Algorithm 1.
MP-Boost
MP-Boost (X, y, n, m, μ) |
Initialization (t = 0): |
p(1) = U[N] // observation probabilities |
q(1) = U[M] // feature probabilities |
F(1) (xi) = 0, ∀i ∈ [N] // ensemble output |
G(1) (xi) =0, ∀i ∈ [N] // out-of-patch output |
while Stopping – Criterion(oop(t)) not met do t ← t +1 |
1) Sample a minipatch: |
a) // select n instances |
b) // select m features |
c) // minipatch |
2) Train a weak learner on the minipatch: |
a) : weak learner trained on X(t), y(t) |
3) Update outputs: |
a) |
4) Update probability distributions: |
a) |
b) |
where, |
5) Out-of-Patch Accuracy: |
a) |
b) |
end while |
Return sgn(F(T)), p(T), q(T) |