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Abstract

Self-training based unsupervised domain adaptation (UDA) has shown great potential to address 

the problem of domain shift, when applying a trained deep learning model in a source 

domain to unlabeled target domains. However, while the self-training UDA has demonstrated 

its effectiveness on discriminative tasks, such as classification and segmentation, via the reliable 

pseudo-label selection based on the softmax discrete histogram, the self-training UDA for 

generative tasks, such as image synthesis, is not fully investigated. In this work, we propose 

a novel generative self-training (GST) UDA framework with continuous value prediction and 

regression objective for cross-domain image synthesis. Specifically, we propose to filter the 

pseudo-label with an uncertainty mask, and quantify the predictive confidence of generated 

images with practical variational Bayes learning. The fast test-time adaptation is achieved by a 

round-based alternative optimization scheme. We validated our framework on the tagged-to-cine 

magnetic resonance imaging (MRI) synthesis problem, where datasets in the source and target 

domains were acquired from different scanners or centers. Extensive validations were carried out 

to verify our framework against popular adversarial training UDA methods. Results show that our 

GST, with tagged MRI of test subjects in new target domains, improved the synthesis quality by a 

large margin, compared with the adversarial training UDA methods.

1 Introduction

Deep learning has advanced state-of-the-art machine learning approaches and excelled at 

learning representations suitable for numerous discriminative and generative tasks [29, 22, 

5It can be rewritten as min
w

ℱ = ∑t ∈ T ∑n = 1
N 1

σt, n2 yt, n − yt, n mt, n 2
2 + β ∑t ∈ T ∑n = 1

N logσt, n2 − C . Since β, C ≥ 0, 

an upper bound on ℱ can be obtained as ℱ ≤ ℒreg
t .

HHS Public Access
Author manuscript
Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 
November 02.

Published in final edited form as:
Med Image Comput Comput Assist Interv. 2021 ; 12903: 138–148. doi:10.1007/978-3-030-87199-4_13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14, 21]. However, a deep learning model trained on labeled data from a source domain, 

in general, performs poorly on unlabeled data from unseen target domains, partly because 

of discrepancies between source and target data distributions, i.e., domain shift [15]. The 

problem of domain shift in medical imaging arises, because data are often acquired from 

different scanners, protocols, or centers [17]. This issue has motivated many researchers 

to investigate unsupervised domain adaptation (UDA), which aims to transfer knowledge 

learned from a labeled source domain to different but related unlabeled target domains [30, 

33].

There has been a great deal of work to alleviate the domain shift using UDA [30]. 

Early methods attempted to learn domain-invariant representations or to take instance 

importance into consideration to bridge the gap between the source and target domains. 

In addition, due to the ability of deep learning to disentangle explanatory factors of 

variations, efforts have been made to learn more transferable features. Recent works in UDA 

incorporated discrepancy measures into network architectures to align feature distributions 

between source and target domains [18, 19]. This was achieved by either minimizing 

the distribution discrepancy between feature distribution statistics, e.g., maximum mean 

discrepancy (MMD), or adversarially learning the feature representations to fool a domain 

classifier in a two-player minimax game [18].

Recently, self-training based UDA presents a powerful means to counter unknown labels 

in the target domain [33], surpassing the adversarial learning-based methods in many 

discriminative UDA benchmarks, e.g., classification and segmentation (i.e., pixel-wise 

classification) [31, 23, 26]. The core idea behind the deep self-training based UDA is to 

iteratively generate a set of one-hot (or smoothed) pseudo-labels in the target domain, 

followed by retraining the network based on these pseudo-labels with target data [33]. Since 

outputs of the previous round can be noisy, it is critical to only select the high confidence 

prediction as reliable pseudo-label. In discriminative self-training with softmax output unit 

and cross-entropy objective, it is natural to define the confidence for a sample as the max 

of its output softmax probabilities [33]. Calibrating the uncertainty of the regression task, 

however, can be more challenging. Because of the insufficient target data and unreliable 

pseudo-labels, there can be both epistemic and aleatoric uncertainties [3] in self-training 

UDA. In addition, while the self-training UDA has demonstrated its effectiveness on 

classification and segmentation, via the reliable pseudo-label selection based on the softmax 

discrete histogram, the same approach for generative tasks, such as image synthesis, is 

underexplored.

In this work, we propose a novel generative self-training (GST) UDA framework with 

continuous value prediction and regression objective for tagged-to-cine magnetic resonance 

(MR) image synthesis. More specifically, we propose to filter the pseudo-label with an 

uncertainty mask, and quantify the predictive confidence of generated images with practical 

variational Bayes learning. The fast test-time adaptation is achieved by a round-based 

alternative optimization scheme. Our contributions are summarized as follows:
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• We propose to achieve cross-scanner and cross-center test-time UDA of tagged­

to-cine MR image synthesis, which can potentially reduce the extra cine MRI 

acquisition time and cost.

• A novel GST UDA scheme is proposed, which controls the confident pseudo­

label (continuous value) selection with a practical Bayesian uncertainty mask. 

Both the aleatoric and epistemic uncertainties in GST UDA are investigated.

• Both quantitative and qualitative evaluation results, using a total of 1,768 

paired slices of tagged and cine MRI from the source domain and tagged MR 

slices of target subjects from the cross-scanner and cross-center target domain, 

demonstrate the validity of our proposed GST framework and its superiority to 

conventional adversarial training based UDA methods.

2 Methodology

In our setting of the UDA image synthesis, we have paired resized tagged MR images, 

xs ∈ ℝ256 × 256, and cine MR images, ys ∈ ℝ256 × 256, indexed by s = 1, 2, · · ·, S, from 

the source domain {XS, YS}, and target samples xt ∈ ℝ256 × 256 from the unlabeled target 

domain XT, indexed by t = 1, 2, · · ·, T. In both training and testing, the ground-truth target 

labels, i.e., cine MR images in the target domain, are inaccessible, and the pseudo-label 

yt ∈ ℝ256 × 256 of xt is iteratively generated in a self-training scheme [33, 16]. In this work, 

we adopt the U-Net-based Pix2Pix [9] as our translator backbone, and initialize the network 

parameters w with the pre-training using the labeled source domain {XS, YS}. In what 

follows, alternative optimization based self-training is applied to gradually update the U-Net 

part for the target domain image synthesis by training on both {XS, YS} and XT. Fig. 1 

illustrates the proposed algorithm flow, which is detailed below.

2.1 Generative Self-training UDA

The conventional self-training regards the pseudo-label ŷt as a learnable latent variable 

in the form of a categorical histogram, and assigns all-zero vector label for the uncertain 

samples or pixels to filter them out for loss calculation [33, 16]. Since not all pseudo-labels 

are reliable, we define a confidence threshold to progressively select confident pseudo-labels 

[32]. This is akin to self-paced learning that learns samples in an easy-to-hard order 

[12, 27]. In classification or segmentation tasks, the confidence can be simply measured 

by the maximum softmax output histogram probability [33]. The output of a generation 

task, however, is continuous values and thus setting the pseudo-label as 0 cannot drop the 

uncertain sample in the regression loss calculation.

Therefore, we first propose to formulate the generative self-training as a unified regression 

loss minimization scheme, where pseudo-labels can be a pixel-wise continuous value and 

indicate the uncertain pixel with an uncertainty mask mt = mt, n n = 1
256 × 256, where n indexes 

the pixel in the images, and mt,n ∈ {0, 1}, ∀t, n:
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min
w, mt

∑
s ∈ S

∑
n = 1

N
ys, n − ys, n 2

2

ℒreg s (w)

+ ∑
t ∈ T

∑
n = 1

N
yt, n − yt, n mt, n 2

2

ℒreg t w, mt

(1)

s.t.   mt, n =
1 ut, n < ϵ
0 ut, n > ϵ; ϵ = min  top p% sorted ut, n , (2)

where xs,n, ys,n, xt,n, ŷt,n ∈ [0, 255]. For example, ys,n indicates the n-th pixel of the 

s-th source domain ground-truth cine MR image ys. ỹs,n and ỹt,n represent the generated 

source and target images, respectively. ℒreg
s (w) and ℒreg

t w, mt  are the regression loss of 

the source and target domain samples, respectively. Notably, there is only one network 

parameterized with w, which is updated with the loss in both domains. ut,n is the to-be 

estimated uncertainty of a pixel and determines the value of the uncertainty mask mt,n with 

a threshold ϵ. ϵ is a critical parameter to control pseudo-label learning and selection, which 

is determined by a single meta portion parameter p, indicating the portion of pixels to be 

selected in the target domain. Empirically, we define ϵ in each iteration, by sorting ut,n in 

increasing order and set ϵ to minimum ut,n of the top p ∈ [0, 1] percentile rank.

2.2 Bayesian Uncertainty Mask for Target Samples

Determining the mask value mt,n for the target sample requires the uncertainty estimation of 

ut,n in our self-training UDA. Notably, the lack of sufficient target domain data can result in 

the epistemic uncertainty w.r.t. the model parameters, while the noisy pseudo-label can lead 

to the aleatoric uncertainty [3, 11, 8].

To counter this, we model the epistemic uncertainty via Bayesian neural networks which 

learn a posterior distribution p(w|XT, ŶT) over the probabilistic model parameters rather 

than a set of deterministic parameters [25]. In particular, a tractable solution is to replace 

the true posterior distribution with a variational approximation q(w), and dropout variational 

inference can be a practical technique. This can be seen as using the Bernoulli distribution 

as the approximation distribution q(w) [5]. The K times prediction with independent dropout 

sampling is referred to as Monte Carlo (MC) dropout. We use the mean squared error (MSE) 

to measure the epistemic uncertainty as in [25], which assesses a one-dimensional regression 

model similar to [4]. Therefore, the epistemic uncertainty with MSE of each pixel with K 
times dropout generation is given by

ut, n
epistemic = 1

K ∑
k = 1

K
yt, n − μt, n 2

2; μt, n = 1
K ∑

k = 1

K
yt, n, (3)

where μt,n is the predictive mean of ỹt,n.

Because of the different hardness and divergence and because the pseudo-label noise can 

vary for different xt, the heteroscedastic aleatoric uncertainty modeling is required [24, 13]. 

In this work, we use our network to transform xt, with its head split to predict both ỹt 
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and the variance map σt2 ∈ ℝ256 × 256; and its element σt, n2  is the predicted variance for the 

n-th pixel. We do not need “uncertainty labels” to learn σt2 prediction. Rather, we can learn 

σt2 implicitly from a regression loss function [13, 11]. The masked regression loss can be 

formulated as

ℒreg
t w, mt, σt2 = ∑

t ∈ T
∑

n = 1

N 1
σt, n2 yt, n − yt, n mt, n 2

2 + βlogσt, n2 , (4)

which consists of a variance normalized residual regression term and an uncertainty 

regularization term. The second regularization term keeps the network from predicting 

an infinite uncertainty, i.e., zero loss, for all the data points. Then, the averaged aleatoric 

uncertainty of K times MC dropout can be measured by ut, naleatoric = 1
K ∑k = 1

K σt, n2  [13, 11].

Moreover, minimizing Eq. (4) can be regarded as the Lagrangian with a multiplier β 
of. min

w
∑t − T ∑n = 1

N 1
σt, n2 yt, n − yt, n mt, n 2

2; s.t. ∑t ∈ T ∑n = 1
N logσt, n2 < C5, where C ∈ ℝ+

indicates the strength of the applied constraint. The condition term essentially controls 

the target domain predictive uncertainty, which is helpful for UDA [7]. Our final pixel­

wise self-training UDA uncertainty ut, n = ut, n
epistemic  + ut, naleatoric  is a combination of the two 

uncertainties [11].

2.3 Training Protocol

As pointed out in [6], directly optimizing the self-training objectives can be difficult and 

thus the deterministic annealing expectation maximization (EM) algorithms are often used 

instead. Specifically, the generative self-training can be solved by alternating optimization 

based on the following a) and b) steps.

a) Pseudo-label and uncertainty mask generation.—With the current w, apply 

the MC dropout for K times image translation of each target domain tagged MR image xt. 

We estimate the pixel-wise uncertainty ut,n, and calculate the uncertainty mask mt with the 

threshold ϵ. We set the pseudo-label of the selected pixel in this round as ŷt,n = μt,n, i.e., the 

average value of K outputs.

b) Network w retraining.—Fix YT = yt t = 1
T , MT = mt t = 1

T  and solve:

min
w

∑
s ∈ S

∑
n = 1

N
ys, n − ys, n 2

2 + ∑
t ∈ T

∑
n = 1

N 1
σt, n2 yt, n − yt, n mt, n 2

2 + βlogσt, n2 (5)

to update w. Carrying out step a) and b) for one time is defined as one round in self-training. 

Intuitively, step a) is equivalent to simultaneously conducting pseudo-label learning and 

selection. In order to solve step b), we can use a typical gradient method, e.g. Stochastic 

Gradient Descent (SGD). The meta parameter p is linearly increasing from 30% to 80% 

alongside the training to incorporate more pseudo-labels in the subsequent rounds as in [33].
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3 Experiments and Results

We evaluated our framework on both cross-scanner and cross-center tagged-to-cine MR 

image synthesis tasks. For the labeled source domain, a total of 1,768 paired tagged and cine 

MR images from 10 healthy subjects at clinical center A were acquired. We followed the test 

time UDA setting [10], which uses only one unlabeled target subject in UDA training and 

testing.

For fair comparison, we adopted Pix2Pix [9] for our source domain training as in [20], and 

used the trained U-Net as the source model for all of the comparison methods. In order to 

align the absolute value of each loss, we empirically set weight β = 1 and K = 20. Our 

framework was implemented using the PyTorch deep learning toolbox. The GST training 

was performed on a V100 GPU, which took about 30 min. We note that K times MC 

dropout can be processed parallel. In each iteration, we sampled the same number of source 

and target domain samples.

3.1 Cross-scanner tagged-to-cine MR image synthesis

In the cross-scanner image synthesis setting, a total of 1,014 paired tagged and cine MR 

images from 5 healthy subjects in the target domain were acquired at clinical center A with 

a different scanner. As a result, there was an appearance discrepancy between the source and 

target domains.

The synthesis results using source domain Pix2Pix [9] without UDA training, gradually 

adversarial UDA (GAUDA) [2], and our proposed framework are shown in Fig. 2. Note that 

GAUDA with source domain initialization took about 2 hours for the training, which was 

four times slower than our GST framework. In addition, it was challenging to stabilize the 

adversarial training [1], thus yielding checkerboard artifacts. Furthermore, the hallucinated 

content with the domain-wise distribution alignment loss produced a relatively significant 

difference in shape and texture within the tongue between the real cine MR images. By 

contrast, our framework achieved the adaptation with relatively limited target data in the test 

time UDA setting [10], with faster convergence time. In addition, our framework did not rely 

on adversarial training, generating visually pleasing results with better structural consistency 

as shown in Fig. 2, which is crucial for subsequent analyses such as segmentation.

For an ablation study, in Fig. 2, we show the performance of GST without the aleatoric or 

epistemic uncertainty for the uncertainty mask, i.e., GST-A or GST-E. Without measuring 

the aleatoric uncertainty caused by the inaccurate label, GST-A exhibited a small distortion 

of the shape and boundary. Without measuring the epistemic uncertainty, GST-E yielded 

noisier results than GST.

The synthesized images were expected to have realistic-looking textures, and to be 

structurally cohesive with their corresponding ground truth images. For quantitative 

evaluation, we adopted widely used evaluation metrics: mean L1 error, structural similarity 

index measure (SSIM), peak signal-to-noise ratio (PSNR), and unsupervised inception score 

(IS) [20]. Table 1 lists numerical comparisons using 5 testing subjects. The proposed GST 

Liu et al. Page 6

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



outperformed GAUDA [2] and ADDA [28] w.r.t. L1 error, SSIM, PSNR, and IS by a large 

margin.

3.2 Cross-center tagged-to-cine MR image synthesis

To further demonstrate the generality of our framework for the cross-center tagged-to-cine 

MR image synthesis task, we collected 120 tagged MR slices of a subject at clinical center 

B with a different scanner. As a result, the data at clinical center B had different soft tissue 

contrast and tag spacing, compared with clinical center A, and the head position was also 

different.

The qualitative results in Fig. 3 show that the anatomical structure of the tongue is better 

maintained using our framework with both the aleatoric and epistemic uncertainties. Due to 

the large domain gap present in the datasets between the two centers, the overall synthesis 

quality was not as good as the cross-scanner image synthesis task, as visually assessed. 

In Table 1, we provide the quantitative comparison using IS, which does not need the 

paired ground truth cine MR images [20]. Consistently with the cross-scanner setting, our 

GST outperformed adversarial training methods, including GAUDA and ADDA [2, 28], 

indicating the self-training can be a powerful technique for the generative UDA task, similar 

to the conventional discriminative self-training [33, 16].

4 Discussion and Conclusion

In this work, we presented a novel generative self-training framework for UDA and applied 

the framework to cross-scanner and cross-center tagged-to-MR image synthesis tasks. With 

a practical yet principled Bayesian uncertainty mask, our framework was able to control 

the confident pseudo-label selection. In addition, we systematically investigated both the 

aleatoric and epistemic uncertainties in generative self-training UDA. Our experimental 

results demonstrated that our framework yielded the superior performance, compared with 

the popular adversarial training UDA methods, as quantitatively and qualitatively assessed. 

The synthesized cine MRI with test time UDA can potentially be used to segment the tongue 

and to observe surface motion, without the additional acquisition cost and time.
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Fig. 1: 
Illustration of our generative self-training UDA for tagged-to-cine MR image synthesis. In 

each iteration, two-step alternative training is carried out.
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Fig. 2: 
Comparison of different UDA methods on the cross-scanner tagged-to-cine MR image 

synthesis task, including our proposed GST, GST-A, and GST-E, adversarial UDA [2]*, and 

Pix2Pix [9] without adaptation. * indicates the first attempt at tagged-to-cine MR image 

synthesis. GT indicates the ground-truth.
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Fig. 3: 
Comparison of different UDA methods on the cross-center tagged-to-cine MR image 

synthesis task, including our proposed GST, GST-A, and GST-E, adversarial UDA [2]*, 

and Pix2Pix [9] without adaptation. * indicates the first attempt at tagged-to-cine MR image 

synthesis.
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Table 1:

Numerical comparisons of cross-scanner and cross-center evaluations.

Cross-scanner Cross-center

Methods L1 ↓ SSIM ↑ PSNR ↑ IS ↑ IS ↑

w/o UDA [9] 176.4±0.1 0.8325±0.0012 26.31±0.05 8.73±0.12 5.32±0.11

ADDA [28] 168.2±0.2 0.8784±0.0013 33.15±0.04 10.38±0.11 8.69±0.10

GAUDA [2] 161.7±0.1 0.8813±0.0012 33.27±0.06 10,62±0.13 8.83±0.14

GST 158.6±0.2 0.9078±0.0011 34.48±0.05 12.63±0.12 9.76±0.11

GST-A 159.5±0.3 0.8997±0.0011 34.03±0.04 12.03±0.12 9.54±0.13

GST-E 159.8±0.1 0.9026±0.0013 34.05±0.05 11.95±0.11 9.58±0.12

± standard deviation is reported over three evaluations.
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