Skip to main content
. Author manuscript; available in PMC: 2021 Nov 2.
Published in final edited form as: Int Conf Big Data Smart Comput. 2021 Mar 10;2021:10.1109/bigcomp51126.2021.00023. doi: 10.1109/bigcomp51126.2021.00023

TABLE 2:

Best test accuracy (%) of MP-Boost, AdaBoost, Random Forest, and Gradient Boosting on binary classification tasks during the runtime of MP-Boost.

Dataset MP-Boost AdaBoost Random Forest Gradient Boosting

Cones 100.0 ± 0.0 85.56 ± 0.16 95.89 ± 0.97 94.01 ± 1.23
Hill-Valley 99.45 ± 0.19 96.28 ± 1.47 98.76 ± 0.34 96.69 ± 0.67
Christine 74.27 ± 0.32 69.28 ± 0.09 73.75 ± 0.04 70.27 ± 0.13
Jasmine 80.03 ± 0.76 79.53 ± 0.01 79.47 ± 0.55 79.47 ± 0.08
Philippine 71.01 ± 0.37 69.64 ± 0.01 70.07 ± 0.31 69.98 ± 0.01
SensIT Vehicle 86.23 ± 0.01 83.69 ± 0.01 85.98 ± 0.05 84.24 ± 0.02
Higgs Boson 83.42 ± 0.06 82.52 ± 0.01 83.57 ± 0.08 81.44 ± 0.01
MNIST (3,8) 99.31 ± 0.03 97.49 ± 0.08 98.84 ± 0.03 96.81 ± 0.03
MNIST (O,E) 98.15 ± 0.06 93.78 ± 0.01 97.74 ± 0.04 93.23 ± 0.01
CIFAR-10 (T,C) 73.67 ± 0.39 67.65 ± 0.02 73.08 ± 0.4 67.81 ± 0.15
GAS Drift 99.76 ± 0.04 96.54 ± 0.02 99.64 ± 0.08 96.54 ± 0.02
DNA 97.44 ± 0.07 96.86 ± 0.17 97.44 ± 0.2 96.81 ± 0.07
Volkert 74.14 ± 0.08 71.54 ± 0.01 77.95 ± 0.05 71.9 ± 0.04