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Abstract

Boosting methods are among the best general-purpose and off-the-shelf machine learning 

approaches, gaining widespread popularity. In this paper, we seek to develop a boosting method 

that yields comparable accuracy to popular AdaBoost and gradient boosting methods, yet is faster 

computationally and whose solution is more interpretable. We achieve this by developing MP

Boost, an algorithm loosely based on AdaBoost that learns by adaptively selecting small subsets 

of instances and features, or what we term minipatches (MP), at each iteration. By sequentially 

learning on tiny subsets of the data, our approach is computationally faster than other classic 

boosting algorithms. Also as it progresses, MP-Boost adaptively learns a probability distribution 

on the features and instances that upweight the most important features and challenging 

instances, hence adaptively selecting the most relevant minipatches for learning. These learned 

probability distributions also aid in interpretation of our method. We empirically demonstrate the 

interpretability, comparative accuracy, and computational time of our approach on a variety of 

binary classification tasks.
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1. Introduction

Boosting algorithms adaptively learn a series of weak learners that overall yield often 

state-of-the-art predictive accuracy, but are computationally slow. Huge datasets with many 

instances and features (e.g., data recorded from sensors, texts, and images) highlight 

this ”slow learning” behavior. For example, AdaBoost [1] and gradient boosting [2] suffer 

from a slow training speed since they try to achieve a proper performance neglecting 

the size of the data. Further, most boosting methods are ”black-box”, meaning that their 
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interpretation [3] lacks transparency and simplicity. Identification of features and examples 

with the most impact helps to obtain a more interpretable model [4], [5]. In this paper, our 

goal is to develop an AdaBoost-based algorithm that learns faster computationally and also 

yields interpretable solutions.

We propose to achieve this by adaptively sampling tiny subsets of both instances and 

features simultaneously, something we refer to as a minipatch learning (Fig. 1). Subsampling 

is widely used in machine learning and has been shown to have both computational and 

predictive advantages. For instance, bagging [6] uses the bootstrap technique [7] to reduce 

the dependency of weak learners to the training data. Random forest [8], as a specific 

type of bagging, reduces the number of efficient features in each weak learner as well. 

The computational advantages of the ensemble of uniform random minipatches have been 

investigated in [9].

There is preliminary evidence that uniform minipatch selection yields implicit regularization 

[10], [11]; however, dropout is not precisely what we refer to as minipatch learning. In fact, 

the combination of minibatch selection (i.e., stochastic optimization) and dropout in the first 

layer lies in the category of minipatch learning algorithms. Minipatch sampling not only can 

accelerate ensemble algorithms, but it can also implicitly regularize them, i.e., reduce the 

prediction’s sensitivity to individual instances or features.

Subsampling can speed up iterative algorithms; however, uniform sampling can 

appropriately be modified with an adaptive procedure as the importance and difficulty of the 

observations and features vary. To give an example, in classification problems, observations 

closer to the decision boundary play the critical role in the ultimate model [12]. Moreover, 

we can use adaptive sampling to interpret the final results. For instance, SIRUS algorithm 

[5], [13] suggests how to leverage the frequency of splits in random forest trees to generate 

an interpretable model with fewer splits. Our MP-Boost algorithm will incorporate the 

advantages of adaptivity in order to learn distributions on the observations and features.

More closely related to our work, several have proposed to employ sampling schemes on 

the top of AdaBoost. Works along this line usually target either subsampling the features 

or observations adaptively. Exploiting bandit algorithms, adaptive feature selection methods 

[14], [15] have been suggested to reduce the number of effective features accessed by 

each weak learner. Similarly, Tasting [16] and Laminating [17], [18] propose score-based 

feature selection algorithms in each iteration of AdaBoost. They subsample features in each 

iteration adaptively but either utilize all instances to train weak learners or subsample them 

uniformly.

On the other hand, algorithms like MadaBoost [19] and FilterBoost [20] suggest adaptive 

oracle subsampling of the observations. However, they do not subsample features and the 

size of selected samples increases per iteration, thus get slower during their progress. In 

contrast, the algorithm that we will propose exploits the effect of minipatch selection; in this 

way, it will take the importance of both the observations and features into account.

A series of algorithms have been proposed to reduce the computational complexity 

of gradient boosting. For example, stochastic gradient boosting (SGB) [21] suggests 
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subsampling the observations randomly. XGBoost [22] by introducing a novel structure 

for decision trees, a fast training algorithm, as well as several other modifications such 

as features subsampling techniques through a pre-sorting and histogram-based algorithm, 

extensively optimizes the computational complexity of gradient boosting.

In this regard, LightGBM [23] and CatBoost [24] subsample observations adaptively 

proportionate to their gradient values and use an algorithm called exclusive feature bundling 

(EFB) to reduce the number of effective features by categorizing them. In contrast, MP

Boost will be designed to learn a probability distribution on features gradually during 

its progress instead of categorizing them initially. The minimal variance sampling (MVS) 

[25] algorithm is proposed to select the observations according to their gradient values 

provably with a minimal variance; however, it lacks subsampling over the features. Note that 

MP-Boost will be designed based on AdaBoost; thus, its adaptive observation selection will 

entirely be different from algorithms that are designed based on gradient boosting.

The remainder of the paper is organized as follows. In Section 2, stating the problem 

formulation, we present MP-Boost. In Section 3, we investigate the efficacy of the adaptive 

subsampling, interpretability of the proposed algorithm, and compare the generalization 

accuracy of MP-Boost with that of AdaBoost, gradient boosting, and random forest. We end 

with discussing and concluding remarks in Section 4.

2. MP-Boost

Our goal is to develop a boosting algorithm utilizing adaptive sampling of features and 

observations that enhances both scalability and interpretability.

2.1. MP-Boost Algorithm

We begin by focusing on binary classification tasks. Let our data be X ⊂ ℝN × M for N 

observations or instances and M features; for each instance, we observe a label, (xi,yi) with 

yi ∈ {−1, +1}. We seek to learn a classifier yi = sgn(F(xi)).

To achieve this, we propose an adaptive sampling based version of boosting inspired by 

AdaBoost. Our method relies on learning a weak learner from a tiny subset of observations 

and features at each iteration. We call this tiny subset a minipatch, termed based on the 

use of ”patches” in image processing, and minibatches as small subsamples of observations 

commonly used in machine learning. Our approach is to take an ensemble of minipatches, 

or minipatch learning as shown in Figure 1, where each minipatch is sampled adaptively. 

Formally, we define a minipatch by Xℛ, C, yℛ , where ℛ is a subset of observations with 

size n, and C is a subset of features with size m. By learning weak learners on tiny subsets 

or minipatches, our boosting algorithm will have major computational advantages for large 

N and/or large M datasets.

We define ℋ to be the class of weak learners [26], where each ℎ ∈ ℋ is a function 

ℎ:ℝm − 1, + 1  Our algorithm is generic to the type of weak learners, which can be 

either simple or expressive. However, we select decision trees [27] as the default weak 
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learner in MP-Boost. We consider both depth-k trees as well as saturated trees that are split 

until each terminal leaf consists of samples from the same class.

The core of our algorithm uses adaptive sampling of observations to achieve the 

adaptive slow learning properties [28] of the AdaBoost algorithm. Similar to [25] for 

gradient boosting, MP-Boost subsamples observations according to an adaptive probability 

distribution. Let p be the probability distribution on observations (i.e., ∑i = 1
N pi = 1) and 

initially set p to be uniform (U[N]). We define Sample(N,n,p) as sampling a subset of [N] of 

size n according to the probability distribution p without replacement.

Let F :ℝM ℝ be the ensemble function. Our algorithm selects a minipatch, trains 

a proper weak learner on it, and computes the summation of weak learners, 

F xi
(t) = ∑k = 1

t ℎ(k) xi C(k) . Misclassified samples are more difficult to be learned, so we 

need to increase their probabilities to be sampled more frequently. Let ℒ:ℝ × ℝ ℝ+ be a 

function that measures the similarity between the ensemble outputs and labels, i.e., positive 

yF yields smaller ℒ(y, F ) and vice versa. MP-Boost assigns a probability proportional to 

ℒ yi, F xi  to the ith observation. Table 1 shows the choices for function ℒ inspired by 

the weighting function in AdaBoost and LogitBoost [29]. Note that ”Soft functions” are 

sensitive to the ensemble output value, while ”Hard functions” merely care about its sign.

Full-batch boosting algorithms reweight all of the observations and train a new weak learner 

on their weighted average in each iteration [1], [2], [29]. In contrast, stochastic algorithms 

use each sample’s frequency to take the effect of its weight into account [19], [20], [25]. We 

update the probability of the observations similar to FilterBoost [20]. However, FilterBoost 

increases n during its progress and uses negative sampling, and is thus slower than ours.

Another major goal is to increase the interpretability of boosting approaches. To accomplish 

this, we also propose to adaptively select features that are effective for learning. Similar 

to p, let q be the probability distribution on features. Our algorithm requires a criterion to 

compute the importance of the selected m features based on the structure of ℋ. There exist 

several choices for computing features importance based on ℋ. Some of these inspection 

techniques are model agnostic, hence proper for MP-Boost to incorporate weak learners 

from different classes. For example, the permutation importance method [8], [30] shuffling 

each feature infers its importance according to the difference in the prediction score.

Nevertheless, specific metrics like impurity reduction score [31] are defined for decision 

trees. We utilize this quantity to define our probability distribution over the features. Let ℐℎ

denote the normalized feature importance vector for a weak learner h, wherein each entry 

determines the relative importance of the corresponding feature compared to other features 

in the minipatch. In each iteration, q is updated through computing the weighted average of 

q and ℐ according to a momentum μ. The hyperparameter μ ∈ (0,1) determines the ratio of 

exploration vs. exploitation. MP-Boost only modifies the probability of features inside the 

minipatch, in each iteration.
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Algorithm 1

MP-Boost

MP-Boost (X, y, n, m, μ)

Initialization (t = 0):

p(1) = U[N] // observation probabilities

q(1) = U[M] // feature probabilities

F(1) (xi) = 0, ∀i ∈ [N] // ensemble output

G(1) (xi) =0, ∀i ∈ [N] // out-of-patch output

while Stopping – Criterion(oop(t)) not met do t ← t +1

 1) Sample a minipatch:

  a) ℛ(t) = Sample N, n, p(t)  // select n instances

  b) C(t) = Sample M, m, q(t)  // select m features

  c) X(t), y(t) = Xℛ(t), C(t), yℛ(t)  // minipatch

 2) Train a weak learner on the minipatch:

  a) ℎ(t) ∈ ℋ: weak learner trained on X(t), y(t)

 3) Update outputs:

  a) F (t) xi = F (t − 1) xi + ℎ(t) xi C(t) , ∀i ∈ [N]
 4) Update probability distributions:

  a) pi
(t + 1) =

ℒ yi, F (t) xi
∑k = 1

N ℒ yk, F (t) xk
, ∀i ∈ [N]

  b) qj
(t + 1) = (1 − μ)qj

(t) + μrℐj
ℎ(t)

, j ∈ C(t)

   where, r = ∑j ∈ C(t)qj
(t)

 5) Out-of-Patch Accuracy:

  a) G(t) xi = G(t − 1) xi + ℎ(t) xi C(t) , ∀i ∉ ℛ(t)

  b) oop(t) = 1
N ∑i = 1

N 1 sgn G(t) xi = yi

end while

Return sgn(F(T)), p(T), q(T)

Finally, many boosting algorithms are designed to run for a fixed number of iterations [2] 

or use a validation criterion [19], [20], [32] in order to determine when to stop. Internal 

validation approaches often have better performance and are computationally much faster. 

For instance, consider the out-of-bag criterion [33] in bagging and random forest that uses 

internal validation properties without incurring any additional computational cost. Similarly 

to bagging, our MP-Boost has access to out-of-patch instances, which we can use for 

internal validation. Therefore, for each sample i ∈ [N], we accumulate the output of weak 

learners that do not have it in their minipatch. Thus, we define out-of-patch output to be a 

function G:ℝM ℝ as follows:
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G(t) xi = ∑
k = 1

t
ℎ(k) xi C(k) 1 i ∉ ℛ(k) (1)

for an arbitrary xi. Accordingly, the out-of-patch accuracy, oop, can easily be quantified.

Out-of-patch accuracy is a conservative estimate of the test accuracy. Hence it can assist 

MP-Boost to track the progress of the generalization (test) performance internally and 

decide at which iteration to stop. In a nutshell, observing the oop value, the algorithm finds 

where it is saturated. Algorithm 2 (in Appendix B) is a heuristic algorithm that takes oop(t), 

compares it with its previous values, and finally decides when it becomes saturated. In fact, 

the stopping algorithm follows a general rule; if the current value of oop increases with 

some margin, then the algorithm needs more time to improve; otherwise, the generalization 

performance is saturated.

We put all of this together in a summary of our MP-Boost algorithm in Algorithm 1. Notice 

here that selecting minipatches (step 1) reduces the computational complexity imposed per 

iteration, thus improves the scalability. Other variations of AdaBoost usually subsample 

either features or observations while ours exploits both. Therefore, in addition to the 

predictive model F, our algorithm learns probability distributions p and q that express the 

importance of observations and features, respectively. Since learning p,q is a part of the 

iterative procedure, it does not incur an extra computational cost. In addition, MP-Boost 

exploits an internal validation that yields an automatic stopping criterion when the algorithm 

ceases to learn. Hence, steps (4) and (5) of Algorithm 1 highlight the main differences of 

MP-Boost with other sampling-based boosting algorithms.

2.2. Hyperparameter Tuning

The minipatch size is a crucial hyperparameter of our algorithm. Large n or m slows down 

weak learners’ training but is more likely to yield better performance. Note that m must 

be large enough to provide a wide range of features for comparison and update features 

probability properly. Similarly, n must be large enough such that each minipatch represents 

a meaningful subset of the observations. On the other hand, small n results in a oop value 

akin to the generalization accuracy. Selecting around ten percent of the observations and 

features seems to be a proper choice for our algorithm, as evidenced in our empirical studies. 

Additionally, our studies reveal that the results are fairly robust to small changes in n and 

m. μ is the other important hyperparameter in our algorithm where a moderate value for 

it (e.g., μ = 0.5) strikes a balance between exploration and exploitation. While our default 

hyperparameter settings seem to perform well and are robust in a variety of settings (see 

Section 3), one could always select these in a datadriven manner using our oop criterion as 

well.

2.3. Extensions

Our proposed algorithm is initially developed for the binary classification problem. Here, 

we discuss its extension to regression and multiclass classification problems. First, for 

multiclass classification, algorithms like AdaBoost.M2, AdaBoost.MH, and AdaBoost.OC 
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[34], [35] are proposed as multiclass extensions of AdaBoost. We can incorporate similar 

modifications to extend MP-Boost as well. Further, [36], [37] have suggested regression 

extensions like AdaBoost.R2 and AdaBoost.RT to the vanilla AdaBoost. Obviously, for 

regression, we will have to change our observation probability function and the out-of-patch 

accuracy, thus we can employ techniques in [33] to address the regression problem. All these 

can be further extensions to our approach.

3. Experiments

We begin by using an illustrative case study to show how our method works and how it aids 

interpretability. Next, we compare our algorithm to other popular boosting and tree-based 

methods, focusing on accuracy and scalability.

3.1. Illustrative Case Study

We use a series of experiments to demonstrate how our algorithm works and show 

how to interpret the results. Specifically, we ask: how does adaptive sampling boost 

the performance; how does the out-of-patch accuracy relate to test accuracy and yield a 

datadriven stopping criterion; how do we interpret the results via the final value of p and q?

To answer these questions, we focus our investigations on an explicable binary classification 

task: detecting digit 3 versus 8 in MNIST [38]. This dataset includes handwritten digits as 

images of size 28 × 28. The training data is huge (N > 10000) and high-dimensional (M = 

784). We use cross-validation to tune all hyperparameters, yielding n = 500, m = 30, and μ = 

0.5 as well as the Soft-Logistic function 1 as L.

To measure the effect of adaptive observation and/or feature selection, we train MP-Boost on 

MNIST(3,8). Then, we turn off the adaptive updates for p and replace it with the uniform 

distribution and resulting random observation sampling. We do the same for q analogously 

for the features. Finally, we turn off adaptive sampling for both features and observations, 

and repeat each experiment 5 times. Figure 2a shows the superiority of joint adaptive 

sampling of both observations and features in terms of performance on the test data. Further, 

we compare the training, out-of-patch, and test accuracy curves for MP-Boost in Figure 

2b. The dashed line indicates the stopping time of our algorithm based on the oop curve 

and our stopping heuristic Algorithm 2. To observe the behavior of the three curves, we 

let MP-Boost continue after the stopping criterion is satisfied. As shown in Figure 2b, and 

unlike the training curve, the trend in the out-of-patch curve is similar to that of the test 

curve. These results demonstrate the power that adaptive sampling of both observations and 

features brings to boost performance as well as the ability to use the oop curve to assess 

algorithm progress.

Next, we illustrate how to use p and q to interpret the observations and features. First, 

observations that are difficult to classify are upweighted in p. Hence, we can use p to 

identify the most challenging samples, yielding a similar type of interpretation commonly 

employed in support vector machines [12]. To visualize the final value of p, we project 

observations on a two-dimensional space using PCA with sizes of each observation 

proportional to p. We show this visualization before and after the training in Figure 3. 
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Further, we highlight a few of the observations with large values of p, illustrating that these 

samples are indeed difficult to distinguish between the two classes.

Finally, we show how to use q to find the most important features, and also illustrate 

how MP-Boost learns these features probability in Figure 4. Here, the color of each pixel 

(feature) is proportional to its probability, with darker pixels indicating the feature has 

been upweighted. We expect a sparse representation for q which matches with our result. 

Moreover, this example clearly shows how to interpret the most relevant features; in Figure 

4f, two regions are darker compared to other pixels corresponding with the complementary 

area for digit 3 versus 8.

3.2. Comparative Empirical Results

Here, we compare the speed and performance of our algorithm with AdaBoost, gradient 

boosting, and random forest on multiple binary classification tasks. To this end, we select 

large real datasets (usually N > 1000 and M > 100) from UCI machine learning repository 

[39], MNIST [38], and CIFAR-10 [40]. Moreover, we use a sparse synthetic dataset of two 

high-dimensional cones. The size of datasets is provided in Appendix A.

To be fair, we choose the oracle hyperparameters for every method. To this end, we 

pick decision trees with different maximum depths (depth ∈ {1,2,3,4,5,6,7}) or depth

saturated trees as weak learners. Note that we use scikit-learn [41] modules to implement 

our algorithm and all competitors so that all time-based comparisons are fair. For our 

method, we select from the following choices of hyperparameters: n ∈ 50, 100, 200, 500 , 

m ∈ 5, 10, 15, 20, M  and μ ∈ 0.1, 0.3, 0.5, 0.7, 0.9 .

For each dataset, we select the best performance of MP-Boost, versus that of AdaBoost, 

gradient boosting, and random forest constrained to the runtime of MP-Boost. Table 2 shows 

the best performance of each algorithm within the fixed runtime (MP-Boost training time). 

Results indicate that MP-Boost achieves a better performance faster than the other three 

algorithms. We also provide a more comprehensive comparison in Table 3, where we can see 

that without any runtime constraint, MP-Boost is much faster with a comparable accuracy 

across a wide variety of datasets.

4. Discussion

In this work, we proposed a new boosting approach using adaptive minipatch learning. We 

showed that our approach is computationally faster, as well as more interpretable, compared 

to standard boosting algorithms. Moreover, we showed that our algorithm outperforms 

AdaBoost and gradient boosting in a fixed runtime and has a comparable performance 

without any time constraint.

Our approach would be particularly useful for large data settings where both observations 

and features are large. Further, our MP-Boost algorithm can be particularly fitting to datasets 

with sparse features or noisy features because we learn the important features. Further, our 

adaptive observation selection can be used in active learning problems.
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We suggested extensions of MP-Boost for multiclass classification and regression problems 

in this paper. In future work, we plan on comparing them empirically to existing algorithms. 

Other aspects of future work would be to use this minipatch learning scheme in not only 

AdaBoost-like methods but also in gradient boosting-based methods. Additionally, one 

could explore other updating schemes for both the observation and feature probabilities. 

Theoretical analysis of MP-Boost would help to interpret the performance of our algorithm 

and its properties. Efficient implementations can improve the speed of current MP-Boost 

for different schemes. Likewise, efficient memory allocation is another essential work ahead 

of this project, where reducing the required hardware enables industry-scale problems to 

exploit properties in MP-Boost.
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Appendix A.

Dataset

According to our specific problem, we select datasets listed in Table 4 from UCI 

machine learning repository [39], MNIST [38], and CIFAR [40]. Note that we consider 

multiclass datasets like MNIST and CIFAR-10 and select two classes that are harder to 

be distinguished like digits 3&8 from MNIST or ”Truck & Car” classes from CIFAR-10. 

Additionally, we partition all classes into two for different multiclass datasets, like ”Odd & 

Even” digits in MNIST. About 20% of each dataset is selected as the test data. ”Cones” is a 

sparse synthetic dataset of two originally 10dimensional cones. Adding 490 noise features to 

them, we transform data points to ℝ500.

Appendix B.

Stopping Criterion Algorithm

The trend in oop is an approximation of the generalization accuracy; however, there are 

numerical oscillations in it. To make the stopping algorithm (Algorithm 2) robust to such 

numerical vibrations, instead of the largest previous value of oop, it keeps the k highest 

previous values of oop in a list, A, and compares the oop(t) with their minimum. If the oop 

value does not improve after k sequential iterations, then MP-Boost halts.

Algorithm 2

Stopping-Criterion

γ = 1 + log(n)
N  // ratio of the growth must be γ > 1

k = log(N) // number of top oop

v = 0 // number of successive iterations without progress A = a list containing k zeros // keeping the top k largest 
values of oop up to each iteration

Stopping-Criterion (oop(t))
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 1) Detect the best iteration:

  if oop(t) > max(A), set T = t

 2) Check the stopping criteria:

  if v > k or t > Tmax, halt Algorithm 1 // Tmax : maximum number of iterations

 3) Check the progress of oop:

  v = v + 1  oop (t) < γ ⋅ min(A)
0  otherwise 

 4) Update A:

  if oop(t) > min(A), then replace the minimum entry with oop(t)
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Figure 1: Minipatch Learning-
Selecting random minipatches of the dataset during the training of an ensemble algorithm.
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Figure 2: 
(a) Effect of MP-Boost adaptive sampling on MNIST (3 vs. 8) test data. (b) Train, test, 

and out-of-patch accuracy of MNIST (3 vs. 8) using MP-Boost. The dashed line shows the 

stopping time based on Algorithm 2.
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Figure 3: Probability distribution of MNIST (digit 3 vs. 8) samples before and after training 
MP-Boost-
Samples are Projected onto a 2-dimensional space using PCA. The size of each point 

(sample) indicates its relative probability. After training, samples close to the boundary have 

higher probabilities. The displayed samples are visually hard to be learned and have high 

probabilities.
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Figure 4: Probability distribution of MNIST (digit 3 vs. 8) features during the training of 
MP-Boost-
The color of each pixel (feature) indicates the relative probability with respect to which the 

feature is selected. As MP-Boost progresses, the probability of ineffective features (pixels 

in the background) decreases while that of efficient features (pixels shaping the digits) 

increases. The final distribution resembles a blurred version of digits 3 and 8.
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TABLE 1:

ℒ yi, F xi  choices for weighting samples-ℒ is a decreasing function with respect to yi × F(xi). Hard 

functions depend on the sign of yi F(xi) that makes MP-Boost less sensitive to outlier samples.

Exponential Logistic

Soft exp(−yi F(xi)) 1
1 + exp yiF xi

Hard exp(−yi sgn(F(xi))) 1
1 + exp yisgn F xi
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TABLE 4:

Size of the datasets in Tables 2 and 3

Dataset N train M N test

Cones 20000 500 5000

Hill-Valley 1000 100 200

Christine 4300 1636 1100

Jasmine 2400 144 600

Philippine 4700 308 1100

SensIT Vehicle 78800 100 19700

Higgs Boson 200000 30 50000

MNIST (3 vs. 8) 12000 784 2000

MNIST (Odd vs. Even) 60000 784 10000

CIFAR-10 (Truck vs. Car) 10000 3072 2000

Gas Drift 11100 128 2800

DNA 2600 180 6000

Volkert 46600 180 11700

Fabert 6600 800 1600
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