using 

similar rules for removing likely artefactual nodes (tips and bubbles), and performing 

path compaction. They are also bidirected, though we present them as directed here 

for simplicity. See ‘implementation details‘ for more details on reverse complements and 

simplification.

By itself the mdBG is insufficient to fully reconstruct a genome in base-space, as in the 

best case it can only provide a sketch consisting of the ordered list of minimizers present in 

each chromosome. To reconstruct a genome in base-space, we associate to each k-min-mer 

the substring of a read corresponding to that k-min-mer. The substring likely contains 

base-space sequencing errors, which we address at the end of this paragraph. To deal with 

overlaps, we also keep track of the positions of the second and second-to-last minimizers 

in each k-min-mer. After performing compaction, the base sequence of a compacted mdBG 

can be reconstructed by concatenating the sequences associated to k-min-mers, making 

sure to discard overlaps. Note that in the presence of sequencing errors, or when the same 

k-min-mer corresponds to several locations in the genome, the resulting assembled sequence 

will be imperfect (similar to the output of miniasm (Li, 2016)) which can be fixed by 

additional base-level polishing (not performed here).

How sequencing errors in base-space propagate to minimizer-space—In order 

to clarify the difference between base-space and minimizer-space in the presence of 

sequencing errors, we newly derive an expression of the expected error rate in minimizer­

space (parameterized by k, ℓ, and δ), using a Poisson process model of random site 

mutations that was invoked by Mash (Ondov et al., 2016). Given the probability d of a 

single base substitution, the probability that no mutation will occur in a given ℓ-mer is e−ℓd 

under a Poisson model.

To estimate the number of erroneous k-min-mers in a read, we define for a given read R, 

the expected number nR of universe (ℓ,δ)-minimizers (described in Box 2) in the read as 

nR = ( |R| − ℓ + 1) • δ .. Since a k-min-mer is erroneous whenever at least one of k universe 

(ℓ,δ)-minimizers within the k-min-mer is erroneous, the probability that a given k-min-mer 

is erroneous is then 1 − e−ℓdk. The number of k-min-mers obtained from the read is nR − k + 

1. Thus, the expected number of erroneous k-min-mers in a read is

nR − k + 1 ⋅ 1 − e−ℓdk

For instance, for a base-space mutation rate of d = 0.01, minimizer-space parameters ℓ = 12, 

k = 10, and δ = 0.01, and a read length of |R| = 20000, 70% of the k-min-mers in the read are 

erroneous. However, lowering the base-space mutation rate to d = 0.001 and keeping other 

values of k and ℓ identical renders only 10% of the k-min-mers erroneous within a read.
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To estimate the average ℓ-mer identity of a read, we provide an approximation of the 

minimizer-space error rate given the base-space error rate. As seen above, an ℓ-mer that was 

selected as a universe minimizer has probability e−ℓd to be mutated. Mutations that occur 

outside of universe minimizers may now still affect the minimizer-space representation 

by turning a non-minimizer ℓ-mer into a universe minimizer (see Figure 4). Under the 

simplifying assumption that this effect occurs independently at each position in a read, the 

probability that an ℓ-mer turns into a universe minimizer is the probability of a mutation 

within that ℓ-mer times the probability δ that a random ℓ-mer is a universe minimizer, i.e., 

(1 − e−ℓd)δ. For a universe minimizer m, there are approximately 1 / δ neighboring ℓ-mers 

that are candidates for turning into universe minimizers themselves due to a base error. We 

will conceptually attach those ℓ-mers to m, and consider that an error in any of those ℓ-mers 

leads to an insertion error next to m.

Combining the above terms leads to the following minimizer-space error rate approximation:

1 − e−ℓd 1 − 1 − e−ℓd δ 1/δ
(Equation 1)

For an error rate of d = 5%, i.e. close to that of the Oxford Nanopore R10.3 chemistry, ℓ
= 12, and δ = 0.01, the minimizer-space error rate is 65.1%, dropping to 2.3% when d = 

0.1%. This analysis indicates that parameters ℓ, k, δ and the base error rate d together play 

an essential role in the performance of a mdBG-guided assembly.

Error correction using minimizer-space partial order alignment (POA)—Long­

read sequencing technologies from Pacific Biosciences (PacBio) and Oxford Nanopore 

(ONT) recently enabled the production of genome assemblies with high contiguity, albeit 

with a relatively high error rate (≥%5) in the reads, requiring either read error correction 

and/or assembly polishing, which are both resource-intensive steps (Chin et al., 2013; 

Loman et al., 2015). We will demonstrate that our minimizer-space representation is 

applicable to error-free sequencing reads and PacBio HiFi reads, which boast error rates 

lower than %1; however, in order to work with long reads with a higher error rate such 

as PacBio CLR and ONT, we present a resource-frugal error correction step that uses 

partial order alignment (POA) (Lee et al., 2002), a graph representation of a multiple 

sequence alignment (MSA), in order to rapidly correct sequencing errors that occur in the 

minimizer-space representation of reads. Stand-alone error correction modules such as racon 

(Vaser et al., 2017) and Nanopolish (Loman et al., 2015) have also relied on POA for error 

correction of long reads; however, these methods work in base-space, and as such, are still 

resource-intensive. We present an error correction module that uses POA in minimizer-space 

that can correct errors in minimizer-space, requiring only the minimizer-space representation 

of reads as input.

An overview of the minimizer-space POA procedure is shown in Figure 1C, and the detailed 

processes for the stages of the error-correction procedure are shown in Section “Minimizer­

space partial order alignment”. The input for the procedure is the collection of ordered lists 

of minimizers obtained from all reads in the dataset (one ordered list per read). As seen 

earlier, the ordered list of minimizers obtained from a read containing sequencing errors 
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will likely differ from that of an error-free read. However, provided the dataset has enough 

coverage, the content of other ordered lists of minimizers in the same genomic region can be 

used to correct errors in the query read in minimizer-space. To this end, we first perform a 

bucketing procedure for all ordered lists of minimizers using each of their n-tuples, where n 
is a user-specified parameter.

After bucketing, in order to initiate the error-correction of a query we collect its neighbors: 

other ordered lists likely corresponding to the same genomic region. We use a distance 

metric (Jaccard or Mash (Ondov et al., 2016) distance) to pick sufficiently similar neighbors. 

Once we obtain the final set of neighbors that will be used to error-correct the query, we 

run the partial order alignment (POA) procedure as described in (Lee et al., 2002), with the 

modification that a node in the POA graph is now a minimizer instead of an individual base, 

directed edges now represent whether two minimizers are adjacent in any of the neighbors, 

and edge weights represent the multiplicity of the edge in all of the neighbor ordered lists. 

After constructing the minimizer-space POA by aligning all neighbors to the graph, we 

generate a consensus (the best-supported traversal through the graph). Once the consensus 

is obtained in minimizer-space, we replace the query ordered list of minimizers with the 

consensus, and repeat until all reads are error-corrected. In order to recover the base-space 

sequence of the obtained consensus after POA, we store the sequence spanned by each 

pair of nodes in the edges, and generate the base-space consensus by concatenating the 

sequences stored in the edges of the consensus.

Implementation details—Reverse complementation is handled in our method in a natural 

way that is similar to classical base-space de Bruijn graphs. Each ℓ-mer is identified with its 

reverse complement, and a representative canonical ℓ-mer is chosen as the lexicographically 

smaller of the two alternatives. In turn, k-min-mers are identified with their reverse; no 

complementation is performed in minimizer-space, as the complement of a canonical 

ℓ-mer is itself. Similarly to base-space assembly, any k-min-mer appearing only once in 

the multiset V is removed from V due to the likelihood that it is artefactual. Assembly 

graph simplifications are performed using gfatools (https://github.com/lh3/gfatools), with 

alternating rounds of tip clipping and bubble removal (see “gfatools command line” 

Section), except for simulated perfect reads, which were only compacted into base-space 

unitigs.

In order to reduce memory usage, we write k-min-mers and the base-space sequences 

spanned by k-min-mers on disk, and retrieve them once the contigs are generated in 

minimizer-space. rust-mdbg includes a binary program (to_basespace) that transforms a 

simplified minimizer-space assembly into a base-space assembly.

Minimizer-space partial order alignment

POA bucketing and preprocessing: In Algorithm 1, all tuples of length n of an ordered 

list of minimizers are computed using a sliding window (lines 4–6), and the ordered list of 

minimizers itself is stored in the buckets labeled by each n-tuple (line 7). We use bucketing 

as a proxy for set similarity, since each pair of reads in the same bucket will have an n-tuple 

(the label of the bucket), and will be more likely to come from the same genomic region.
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Algorithm 1.

Bucketing procedure for all ordered lists of minimizers

Input Set of ordered list of minimizers S, bucket index length n

1: procedure: BUCKET(S, n)

2:  B ← {} ▹ Empty hash table of buckets

3:  for s∈S do

4:   for i = 0 to i = |s| − n + 1 do

5:    t ← s[i : i + n] ▹ n-tuple of s starting at position i

6:    B[t] ← B[t] ∪ s

7:   end for

8:  end for

9:  return B

10: end procedure

The overview of the collection of neighbors for error-correcting a query ordered list of 

minimizers is shown in Algorithm 2. We obtain all n-tuples of a query ordered list, and 

collect the ordered lists in the previously populated buckets indexed by its n-tuples (lines 

10–15). These ordered lists are viable candidates for neighbors, since they share a tuple of 

length at least n with the query ordered list; however, since a query n-tuple may not uniquely 

identify a genomic region, we apply a similarity filter to further eliminate candidates 

unrelated to the query. Using either Jaccard or Mash distance (Ondov et al., 2016) as a 

similarity metric, for a user-specified threshold φ, we filter out all candidates that have 

distance ≥ φ to the query ordered list to obtain the final set of neighbors that will be used for 

error-correcting the query (lines 1–9).

Algorithm 2.

Collection of neighbors for a given query ordered list

Input: A query ordered list of minimizers q to be error-corrected, collection of buckets B, bucket index length n, 
distance function d, distance threshold φ

1: function FILTER(q,C,d,φ)

2:  F ← {} ▹ Empty set of candidates that pass 
the filter

3:  for c∈C do

4:   if d(q,c)<φ ▹ Apply distance threshold of φ to a 
candidate then

5:    F ← F∪c

6:   end if

7:  end for

8:  return F

9: end function

10: procedure COLLECT(q, B, n, d, φ)

11:  C ← {} ▹ Empty set of candidate neighbors

12:  for i = 0 to i = |q| − n + 1 do

Ekim et al. Page 13

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



13:   t ← q[i : i + n] ▹ n-tuple of q starting at position i

14:   C ← C ∪ B[t]

15:  end for

16:  F ← FILTER(q, C, d, φ)

17: return F

18: end procedure

POA graph construction and consensus generation

Algorithm 3.

Minimizer-space POA graph construction and consensus generation

Input: A query ordered list of minimizers q to be error-corrected, collection of query neighbors N

1: procedure POA(q, N)

2:  G = (V,E) ← initializeGraph(q) ▹ As described in (Lee et al., 2002)

3:  for n∈N do

4:   G ← semiGlobalAlign(G,n) ▹ As described in (Lee et al., 2002)

5:  end for

6:  λ ← {} ▹ Scoring table for nodes

7:  P ← {} ▹ Predecessor table for nodes

8:  topologicalSort(G) ▹ Topological sorting of nodes

9:  for v∈V do

10:   e = (u, v) ← max(inEdges(v)) ▹ Find the maximum-weighted incoming edge to v

11:   λ[v] ← We + λ[u]

12:   P[v] ← u

13:  end for

14:  C ← CONSENSUS(V, λ; P) ▹ Described in the “Minimizer-space POA”

Section

15:  return C

16: end procedure

Algorithm 4 describes a canonical POA consensus generation procedure, similar to racon 

(Vaser et al., 2017), except that here consensus is performed in minimizer-space.

Algorithm 4.

Consensus generation on POA graph

Input: The node set V of the POA graph, scoring array λ, predecessor array P

1: function CONSENSUS(V, λ, P)

2:  C ← [] ▹ Consensus path to be

obtained

3:  vmax ← Ø ▹ Initialize the highest-scoring node

4:  for v ∈ V do

5:   if λ[v]>λ[vmax] then
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6:    vmax ← v

7:   end if

8:  end for

9:  vcurr ← vmax ▹ Start traceback from highest-scoring node

10:  while vcurr ≠ Ø do

11:   C ← C + [vcurr]

12:   vcurr)←P[vcurr] ▹ Move to predecessor of current node

13:  end while

14:  return C

15: end function

The minimizer-space POA error-correction procedure is shown in Algorithm 3. For each 

neighbor of the query, we perform semi-global alignment between a neighbor ordered list 

and the graph, where for two minimizers mi and mj, a match is defined as mi = mj, and 

a mismatch is defined as mi ≠ mj (lines 17–19). After building the POA graph G = (V, 

E) by aligning all neighbors in minimizer space, we generate a consensus to obtain the 

best-supported traversal through the graph. We first initialize a scoring λ, and set λ[v] = 

0 for all v∈V. Then, we perform a topological sort of the nodes in the graph, and iterate 

through the sorted nodes. For each node v, we select the highest-weighted incoming edge 

e = (u, v) with weight we, and set λ[v] = we + λ(u). The node u is then marked as a 

predecessor of v (lines 21–28).

Minimizer-space POA evaluation set-up—We extracted chromosome 4 (~ 1.2 Mbp) 

of the D. melanogaster reference genome, and simulated reads using the command 

randomreads.sh pacbio=t of BBMap (Bushnell, 2014). We generated one dataset per error 

rate value from 0% to 10%, keeping other parameters identical (24 Kbp mean read length 

and 70X coverage). Reads were then assembled using our implementation with and without 

POA, using parameters ℓ = 10, k = 7, and δ = 0.0008 experimentally determined to yield a 

perfect assembly with error-free reads. We evaluated the average read identity in minimizer­

space using semi-global Smith-Waterman alignment between the sequence of minimizers of 

a read and the sequence of minimizers of the reference, taking BLAST-like identity (number 

of minimize matches divided by the number of alignment columns). We also evaluated the 

length of the longest reconstructed contig in basespace as a proxy for assembly quality.

Exploration of rust-mdbg parameter space on simulated perfect reads—In 

order to demonstrate the efficacy of our approach in terms of results quality in an ideal 

setting, we simulated error-free reads of length 100 Kbp at 50X coverage of the D. 
melanogaster genome. The parameters for the assembly were k = 30, ℓ = 12, and δ = 

0.005. Table 3 (center) shows that rust-mdbg is able to assemble these error-free reads nearly 

as well as HiCanu and hifiasm, within lower but similar NGA50 (~ 25% lower) and genome 

fraction (< 1% lower) values. However, rust-mdbg is 2–3 orders of magnitudes faster and 

uses an order of magnitude less memory.
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For a base-space de Bruijn graph assembler, the quality of the assembly depends on a single 

parameter (k), whereas in a rust-mdbg assembly, there are three parameters (ℓ, k, δ) that 

can affect assembly quality independently (see STAR Methods). We investigated the effect 

of changing k for given ℓ and δ, and changing d for given k and ℓ on the performance of 

rust-mdbg on perfect reads. For ℓ = 12 and k = 30, we tested different values for d from 

0.001 to 0.005 (increased by 0.0005 in each iteration). For ℓ = 12 and δ = 0.003, we tested 

different values of k from 10 to 50 (increased by 1 in each iteration). For each iteration, 

we computed the k-min-mer recovery rate (the percentage of k-min-mers obtained from the 

reads that also exist in the set of k-min-mers from the reference) as a means of quantifying 

the quality of a minimizer-space assembly through a completeness metric.

Figure 2B shows the results of this investigation. For fixed values of k = 30 and ℓ = 

12, k-min-mer recovery rate is insufficiently low for δ<0.0025: Since the ordered lists of 

minimizers obtained from the reads need to have length >k in order to not be discarded, a 

very low density value causes a higher fraction of reads to be skipped, decreasing k-min-mer 

recovery rate. For δ≥0.0025, an increasingly smaller portion of the reads are discarded, 

consistently yielding k-min-mer recovery rates of >90%. We further observe that for fixed 

values of δ = 0.003 and ℓ = 12, k-min-mer recovery rate is consistently above 95% for 

k-min-mer lengths of 10 to 35. Since δ = 0.003, a sufficient portion of the reads are 

transformed into k-min-mers at this k-min-mer length, and higher values of k will result in a 

larger portion of the reads to be discarded.

gfatools command lines—The following (relatively aggressive) GFA assembly 

graph simplifications rounds were performed for all mdBG assemblies, using https://

github.com/lh3/gfatools/. Rounds are of two types: -t x,y removes tips having at most x 
segments and of maximal length y bp, and -b z removes bubbles of maximal radius z 
bp. In addition, gfa_break_loops.py is a custom script (available in the rust-mdbg GitHub 

repository) that removes self-loops in the assembly graph, as well as an arbitrary edge in 

x y cycles.

gfatools asm -t 10,50000 -t 10,50000 -b 100000 -b 100000 -t 10,50000 \

      -b 100000 -b 100000 -b 100000 -t 10,50000 -b 100000 \

      -t 10,50000 -b 1000000 -t 10,150000 -b 1000000 -u > $base.tmp1.gfa

gfa_break_loops.py $base.tmp1.gfa > $base.tmp2.gfa

gfatools asm $base.tmp2.gfa -t 10,50000 -b 100000 -t 10,100000 \

      -b 1000000 -t 10,150000 -b 1000000 -u > $base.tmp3.gfa

gfa_break_loops.py $base.tmp3.gfa > $base.tmp4.gfa

gfatools asm $base.tmp4.gfa -t 10,50000 -b 100000 -t 10,100000 \

      -b 1000000 -t 10,200000 -b 1000000 -u > $base.msimpl.gfa

Genome assembly tools, versions, and parameters—HiCanu (v2.1) was run with 

default parameters, hifiasm (commit 8cb131d) with parameters -l0 -f0, and Peregrine 

(commit 008082a) with command line: 8 8 8 8 8 8 8 8 8 –with-consensus –shimmer-r 3 
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–best_n_ovlp 8. rust-mdbg was run with parameters k = 35, ℓ = 12, and δ = 0.002 for D. 
melanogaster, and k = 21, ℓ = 14, δ = 0.003 for HG002.

For metagenomes, rust-mdbg was run with parameters k = 21, ℓ = 14, δ = 0.003 for the 

ATCC MSA-1003 dataset (same parameters as the human dataset), and k = 40, ℓ = 12, 

δ = 0.004 for the Zymo D6331 dataset. Hifiasm-meta (commit cda13b8) was run with 

parameters -S -lowq-10 50 for ATCC MSA-1003 and default for Zymo.

Locally Consistent Parsing (LCP)—Locally Consistent Parsing (LCP) describes sets 

of evenly spaced core substrings of a given length ℓ that cover any string of length 

n for any alphabet (Şahinalp and Vishkin, 1994). The set of core substrings can be pre­

computed such that a string of length n is covered by ~ n/ℓ core substrings on average. 

LCP and the concept of core substrings were used in the first linear-time algorithm for 

approximate string matching (Şahinalp and Vishkin, 1994), for string indexing under block 

edit distance (Muthukrishnan and Şahinalp, 2000), and for almost linear-time approximate 

string alignment (Batu et al., 2006).

SCALCE (Hach et al., 2012) introduced LCP to genome compression, and used the longest 

core substring(s) in each read as representatives to group together similar reads, which 

are then reordered lexicographically for compression without the need of a reference 

genome. In preliminary testing of LCPs as an alternative to minimizers in our pipeline, we 

integrated the pre-computed set of core substrings described in SCALCE into the universe 

(ℓ,δ)-minimizers scheme in rust-mdbg, where we selected an ℓ-mer m as a minimizer 

if m is a universe (ℓ,δ)-minimizer and also appears in the set of core substrings. We 

evaluated both minimizer schemes on simulated perfect reads from D. melanogaster at 50X 

coverage, real Pacific Biosciences HiFi reads from D. melanogaster at 100X coverage, and 

HiFi reads for human (HG002) at ~ 50X coverage, taken from the HiCanu publication 

(https://obj.umiacs.umd.edu/marbl_publications/hicanu/index.html) (Nurk et al., 2020). We 

did not notice a major difference using LCP versus only universe minimizers, but our 

implementation should be seen as a baseline for future optimizations.

ACKNOWLEDGMENTS

B.E. was partially funded by grant NIH R01HG010959 (to B.B.) and B.B. by NIH R35GM141861. R.C. was 
funded by grants ANR Inception (ANR-16-CONV-0005), PRAIRIE (ANR-19-P3IA-0001), and PANGAIA (H2020 
MSCA RISE 872539). The authors are grateful to A. Limasset, P. Peterlongo, B. Hie, and R. Singh for remarks on 
the manuscript and to Simon Barnett for inspiration for the Graphical Abstract.

REFERENCES

Batu T, Ergun F, and Şahinalp C. (2006). Oblivious string embeddings and edit distance 
approximations. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete 
Algorithms’, SODA ‘06, Society for Industrial and Applied Mathematics), pp. 792–801.

Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S, Mauceli E, Berger B, Mesirov JP, and Lander 
ES (2002). ARACHNE: a whole-genome shotgun assembler. Genome Res. 12, 177–189. [PubMed: 
11779843] 

Berger B, Peng J, and Singh M. (2013). Computational solutions for omics data. Nat. Rev. Genet 14, 
333–346. [PubMed: 23594911] 

Ekim et al. Page 17

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://obj.umiacs.umd.edu/marbl_publications/hicanu/index.html


Berger E, Yorukoglu D, Zhang L, Nyquist SK, Shalek AK, Kellis M, Numanagić I, and Berger B. 
(2020). Improved haplotype inference by exploiting long-range linking and allelic imbalance in 
RNA-seq datasets. Nat. Commun 11, 4662. [PubMed: 32938926] 

Bingmann T, Bradley P, Gauger F, and Iqbal Z. (2019). COBS: a compact bit-sliced signature index. 
In 26th International Conference on String Processing and Information Retrieval (SPIRE), pp. 285–
303. arXiv:1905. 09624v2.

Blackwell GA, Hunt M, Malone KM, Lima L, Horesh G, Alako BT, Thomson NR, and Iqbal Z. 
(2021). Exploring bacterial diversity via a curated and searchable snapshot of archived DNA 
sequences. bioRxiv. 10.1101/2021.03.02.433662.

Broder AZ (1997). On the resemblance and containment of documents. In Proceedings. 
Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171), pp. 21–29. https://
www.cs.princeton.edu/courses/archive/spring13/cos598C/broder97resemblance.pdf.

Burrows M, and Wheeler D. (1994). A block-sorting lossless data compres sion algorithm. In Digital 
SRC Research Report (Citeseer).

Bushnell B. (2014). BBMap: a fast, accurate, splice-aware aligner. (Lawrence Berkeley National 
Laboratory). https://www.osti.gov/servlets/purl/1241166.

Cheng H, Concepcion GT, Feng X, Zhang H, and Li H. (2020). Haplotype-resolved de novo assembly 
with phased assembly graphs. arXiv arXiv:2008.01237.

Chikhi R, Holub J, and Medvedev P. (2019). Data structures to represent sets of k-long DNA 
sequences. arXiv, arXiv:1903.12312.

Chikhi R, Limasset A, Jackman S, Simpson JT, and Medvedev P. (2014). On the representation of 
de Bruijn graphs. In International Conference on Research in Computational Molecular Biology 
(Springer), pp. 35–55.

Chikhi R, and Medvedev P. (2014). Informed and automated k-mer size selection for genome 
assembly. Bioinformatics 30, 31–37. [PubMed: 23732276] 

Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston 
J, Eichler EE, et al. (2013). Nonhybrid, finished microbial genome assemblies from long-read 
SMRT sequencing data. Nat. Methods 10, 563–569. [PubMed: 23644548] 

Chin C-S, and Khalak A. (2019). Human genome assembly in 100 minutes. bioRxiv. 10.1101/705616.

Edgar R. (2021). Syncmers are more sensitive than minimizers for selecting conserved k-mers in 
biological sequences. PeerJ 9, e10805. [PubMed: 33604186] 

Edgar RC, Taylor J, Altman T, Barbera P, Meleshko D, Lin V, Lohr D, Novakovsky G, Al-Shayeb B, 
Banfield JF, et al. (2020). Petabase-scale sequence alignment catalyses viral discovery. bioRxiv. 
10.1101/2020.08.07.241729.

Edge P, Bafna V, and Bansal V. (2017). HapCUT2: robust and accurate haplotype assembly for diverse 
sequencing technologies. Genome Res. 27, 801–812. [PubMed: 27940952] 

Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, Grundman H, Hasman H, 
Holden MTG, Hopkins KL, et al. (2017). The role of whole genome sequencing in antimicrobial 
susceptibility testing of bacteria: report from the eucast subcommittee. Clin. Microbiol. Infect 23, 
2–22. [PubMed: 27890457] 

Gurevich A, Saveliev V, Vyahhi N, and Tesler G. (2013). QUAST: quality assessment tool for genome 
assemblies. Bioinformatics 29, 1072–1075. [PubMed: 23422339] 

Hach F, Numanagićc I, Alkan C, and Şahinalp SC. (2012). SCALCE: boosting sequence compression 
algorithms using locally consistent encoding. Bioinformatics 28, 3051–3057. [PubMed: 23047557] 

Jain C, Rhie A, Zhang H, Chu C, Koren S, and Phillippy A. (2020). Weighted 
minimizer sampling improves long read mapping. bioRxiv https://www.biorxiv.org/content/
10.1101/2020.02.11.943241v1.full.

Khan J, and Patro R. (2020). Cuttlefish: fast, parallel, and low-memory compaction of de Bruijn graphs 
from large-scale genome collections. bioRxiv. 10.1101/2020.10.21.349605.

Kokot M, D1ugosz M, and Deorowicz S. (2017). KMC 3: counting and manipulating k-mer statistics. 
Bioinformatics 33, 2759–2761. [PubMed: 28472236] 

Kolmogorov M, Yuan J, Lin Y, and Pevzner PA (2019). Assembly of long, error-prone reads using 
repeat graphs. Nat. Biotechnol 37, 540–546. [PubMed: 30936562] 

Ekim et al. Page 18

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.cs.princeton.edu/courses/archive/spring13/cos598C/broder97resemblance.pdf
https://www.cs.princeton.edu/courses/archive/spring13/cos598C/broder97resemblance.pdf
https://www.osti.gov/servlets/purl/1241166
https://www.biorxiv.org/content/10.1101/2020.02.11.943241v1.full
https://www.biorxiv.org/content/10.1101/2020.02.11.943241v1.full


Lachmann A, Torre D, Keenan AB, Jagodnik KM, Lee HJ, Wang L, Silverstein MC, and Ma’ayan 
A. (2018). Massive mining of publicly available RNA-seq data from human and mouse. Nat. 
Commun 9, 1366. [PubMed: 29636450] 

Lee C, Grasso C, and Sharlow MF (2002). Multiple sequence alignment using partial order graphs. 
Bioinformatics 18, 452–464. [PubMed: 11934745] 

Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW, Weiser JN, Corander J, Bentley SD, and 
Croucher NJ (2019). Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome 
Res. 29, 304–316. [PubMed: 30679308] 

Li H. (2016). Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. 
Bioinformatics 32, 2103–2110. [PubMed: 27153593] 

Li H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100. 
[PubMed: 29750242] 

Li Y, and Yan X. (2015). MSPKmerCounter: a fast and memory efficient approach for k-mer counting. 
arXiv https://arxiv.org/pdf/1505.06550.pdf.

Lin Y, Yuan J, Kolmogorov M, Shen MW, Chaisson M, and Pevzner PA (2016). Assembly of 
long error-prone reads using de Bruijn graphs. Proc. Natl. Acad. Sci. USA 113, E8396–E8405. 
[PubMed: 27956617] 

Logsdon GA, Vollger MR, and Eichler EE (2020). Long-read human genome sequencing and its 
applications. Nat. Rev. Genet 21, 597–614. [PubMed: 32504078] 

Loh PR, Baym M, and Berger B. (2012). Compressive genomics. Nat. Biotechnol 30, 627–630. 
[PubMed: 22781691] 

Loman NJ, Quick J, and Simpson JT (2015). A complete bacterial genome assembled de novo using 
only nanopore sequencing data. Nat. Methods 12, 733–735. [PubMed: 26076426] 

Lu J, and Salzberg S. (2020). Ultrafast and accurate 16S microbial community analysis using Kraken 
2. bioRxiv. 10.1101/2020.03.27.012047.

Marçais G, DeBlasio D, Pandey P, and Kingsford C. (2019). Locality-sensitive hashing for the edit 
distance. Bioinformatics 35, i127–i135. [PubMed: 31510667] 

Muthukrishnan S, and Şahinalp SC (2000). Approximate nearest neighbors and sequence comparison 
with block operations. In STOC ‘00. Proceedings of the thirty-second annual ACM symposium on 
Theory of computing, pp. 416–424. 10.1145/335305.335353.

Nazeen S, Yu YW, and Berger B. (2020). Carnelian uncovers hidden functional patterns across diverse 
study populations from whole metagenome sequencing reads. Genome Biol. 21, 47. [PubMed: 
32093762] 

Nurk S, Walenz BP, Rhie A, Vollger MR, Logsdon GA, Grothe R, Miga KH, Eichler EE, Phillippy 
AM, and Koren S. (2020). HiCanu: accurate assembly of segmental duplications, satellites, and 
allelic variants from high-fidelity long reads. Genome Res. 30, 1291–1305. [PubMed: 32801147] 

Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, and Phillippy AM (2016). 
Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132. 
[PubMed: 27323842] 

Peng Y, Leung HCM, Yiu SM, and Chin FYL (2010). IDBA–A practical iterative de Bruijn graph 
de novo assembler. In Annual International Conference on Research in Computational Molecular 
Biology (Springer), pp. 426–440.

Pevzner PA, Tang H, and Tesler G. (2004). De novo repeat classification and fragment assembly. 
Genome Res. 14, 1786–1796. [PubMed: 15342561] 

Pierce NT, Irber L, Reiter T, Brooks P, and Brown CT (2019). Large-scale sequence comparisons with 
sourmash. F1000Res. 8, 1006. [PubMed: 31508216] 

Rautiainen M, and Marschall T. (2020). MBG: minimizer-based sparse de Bruijn graph construction. 
bioRxiv https://www.biorxiv.org/content/10.1101/2020.09.18.303156v1.full.

Roberts M, Hayes W, Hunt BR, Mount SM, and Yorke JA (2004). Reducing storage requirements for 
biological sequence comparison. Bioinformatics 20, 3363–3369. [PubMed: 15256412] 

Ruan J, and Li H. (2020). Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 
155–158. [PubMed: 31819265] 

Ekim et al. Page 19

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/pdf/1505.06550.pdf
https://www.biorxiv.org/content/10.1101/2020.09.18.303156v1.full


Şahinalp SC, and Vishkin U. (1994). Symmetry breaking for suffix tree construction. In Proceedings of 
the Twenty-Sixth Annual ACM Symposium on Theory of Computing’, STOC ‘94 (Association for 
Computing Machinery), pp. 300–309. 10.1145/195058.195164.

Shafin K, Pesout T, Lorig-Roach R, Haukness M, Olsen HE, Bosworth C, Armstrong J, Tigyi K, 
Maurer N, Koren S, et al. (2020). Nanopore sequencing and the Shasta toolkit enable efficient de 
novo assembly of eleven human genomes. Nat. Biotechnol 38, 1044–1053. [PubMed: 32686750] 

Shajii A, Numanagić I, Leighton AT, Greenyer H, Amarasinghe S, and Berger B. (2021). A python­
based programming language for high-performance computational genomics. Nat. Biotechnol 
10.1038/s41587-021-00985-6.

Vaser R, Sović I, Nagarajan N, and Šikić M. (2017). Fast and accurate de novo genome assembly from 
long uncorrected reads. Genome Res. 27, 737–746. [PubMed: 28100585] 

Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, Concepcion GT, Ebler J, Fungtammasan 
A, Kolesnikov A, Olson ND, et al. (2019). Accurate circular consensus long-read sequencing 
improves variant detection and assembly of a human genome. Nat. Biotechnol 37, 1155–1162. 
[PubMed: 31406327] 

Ye C, Ma ZS, Cannon CH, Pop M, and Yu DW (2012). Exploiting sparseness in de novo genome 
assembly. BMC Bioinformatics 13 (Supplement 6), S1.

Yorukoglu D, Yu YW, Peng J, and Berger B. (2016). Compressive mapping for next-generation 
sequencing. Nat. Biotechnol 34, 374–376. [PubMed: 27054987] 

Ekim et al. Page 20

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 1.

Progress and potential

Progress: third generation sequencing technologies, such as PacBio and Oxford 

Nanopore (ONT), can now yield terabytes of long read genomic sequences (contiguous 

sequences typically on the order of tens of thousands of base pairs) of higher quality 

(1%–4% error rate) to analyze genomes. With these evolving technologies, several 

important computational challenges have emerged. A fundamental problem among these 

is genome assembly, which is the computational task of assembling (stitching together) 

sequencing reads into a single genomic sequence per chromosome. The prevailing 

approach, de novo assembly, is naively resource intensive since it requires pairwise 

comparisons between all possible pairs of reads. Although the coverage and quality 

of sequencing technologies have vastly advanced over the past several years, genome 

assembly from sequencing data remains a challenging task due to the size and scope of 

genomic data being generated across the tree of life.

More efficient de novo assemblers use graph based data structures, most frequently de 
Bruijn graphs, which conceptually encode a set of sequence fragments found in the 

reads, as well as their overlaps. The sequence of each complete chromosome corresponds 

to a path in this graph. While de Bruijn graphs theoretically scale linearly in the size 

of the target genome instead of the number of reads and are, therefore, more efficient, 

sequencing errors can cause branching and, thus, increase their size and runtime to 

search. Moreover, all k-mers (sequences of length k) that appear in the reads need to 

be stored, which is memory intensive. A key insight of language models, which have 

emerged as an effective way to model natural languages, is that words (or sentence 

fragments), instead of letters, can be used as tokens (small building blocks) in the 

computational model of the natural language. Taking inspiration from this concept, our 

key conceptual advance is a data structure we call a minimizer-space de Bruijn graph 
(mdBG), where, instead of single nucleotides as tokens of the de Bruijn graph, we use 

short sequences of nucleotides known as minimizers, which allow for an even more 

compact representation of the genome in what we call minimizer space. Minimizer space 

de Bruijn graphs store only a small fraction of the nucleotides from the input data while 

preserving the overall graph structure, enabling them to be orders of magnitude more 

efficient than classical de Bruijn graphs. By doing so, we can reconstruct whole genomes 

from accurate long read data in minutes—about a hundred times faster than state-of-the­

art approaches—on a personal computer, while using significantly less memory and 

achieving similar accuracy.

To enable assembly of reads with up to a 4% error rate (e.g., from emerging Oxford 

Nanopore data, which offers high sequencing throughput, low cost and ultra-long read 

lengths), we newly correct for read errors by performing minimizer-space partial order 

alignment (POA), in which sequencing errors in a query read are corrected by aligning 

other reads from the same genomic region to the query in minimizer space.

We also show that we can build very large minimizer-space de Bruijn graphs that can 

be queried for biologically useful questions by constructing a graphical pangenome 
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of a large and diverse collection of 661,405 bacterial genomes. This collection of 

several terabytes has never before been represented as a pangenome graph (a graph 

that represents multiple genomes simultaneously). Such a task is computationally nearly 

impossible using state-of-the-art methods, which would take weeks and terabytes of 

RAM to complete. We show that our method completes the construction in roughly 

3 h with low memory usage, and the connected components in the mdBG distinguish 

species, allowing us to quickly search for anti-microbial resistance genes inside the entire 

pangenome.

Potential: as long-read sequencing technologies mature, they offer the promise of 

genome reconstruction with unprecedented accuracy and contiguity. However, the 

assembly of these genomes can be memory-intensive and time-consuming (taking days). 

This precludes any but the largest centers with nearly unlimited computing power 

to assemble metagenomes, large bacterial pangenomes, and the growing number of 

human genomes for personalized medicine. If personalized medicine is expected to be 

effective and available to everyone in the near future, processing raw data needs to be 

done both cheaply and at ultra-fast rates. Consequently, cloud computing for genome 

assembly and analysis will likely underpin future large-scale genomics collaborations 

and efforts to re-analyze archived data. Our method, mdBG, significantly reduces the 

computational resources required for performing whole-genome assembly, making such 

analyses possible on desktop computers. We specifically demonstrate its use through 

three examples: human genome assembly, metagenome assembly, and the construction 

of large pangenome graphs. For microbiome and pangenome analyses, our approach 

offers the possibility of constructing graphical pangenomes at the scale of the largest 

existing collections quickly and accurately, enabling us to simultaneously analyze the 

myriad of genomes available in databases. Given the rise of next-generation sequencing 

technologies and faster and less expensive genome assembly, we expect our advances 

to be essential to the convergence among next-generation sequencing (NGS), cloud 

computing, and precision and personalized medicine, and beneficial in creating the 

infrastructure necessary to formulate and test disease mechanisms and develop new 

treatments at scale.
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Box 2.

A primer on minimizers and de Bruijn graphs

The variable σ is used as a placeholder for an unspecified alphabet (a non-empty set of 

characters). We define ∑DNA = {A, C, T, G} as the alphabet containing the four DNA 

bases. Given an integer ℓ>0, ∑ℓ is the alphabet consisting of all possible strings on ∑DNA 

of length ℓ. To avoid confusion, we stress that ∑ℓ is an unusual alphabet: any “character” 

of ∑ℓ is itself a string of length ℓ over the DNA-alphabet.

Given an alphabet σ,a string is a finite ordered list of characters from σ. Note that our 

strings will sometimes be on alphabets where each character cannot be represented by 

a single alphanumeric symbol. Given a string x over some alphabet σ and some integer 

n>0, the prefix (respectively, the suffix) of x of length n is the string formed by the first 

(respectively, the last) n characters of x. We now introduce the concept of a minimizer. 
In this paragraph, we consider strings over the alphabet ∑DNA. We consider two types 

of minimizers: universe and window. Consider a function f that takes as input a string 

of length ℓ and outputs a numeric value within range [0,H], where H>0. Usually, f is a 

4-bit encoding of DNA or a random hash function (it does not matter whether the values 

of f are integers or whether H is an integer). Given an integer ℓ>1 and a coefficient 

0<δ<1, a universe (ℓ, δ)-minimizer is any string m of length ℓ such that f(m)<δ•H. 

We define Mℓ,δ to be the set of all universe (ℓ,δ)-minimizers, and we refer to d as 

the density of Mℓδ.This definition of a minimizer is in contrast with the classical one 

(Roberts et al., 2004), which we recall here, although we will not use it. Consider a string 

x of any length and a substring (window) y of length w of x. A window ℓ-minimizer 
of x given window y is a substring m of length ℓ of y that has the smallest value 

f(m) among all other such substrings in y. Observe that universe minimizers are defined 

independently of a reference string, unlike window minimizers. They have been recently 

independently termed mincode syncmers (Edgar, 2021). We also performed experiments 

with an alternative concept to minimizers, Locally Consistent Parsing (LCP) (Șahinalp 

and Vishkin, 1994), which replaces universal minimizers with core substrings: substrings 

that can be pre-computed for any given alphabet such that any sequence of length n 
includes ~n/ℓ substrings of length ℓ on average (see “locally consistent parsing [LCP]“).

We recall the definition of de Bruijn graphs. Given an alphabet σ and an integer k≥2, a 

de Bruijn graph of order k is a directed graph where nodes are strings of length k over 

σ (k-mers), and two nodes x, y are linked by an edge if the suffix of x of length k −1 is 

equal to the prefix of y of length k − 1. This definition corresponds to the node-centric de 

Bruijn graph (Chikhi et al., 2014) generalized to any alphabet.

Ekim et al. Page 23

Cell Syst. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• We propose a novel graph representation for highly accurate and long 

sequencing reads

• It improves the efficiency of genome assembly and pangenome graph 

construction

• We construct for the first time a pangenome of 661,405 bacterial genomes
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Figure 1. Overview of our methods
(A) An efficient assembly method for state-of-the-art genome sequencing (e.g., PacBio HiFi 

data). Illustration of our minimizer-space de Bruijn graph (mdBG, bottom) compared with 

the original de Bruijn graph (top) commonly used for genome assembly. Center horizontal 

section shows a toy reference genome, along with a collection of sequencing reads. Top box 

shows k-mers (k = 4) collected from the reads, which are the nodes of the classical de Bruijn 

graph. The input size of 52 nucleotides (nt) is depicted in boldface. Bottom box shows the 

position of minimizers in the reads for ℓ = 2, and any ℓ-mer starting with nucleotide “A” 
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is chosen as a minimizer. k′-min-mers (using notation k′ = 3 here to differentiate from 

classical k-mers) are tuples of k′ minimizers as ordered in reads, which constitute the nodes 

of the minimizer-space de Bruijn graph. Creating k′-min-mers from the minimizer-space 

representation of reads allows for a reduction in input size, since the only bases stored in a 

k′-min-mer are the bases of the chosen minimizers. The reduced input size to 18 nucleotides 

(nt) is depicted in boldface. The minimizer-space representation accelerates the construction 

and traversal of the de Bruijn graph while reducing memory consumption.

(B) Overview of the assembly pipeline using mdBG. The region of the figure above 

(respectively, below) the dotted line corresponds to analyses taking place in base space 

(respectively, minimizer space). The input reads are scanned sequentially, and all [-mers 

that belong to a pre-selected set of universe minimizers (see STAR Methods) are identified. 

Each read is then represented as an ordered list of the selected minimizers, and k-min-mers 

are collected from the minimizer-space representation of reads using a sliding window of 

length k. A minimizer-space de Bruijn graph (mdBG) is then constructed from the set of all 

k-min-mers and simplified in order to reduce ambiguity and remove errors. The mdBG is 

then converted back into base space by concatenating the base-space sequences spanned by 

the minimizers in the mdBG, and a set of contigs is reported.

(C) Overview of the minimizer-space partial order alignment (POA) procedure with a toy 

dataset of 4 reads. (1) Error-prone reads and their ordered lists of minimizers (ℓ = 2) are 

shown, with sequencing errors and the minimizers that are created as a result of errors 

denoted in colors (insertion as red, deletion as orange, substitution in blue, no errors in 

green). (2) Before minimizer-space error-correction, the ordered lists of minimizers are 

bucketed using their n-tuples (n = 1). (3) For a query ordered list (the first read in the 

read set in the figure), all ordered lists that share an n-tuple with the query are obtained, 

and the final list of query neighbors are obtained by applying a heuristically determined 

distance filter dj (Jaccard distance threshold of φ = 0.5). (4) A POA graph in minimizer 

space is constructed by initializing the graph with the query and aligning each ordered list 

that passed the filter to the graph iteratively (weights of poorlya supported edges are shown 

in red). (5) By taking a consensus path of the graph, the error in the query is corrected.
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Figure 2. Evaluation of minimizer-space POA correction
(A) Effect of our minimizer-space POA correction on mdBG assembly and reads. Reads 

from D. melanogaster chromosome 4 were simulated with base error rates ranging from 0%, 

1%, …, up to 10%. Assemblies were run with and without minimizer-space POA correction. 

Left panel depicts the length of the longest contig for each assembly (uncorrected in blue, 

minimizer-space POA-corrected in orange). Right panel depicts the average read identity to 

the reference, computed in minimizer space, for raw reads (observed in blue, and predicted 

by Equation 1 in green), and reads corrected by POA in minimizer space (in orange).

(B) Robustness of rust-mdbg assemblies by varying the k and δ parameters, on whole­

genome D. melanogaster simulated perfect reads. The proportion of recovered k-min-mer 

values is reported in both plots. Left panel shows recovery rates for k = 30, ℓ = 12, and 

varying δ from 0.001 to 0.005, with good recovery (≥ 90%) occurring with δ≥0.0025). Right 

panel shows recovery rates for ℓ = 12, δ = 0.003, and varying k from 10 to 50, again with 

good recovery with k ≥ 40.
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Figure 3. Pangenome mdBG of 661,405 bacterial genomes and retrieval of anti-microbial 
resistance genes
Top panel: a complete δ = 0.001 pangenome mdBG is constructed for the whole 661,405 

bacterial collection and the first five connected components are displayed here (using Gephi 

software). Each node is a k-min-mer, and edges are exact overlaps of k − 1 minimizers 

between k-min-mers. Middle panel: a collection of anti-microbial resistance gene targets 

was converted into minimizer space, then each k-min-mer is queried in a 661,405 bacterial 

pangenome graph (δ = 0.01) yielding a bimodal distribution of gene retrieval: genes with 

high identity (99%+) to those in the pangenome are found, while those with lower identity 

are not found. The histogram is annotated by the minimal sequence divergence of each gene 

as aligned by minimap2 to the pangenome over 90% of its length. Bottom panel: runtime 

and memory usage for the δ = 0.01 graph construction and query. Note that the graph need 

only be constructed once in a preprocessing step.
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Figure 4. Propagation of sequencing errors in base space to minimizer space
We consider a sequence along with its minimizers (left of the box). Each panel inside the 

box depicts the effect of a different mutation on this sequence. Top left panel: G → C 

(in purple) leads to no change in the minimizer-space representation as the mutation did 

not change or create any minimizer. Bottom left: A → G led to the disappearance of m2. 

Top right: C → A made the m3 minimizer appear. Bottom right: T → A affected two 

minimizers: m4 was substituted for m1, and m3 was inserted.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

D. melanogaster and H. sapiens HiFi reads Nurk et al., 2020 Table 1; https://doi.org/10.1101/gr.263566.120

ATCC MSA-1003 and Zymo D6331 HiFi reads N/A Table 2; SRA identifiers SRX9569057 and SRX8173258

Software and algorithms

mdBG code This paper https://doi.org/10.5281/zenodo.5145931; https://github.com/ekimb/rust­
mdbg
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