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Abstract

Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source 

domain to an unlabeled and unseen target domain, which is usually trained on data from both 

domains. Access to the source domain data at the adaptation stage, however, is often limited, 

due to data storage or privacy issues. To alleviate this, in this work, we target source free 

UDA for segmentation, and propose to adapt an “off-the-shelf” segmentation model pre-trained 

in the source domain to the target domain, with an adaptive batch-wise normalization statistics 

adaptation framework. Specifically, the domain-specific low-order batch statistics, i.e., mean 

and variance, are gradually adapted with an exponential momentum decay scheme, while the 

consistency of domain shareable high-order batch statistics, i.e., scaling and shifting parameters, 

is explicitly enforced by our optimization objective. The transferability of each channel is 

adaptively measured first from which to balance the contribution of each channel. Moreover, 

the proposed source free UDA framework is orthogonal to unsupervised learning methods, e.g., 

self-entropy minimization, which can thus be simply added on top of our framework. Extensive 

experiments on the BraTS 2018 database show that our source free UDA framework outperformed 

existing source-relaxed UDA methods for the cross-subtype UDA segmentation task and yielded 

comparable results for the cross-modality UDA segmentation task, compared with a supervised 

UDA methods with the source data.

1 Introduction

Accurate tumor segmentation is a critical step for early tumor detection and intervention, 

and has been significantly improved with advanced deep neural networks (DNN) 

[25,18,10,9,17]. A segmentation model trained in a source domain, however, usually cannot 

generalize well in a target domain, e.g., data acquired from a new scanner or different 

clinical center, in implementation. Besides, annotating data in the new target domain is 

costly and even infeasible [11]. To address this, unsupervised domain adaptation (UDA) was 

proposed to transfer knowledge from a labeled source domain to unlabeled target domains 

[13].
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The typical UDA solutions can be classified into three categories: statistic moment 

matching, feature/pixel-level adversarial learning [15,14,12], and self-training [33,16]. These 

UDA methods assume that the source domain data are available and usually trained together 

with target data. The source data, however, are often inaccessible, due to data storage 

or privacy issues, for cross-clinical center implementation [1]. Therefore, it is of great 

importance to apply an “off-the-shelf” source domain model, without access to the source 

data. For source-free classification UDA, Liang et al. [8] proposed to enforce the diverse 

predictions, while the diversity of neighboring pixels is not suited for the segmentation 

purpose. In addition, the class prototype [13] and variational inference methods [11] are 

not scalable for pixel-wise classification based segmentation. More importantly, without 

distribution alignment, these methods relied on unreliable noisy pseudo labeling.

Recently, the source relaxed UDA [1] was presented to pre-train an additional class ratio 

predictor in the source domain, by assuming that the class ratio, i.e., pixel proportion in 

segmentation, is invariant between source and target domains. At the adaptation stage, the 

class ratio was used as the only transferable knowledge. However, that work [1] has two 

limitations. First, the class ratio can be different between the two domains, due to label shift 

[11,13]. For example, a disease incident rate could vary between different countries, and 

tumor size could vary between different subtypes and populations. Second, the pre-trained 

class ratio predictor used in [1] is not typical for medical image segmentation, thereby 

requiring an additional training step using the data in the source domain.

In this work, to address the aforementioned limitations, we propose a practical UDA 

framework aimed at the source-free UDA for segmentation, without an additional network 

trained in the source domain or the unrealistic assumption of class ratio consistency between 

source and target domains. More specifically, our framework hinges on the batch-wise 

normalization statistics, which are easy to access and compute. Batch Normalization (BN) 

[6] has been a default setting in the most of modern DNNs, e.g., ResNet [5] and U-Net 

[30], for faster and more stable training. Notably, the BN statistics of the source domain 

are stored in the model itself. The low-order batch statistics, e.g., mean and variance, are 

domain-specific, due to the discrepancy of input data. To gradually adapt the low-order 

batch statistics from the source domain to the target domain, we develop a momentum-based 

progression scheme, where the momentum follows an exponential decay w.r.t. the adaptation 

iteration. For the domain shareable high-order batch statistics, e.g., scaling and shifting 

parameters, a high-order batch statistics consistent loss is applied to explicitly enforce 

the discrepancy minimization. The transferability of each channel is adaptively measured 

first, from which to balance the contribution of each channel. Moreover, the proposed 

unsupervised self-entropy minimization can be simply added on top of our framework to 

boost the performance further.

Our contributions are summarized as follows:

• To our knowledge, this is the first source relaxed or source free UDA framework 

for segmentation. We do not need an additional source domain network, or the 

unrealistic assumption of the class ratio consistency [1]. Our method only relies 
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on an “off-the-shelf” pre-trained segmentation model with BN in the source 

domain.

• The domain-specific and shareable batch-wise statistics are explored via the 

low-order statistics progression with an exponential momentum decay scheme 

and transferability adaptive high-order statistics consistency loss, respectively.

• Comprehensive evaluations on both cross-subtype (i.e., HGG to LGG) and 

cross-modality (i.e., T2 to T1/T1ce/FLAIR) UDA tasks using the BraTS 2018 

database demonstrate the validity of our proposed framework and its superiority 

to conventional source-relaxed/source-based UDA methods.

2 Methodology

We assume that a segmentation model with BN is pre-trained with source domain data, and 

the batch statistics are inherently stored in the model itself. At the adaptation stage, we 

fine-tune the model based on the batch-wise statistics and the self-entropy (SE) of target data 

prediction. The overview of the different setups of conventional UDA and our “off-the-shelf 

(OS)” UDA is shown in Fig. 1. Below, we briefly revisit the BN in Subsec. 2.1 first and 

then introduce our OSUDA in Subsec. 2.2. The added unsupervised SE minimization and 

the overall training protocol are detailed in Subsec. 2.3.

2.1 Preliminaries on Batch Normalization

As a default setting in the most of modern DNNs, e.g., ResNet [5] and U-Net [30], Batch 

Normalization (BN) [6] normalizes the input feature in the l-th layer fl ∈ ℝB × Hl × W l × Cl

within a batch in a channel-wise manner to have zero mean and unit variance. B denotes 

the number of images in a batch, and Hl, Wl, and Cl are the height, width, and channels 

of layer l. We have samples in a batch, with index b ∈ {1, ⋯ , B}, spatial index n ∈ {1, 

⋯ , Hl × Wl}, and channel index c ∈ {1, ⋯ , Cl}. BN calculates the mean of each channel 

μl, c = 1
B × Hl × W l

∑b
B ∑n

Hl × W lfl, b, n, c, where fl, b, n, c ∈ ℝ is the feature value. The variance 

{σ2}l, c = 1
B × Hl × W l

∑b
B ∑n

Hl × W l (fl, b, n, c − μl, c)2. Then, the input feature is normalized as

f l, b, n, c = γl, c(fl, b, n, c − μl, c) ∕ {σ2}l, c + ϵ + βl, c, (1)

where ϵ ∈ ℝ+ is a small scalar for numerical stability. γl,c and βl,c are learnable scaling and 

shifting parameters, respectively.

In testing, the input is usually a single sample rather than a batch with B samples. Therefore, 

BN stores the exponentially weighted average of the batch statistics at the training stage 

and used it in testing. Specifically, the mean and variance over the training are tracked 

progressively, i.e.,

μl, c
k = (1 − η) ⋅ μl, c

k − 1 + η ⋅ μl, c
k ; {σ2}l, c

k = (1 − η) ⋅ {σ2}l, c
k − 1 + η ⋅ {σ2}l, c

k , (2)
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where η ∈ [0, 1] is a momentum parameter. After K training iterations, μl, c
K , {σ2}l, c

K , γl, c
K , and 

βl, c
K  are stored and used for testing normalization [6].

2.2 Adaptive source-relaxed batch-wise statistics adaptation

Early attempts of BN for UDA simply added BN in the target domain, without the 

interaction with the source domain [7]. Recent studies [2,20,26,19] indicated that the low­

order batch statistics, i.e., mean μl,c and variance {σ2}l,c, are domain-specific, because of the 

divergence of cross-domain representation distributions. Therefore, brute-forcing the same 

mean and variance across domains can lead to a loss of expressiveness [29]. In contrast, 

after the low-order batch statistics discrepancy is partially reduced, with domain-specific 

mean and variance normalization, the high-order batch statistics, i.e., scaling and shifting 

parameters γl,c and βl,c, are shareable across domains [20,26].

However, all of the aforementioned methods [2,20,29,26,19] require the source data at the 

adaptation stage. To address this, in this work, we propose to mitigate the domain shift via 

the adaptive low-order batch statistics progression with momentum, and explicitly enforce 

the consistency of the high-order statistics in a source-relaxed manner.

Low-order statistics progression with an exponential momentum decay 
scheme.—In order to gradually learn the target domain-specific mean and variance, we 

propose an exponential low-order batch statistics decay scheme. We initialize the mean and 

variance in the target domain with the tracked μl, c
K  and {σ2}l, c

K  in the source domain, which is 

similar to applying a model with BN in testing [6]. Then, we progressively update the mean 

and variance in the t-th adaptation iteration in the target domain as

μl, c
t = (1 − ηt) ⋅ μl, c

t + ηt ⋅ μl, c
K ; {σ2}l, c

t = (1 − ηt) ⋅ {σ2}l, c
t + ηt ⋅ {σ2}l, c

K , (3)

where ηt = η0exp(−t) is a target adaptation momentum parameter with an exponential 

decay w.r.t. the iteration μl, c
t  and {σ2}l, c

t  are the mean and variance of the current target 

batch. Therefore, the weight of μl, c
K  and {σ2}l, c

K  are smoothly decreased along with the 

target domain adaptation, while μl, c
t  and {σ2}l, c

t  gradually represent the batch-wise low-order 

statistics of the target data.

Transferability adaptive high-order statistics consistency.—For the high-order 

batch statistics, i.e., the learned scaling and shifting parameters, we explicitly encourage its 

consistency between the two domains with the following high-order batch statistics (HBS) 

loss:

ℒHBS = ∑
l

L
∑

c

Cl
(1 + αl, c){ ∣ γl, c

K − γl, c
t ∣ + ∣ βl, c

K − βl, c
t ∣ }, (4)
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where γl, c
K  and βl, c

K  are the learned scaling and shifting parameters in the last iteration of pre­

training in the source domain. γl, c
t  and βl, c

t  are the learned scaling and shifting parameters in 

the t-th adaptation iteration. αl,c is an adaptive parameter to balance between the channels.

We note that the domain divergence can be different among different layers and channels, 

and the channels with smaller divergence can be more transferable [22]. Accordingly, we 

would expect that the channels with higher transferability contribute more to the adaptation. 

In order to quantify the domain discrepancy in each channel, a possible solution is to 

measure the difference between batch statistics. In the source-relaxed UDA setting, we 

define the channel-wise source-target distance in the t-th adaptation iteration as

dl, c = ∣ μl, c
K

{σ2}l, c
K + ϵ

−
μl, c

t

{σ2}l, c
t + ϵ

∣ . (5)

Then, the transferability of each channel can be measured by αl, c =
L × C × (1 + dl, c)−1

∑l ∑c(1 + dl, c)−1 . 

Therefore, the more transferable channels will be assigned with higher importance, i.e., with 

larger weight (1 + αl,c) in ℒl, c.

2.3 Self-entropy minimization and overall training protocol

The training in the unlabeled target domain can also be guided by an unsupervised learning 

framework. The SE minimization is a widely used objective in modern DNNs to encourage 

the confident prediction, i.e., the maximum softmax value can be high [4,8,24,1]. SE 

for pixel segmentation is calculated by the averaged entropy of the classifier’s softmax 

prediction given by

ℒSE = 1
B × H0 × W 0

∑
b

B
∑

n

H0 × W 0
{δb, nlogδb, n}, (6)

where H0 and W0 are the height and width of the input, and δb,n is the histogram distribution 

of the softmax output of the n-th pixel of the b-th image in a batch. Minimizing ℒSE leads 

to the output close to a one-hot distribution.

At the source-domain pre-training stage, we follow the standard segmentation network 

training protocol. At the target domain adaptation stage, the overall training objective can 

be formulated as ℒ = ℒHBS + λℒSE, where λ is used to balance between the BN statistics 

matching and SE minimization. We note that a trivial solution of SE minimization is that 

all unlabeled target data could have the same one-hot encoding [4]. Thus, to stabilize the 

training, we linearly change the hyper-parameter λ from 10 to 0 in training.
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3 Experiments and Results

The BraTS2018 database is composed of a total of 285 subjects [21], including 210 high­

grade gliomas (HGG, i.e., glioblastoma) subjects, and 75 low-grade gliomas (LGG) subjects. 

Each subject has T1-weighted (T1), T1-contrast enhanced (T1ce), T2-weighted (T2), and T2 

Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Imaging (MRI) volumes 

with voxel-wise labels for the enhancing tumor (EnhT), the peritumoral edema (ED), and 

the necrotic and non-enhancing tumor core (CoreT). Usually, we denote the sum of EnhT, 

ED, and CoreT as the whole tumor. In order to demonstrate the effectiveness and generality 

of our OSUDA, we follow two UDA evaluation protocols using the BraTS2018 database, 

including HGG to LGG UDA [23] and cross-modality (i.e., T2 to T1/T1ce/FLAIR) UDA 

[32].

For evaluation, we adopted the widely used Dice similarity coefficient and Hausdorff 

distance metrics as in [32]. The Dice similarity coefficient (the higher, the better) measures 

the overlapping part between our prediction results and the ground truth. The Hausdorff 

distance (the lower, the better) is defined between two sets of points in the metric space.

3.1 Cross-subtype HGG to LGG UDA

HGG and LGG have different size and position distributions for tumor regions [23]. 

Following the standard protocol, we used the HGG training set (source domain) to pre-train 

the segmentation model and adapted it with the LGG training set (target domain) [23]. 

The evaluation was implemented in the LGG testing set. We adopted the same 2D U-Net 

backbone in [23], sliced 3D volumes into 2D axial slices with the size of 128×128, and 

concatenated all four MRI modalities to get a 4-channel input.

The quantitative evaluation results are shown in Table 1. Since the pixel proportion of each 

class is different between HGG and LGG domains, the class ratio-based CRUDA [1] only 

achieved marginal improvements with its unsupervised learning objective. We note that the 

Dice score of the core tumor was worse than the pre-trained source-only model, which can 

be the case of negative transfer [27]. Our proposed OSUDA achieved the state-of-the-art 

performance for source-relaxed UDA segmentation, approaching the performance of SEAT 

[23] with the source data, which can be seen as an “upper-bound.”

We used OSUDA-AC and OSUDA-SE to indicate the OSUDA without the adaptive 

channel-wise weighting and self-entropy minimization, respectively. The better performance 

of OSUDA over OSUDA-AC and OSUDA-SE demonstrates the effectiveness of adaptive 

channel-wise weighting and self-entropy minimization. The illustration of the segmentation 

results is given in Fig. 2. We can see that the predictions of our proposed OSUDA are better 

than the no adaptation model. In addition, CRUDA [1] had a tendency to predict a larger 

area for the tumor; and the tumor core is often predicted for the slices without the core.

3.2 Cross-modality T2 to T1/T1ce/FLAIR UDA

Because of large appearance discrepancies between different MRI modalities, we further 

applied our framework to the cross-modality UDA task. Since clinical annotation of the 

whole tumor is typically performed on T2-weighted MRI, the typical cross-modality UDA 
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setting is to use T2-weighted MRI as the labeled source domain, and T1/T1ce/FLAIR MRI 

as the unlabeled target domains [32]. We followed the UDA training (80% subjects) and 

testing (20% subjects) split as in [32], and adopted the same single-channel input backbone. 

We note that the data were used in an unpaired manner [32].

The quantitative evaluation results are provided in Table 2. Our proposed OSUDA 

outperformed CRUDA [1] consistently. In addition, in CRUDA, the additional class ratio 

prediction model was required to be trained with the source data, which is prohibitive 

in many real-world cases. Furthermore, our OSUDA outperformed several UDA methods 

trained with the source data, e.g., CycleGAN [31] and SIFA [3], for the two metrics. The 

visual segmentation results of three target modalities are shown in Fig. 3, showing the 

superior performance of our framework, compared with the comparison methods.

4. Discussion and Conclusion

This work presented a practical UDA framework for the tumor segmentation task in 

the absence of the source domain data, only relying on the “off-the-shelf” pre-trained 

segmentation model with BN in the source domain. We proposed a low-order statistics 

progression with an exponential momentum decay scheme to gradually learn the target 

domain-specific mean and variance. The domain shareable high-order statistics consistency 

is enforced with our HBS loss, which is adaptively weighted based on the channel­

wise transferability. The performance was further boosted with the unsupervised learning 

objective via self-entropy minimization. Our experimental results on the cross-subtype and 

cross-modality UDA tasks demonstrated that the proposed framework outperformed the 

comparison methods, and was robust to the class ratio shift.
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Fig. 1: 
Comparison of (a) conventional UDA [28] and (b) our source-relaxed OSUDA segmentation 

framework based on the pre-trained “off-the-shelf” model with BN. We minimize the 

domain discrepancy based on the adaptively computed batch-wise statistics in each channel. 

The model consists of a feature encoder (Enc) and a segmentor (Seg) akin to [3,32].
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Fig. 2: 
The comparison with the other UDA methods, and an ablation study of adaptive channel­

wise weighting and SE minimization for HGG to LGG UDA.
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Fig. 3: 
Comparison with the other UDA methods and an ablation study for the cross-modality 

whole tumor segmentation UDA task. From top to bottom, we show a target test slice of T1, 

T1ce, and FLAIR MRI.

Liu et al. Page 12

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 13

Table 1:

Comparison of HGG to LGG UDA with the four-channel input for our four-class segmentation, i.e., whole 

tumor, enhanced tumor, core tumor, and background. ± indicates standard deviation. SEAT [23] with the 

source data for UDA training is regarded as an “upper bound.”

Method Source
data

Dice Score [%] ↑ Hausdorff Distance [mm] ↓

WholeT EnhT CoreT Overall WholeT EnhT CoreT Overall

Source only no UDA 79.29 30.09 44.11 58.44±43.5 38.7 46.1 40.2 41.7±0.14

CRUDA [1] Partial3 79.85 31.05 43.92 58.51±0.12 31.7 29.5 30.2 30.6±0.15

OSUDA no 83.62 32.15 46.88 61.94±0.11 27.2 23.4 26.3 25.6±0.14

OSUDA-AC no 82.74 32.04 46.62 60.75±0.14 27.8 25.5 27.3 26.5±0.16

OSUDA-SE no 82.45 31.95 46.59 60.78±0.12 27.8 25.3 27.1 26.4±0.14

SEAT [23] Yes 84.11 32.67 47.11 62.17±0.15 26.4 21.7 23.5 23.8±0.16

3An additional class ratio predictor was required to be trained with the source data.
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Table 2:

Comparison of whole tumor segmentation for the cross-modality UDA. We used T2-weighted MRI as our 

source domain, and T1-weighted, FLAIR, and T1ce MRI as the unlabeled target domains.

Method

Source
data

Dice Score [%] ↑ Hausdorff Distance [mm] ↓

T1 FLAIR T1CE Average T1 FLAIR T1CE Average

Source only no UDA 6.8 54.4 6.7 22.6±0.17 58.7 21.5 60.2 46.8±0.15

CRUDA [1] Partial4 47.2 65.6 49.4 54.1±0.16 22.1 17.5 24.4 21.3±0.10

OSUDA no 52.7 67.6 53.2 57.8±0.15 20.4 16.6 22.8 19.9±0.08

OSUDA-AC no 51.6 66.5 52.0 56.7±0.16 21.5 17.8 23.6 21.0±0.12

OSUDA-SE no 51.1 65.8 52.8 56.6±0.14 21.6 17.3 23.3 20.7±0.10

CycleGAN [31] Yes 38.1 63.3 42.1 47.8 25.4 17.2 23.2 21.9

SIFA [3] Yes 51.7 68 58.2 59.3 19.6 16.9 15.01 17.1

DSFN [32] Yes 57.3 78.9 62.2 66.1 17.5 13.8 15.5 15.6
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