MP-Boost (X, y, n, m, μ) |
Initialization (t = 0):
|
p(1) = U[N] // observation probabilities |
q(1) = U[M] // feature probabilities |
F(1) (xi) = 0, ∀i ∈ [N] // ensemble output |
G(1) (xi) =0, ∀i ∈ [N] // out-of-patch output |
while Stopping – Criterion(oop(t)) not met do
t ← t +1 |
1) Sample a minipatch:
|
a) // select n instances |
b) // select m features |
c) // minipatch |
2) Train a weak learner on the minipatch:
|
a) : weak learner trained on X(t), y(t)
|
3) Update outputs:
|
a)
|
4) Update probability distributions:
|
a)
|
b)
|
where,
|
5) Out-of-Patch Accuracy:
|
a)
|
b)
|
end while |
Return sgn(F(T)), p(T), q(T)
|