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ABSTRACT

BACKGROUND AND PURPOSE: Cerebral adrenoleukodystrophy is a devastating neurological disorder caused by mutations in the ABCD1
gene. Our aim was to model and compare the growth of early cerebral lesions from longitudinal MRIs obtained in presymptomatic
patients with progressive and arrested cerebral adrenoleukodystrophy using quantitative MR imaging–based lesion volumetry.

MATERIALS AND METHODS:We retrospectively quantified and modeled the longitudinal growth of early cerebral lesions from 174
MRIs obtained from 36 presymptomatic male patients with cerebral adrenoleukodystrophy. Lesions were manually segmented using
subject-specific lesion-intensity thresholding. Volumes were calculated and plotted across time. Lesion velocity and acceleration
were calculated between sequentially paired and triplet MRIs, respectively. Linear mixed-effects models were used to assess differ-
ences in growth parameters between progressive and arrested phenotypes.

RESULTS: The median patient age was 7.4 years (range, 3.9–37.0 years). Early-stage cerebral disease progression was inversely corre-
lated with age (r ¼ �0.6631, P, .001), early lesions can grow while appearing radiographically stable, lesions undergo sustained
acceleration in progressive cerebral adrenoleukodystrophy (b ¼ 0.10mL/month2 [95% CI, 0.05�0.14 mL/month2], P, .001), and
growth trajectories diverge between phenotypes in the presymptomatic time period.

CONCLUSIONS: Measuring the volumetric changes in newly developing cerebral lesions across time can distinguish cerebral adre-
noleukodystrophy phenotypes before symptom onset. When factored into the overall clinical presentation of a patient with a new
brain lesion, quantitative MR imaging–based lesion volumetry may aid in the accurate prediction of patients eligible for therapy.

ABBREVIATIONS: CALD ¼ cerebral adrenoleukodystrophy; HSCT ¼ hematopoietic stem cell transplantation; LS ¼ Loes score; t0 ¼ time-zero

X-linked adrenoleukodystrophy is a devastating neurologic
disorder caused by mutations in the ABCD1 gene, which

lead to an accumulation of very long chain fatty acids in plasma
and tissue.1 Multiple phenotypes emerge with no genotype-
phenotype relationship having been established.2 Most patients
will develop cerebral adrenoleukodystrophy (CALD), with the
highest incidence occurring in childhood.3 Lesions most often
occur in the splenium (60%–80%) or genu (10%–15%) of the

corpus callosum and spread confluently into the surrounding
subcortical white matter.4,5 More than 80% of children with
CALD will experience inflammatory demyelination, “progressive
CALD,” followed by rapid neurodegeneration and death without
treatment in 2–3 years.6,7 Conversely, 15%–20% of children and
most adults will undergo spontaneous arrest of disease, “arrested
CALD” without evidence of brain inflammation and are ineligible
for hematopoietic stem cell transplantation (HSCT).8

HSCT is most successful when initiated in the window before
the onset of neurologic symptoms.7,9-11 However, the presympto-
matic window is narrow,12,13 and only a minority of patients with
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progressive CALD are identified in time for HSCT.7 HSCT itself
is associated with significant toxicity, morbidity, and mortality,
the latter 2 of which increase with disease burden.7,10 Early identi-
fication and treatment of CALD is a challenge.7,12 Most impor-
tant, the addition of adrenoleukodystrophy to the Recommended
Uniform Screening Program has provided a new opportunity to
alter the natural history of the disease by monitoring for CALD
from birth.14

The MR imaging score, or Loes score (LS), is the standard
metric for brain demyelination in CALD.15 Previous work has
quantified the increase in the MR imaging score per year strati-
fied by lesion distribution.5 However, the LS is not specific nor
predictive of progression early in CALD and underestimates the
true burden of cerebral disease.4,16 There is an explicitly stated
need for early biomarkers to aid in the accurate prediction of
patients with CALD appropriate for therapy.7,17

Few prior studies focused on the kinetics of 3D CALD lesion
growth in presymptomatic patients. We recently demonstrated
that lesion growth is rapid when lesions are small, the growth rate
is inversely correlated with age, and older patients tend to stabi-
lize and undergo spontaneous arrest of disease.4 The primary aim
of this study was to model the growth of early cerebral lesions
from longitudinal MRIs obtained in presymptomatic patients
with CALD using lesion volumetry, a quantitative MR imaging
approach. We hypothesized that the trajectories of lesion growth
diverge between the progressive and arrested phenotypes before
symptom onset. Hence tracking the growth of de novo cerebral
lesions may enable the early diagnosis of patients with CALD
appropriate for HSCT and thereby facilitate clinical decision-
making around this progressive disease.

MATERIALS AND METHODS
Standard Protocol Approvals, Registrations, and
Consents
Patient data were retrospectively reviewed and de-identified, and
storage was encrypted and password-protected. Due to anonym-
ization, consent was waived. This study was approved by each
institution’s ethics/institutional review board.

Subjects
We performed a retrospective review of patients with CALD eval-
uated at 3 institutions (Massachusetts General Hospital, Amsterdam
University Medical Center, and Weill Cornell Medicine) to select
cases for study inclusion. The inclusion criteria were the following:
1) confirmed diagnosis of adrenoleukodystrophy by genetic testing
(ABCD1 gene mutation) or high levels of plasma very long chain
fatty acids;18 2) early-stage CALD7,19 defined as no cerebral symp-
toms as defined by the neurologic functional score (range, 0–25)
and the LS on first MR imaging with abnormal findings (ie, MR
imaging at diagnosis) between 0.5 and nine; 3) $2 available brain
MRIs per subject; 4) at least 1 axial T2-weighted sequence per MR
imaging; 5) MRIs obtained in the pretreatment time period (no his-
tory of hematopoietic stem cell or gene therapy); and 6) pattern 1 or
2 lesion distributions only (genu or splenium of corpus callosum).

Patients were divided into 2 study cohorts by clinical diagno-
sis: progressive CALD versus arrested CALD. Diagnosis of
arrested CALD was defined by $2 consecutive MRIs spanning a

minimum of 6 months with no increase in LS and no contrast
enhancement.8 Analyses were limited to callosal lesions to com-
pare growth parameters accurately between subjects over similar
neuroanatomic boundaries. Included patients could have a neu-
rologic functional score of .0 if the symptoms were attributed
to adrenomyeloneuropathy. Treatment with Lorenzo Oil did not
exclude patients from participation in the study.1 MR imaging
surveillance every 6months between 3 and 10 years of age, pub-
lished by the New York State Newborn Screening workgroup,
was followed.14 Otherwise, MR imaging and clinical follow-up
were completed per clinical determination.

MR Imaging Parameters
MR imaging studies of the brain in the Amsterdam University
Medical Center cohort were performed on a 3T MR imaging unit
(Ingenia; Phillips Healthcare). MR imaging studies in the Weill
Cornell Medicine cohort were performed on a 3T MR imaging
unit (MR750; GE Healthcare). One-hundred forty-two of the 150
MR imaging studies in the Massachusetts General Hospital
cohort were performed on a 3T MR imaging unit (Tim Trio
[Siemens] until 2017, Prisma 2017 to present, [Siemens]). Eight
studies obtained before 2015 were performed on 1.5T MR imag-
ing units (Signa HDxt, GE Healthcare; or Ingenia, Philips
Healthcare). Each subject was scanned longitudinally according
to their site’s standard clinical protocol. Axial conventional T2,
conventional FLAIR, or sampling perfection with application-
optimized contrasts by using different flip angle evolution
(SPACE, Siemens) FLAIR volumetric sequences were analyzed.
Parameter ranges were the following: TR ¼ 5000–6500 ms, TE ¼
100–393 ms, frequency ¼ 192–512, phase ¼ 75%–100%, section
thickness ¼ 1–5mm, gap = 0–1mm, FOV ¼ 180–220 � 180 –

220mm.

MR Imaging Analysis
Loes Score. Loes scores were assigned by neuroradiologists (P.A.C.,
A.L., K.B.) or neurologists (F.S.E., P.L.M, M.E.) with a minimum of
10 years of experience in cerebral adrenoleukodystrophy. Reviewers
evaluated the images according to the Loes scoring system for
abnormal signal hyperintensity or atrophy involving specific brain
structures known to be involved in CALD.15

Lesion Pattern. The lesions were subdivided into 5 patterns
according to their primary anatomic distribution as previously
published:5 1) parieto-occipital lobe white matter and splenium
of the corpus callosum; 2) frontal lobe white matter and genu of
the corpus callosum; 3) frontopontine or corticospinal projection
fibers; 4) cerebellar white matter; and 5) simultaneous parieto-
occipital and frontal white matter involvement. Only patients in
whom the MR imaging showed at least either pattern 1 or pattern 2
lesions were included in this study. Pattern 3 lesions were included
only if they were continuous with a frontal or parieto-occipital lesion.

Lesion Volume Calculation. 3D Slicer software (https://www.
slicer.org/) was used to create 3D label maps of the lesion by
thresholding the label intensity to match the lesion intensity on
the source axial T2, conventional FLAIR, or SPACE FLAIR
sequence.20,21 Lesions were then manually segmented section-by-
section according to the subject-specific threshold value. Lesion
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volumes were automatically calculated from the compiled
section-by-section lesion segmentations (ie, area of the segmenta-
tion� section thickness) and are reported in milliliters (mL).

Interrater Reliability. To assess the interrater reliability of lesion
segmentation between 2 raters (E.J.M. and A.L.) on the dataset,
we calculated the intraclass correlation coefficient using a 2-way
random-effects model with a consistency definition.

Statistical Analyses
Descriptive Statistics. All continuous variables are reported as
median and range. Discrete variables are summarized as frequency
(%). The Wilcoxon rank sum test was used to calculate differences
in median values among skewed samples. Two-tailed P values ,
.05 were considered statistically significant. SPSS Statistics (Version
25; IBM) was used to perform this section of the analyses.

Population-Level Analysis of Cerebral Lesion Growth. Raw
lesion volumes versus age were plotted. Lesion velocity was defined
as a change in lesion volume between 2 sequential MRIs divided
by the difference in months between scans and is reported in milli-
liters per month (mL/month). Lesion acceleration was defined as
the difference in lesion velocities between the 2 scans divided by
the time interval between scans and is reported in milliliters
squared per month (mL/month2). The Spearman rank correlation
coefficient (r ) was calculated to quantify the relationship between
patient age and lesion velocity. Similarly, r was calculated to quan-
tify the correlation between patient age and lesion acceleration.

Longitudinal Analysis of Individual Cerebral Lesion Growth.
Time-zero (t0) was defined as the date of first abnormal MR imag-
ing. Fold change was calculated as the ratio of lesion volume on
the nth MR imaging at tn over the initial volume at t0. Fold change
in lesion volume for each patient was then plotted from t0.
Similarly, lesion velocity was plotted for each patient from t0.

Lesion Growth Curve Modeling. The trajectory of each dependent
variable was visualized using the nonparametric local-weighted
regression curve with 95% confidence intervals and a smoothing
parameter (a) of 0.75. Linear mixed-effects models were used to
assess the difference in fold change and lesion velocity between the
progressive and arrested phenotypes. Individual differences in
baseline lesion volume and number/intervals of follow-up scans
were addressed by assuming random intercepts for each patient.
The model was fit with the main effects for phenotype group and
time as well as an interaction term between phenotype and time:

Yij ¼ b 0 þ b 1groupi þ b 2timeij þ b 3timeijgroupi þ bi þ « ij;

Group
1 ¼ progressive
0 ¼ arrested

�

Yijprogressive ¼ b 0 þ b 1groupi þ ðb 2 þ b 3Þtimeij þ bi þ « ij;

Yijarrested ¼ b 0 þ b 2timeij þ bi þ « ij;

where

«�N 0;s 2
� �

;

bi�Nð0;s 2
bÞ:

The regression coefficient (b ), (95% CI), and P value are
reported for each parameter estimate from the linear mixed effect
(LME) models.

Restricted Data Set Analysis To understand the growth of small
lesions from the earliest time points, we recalculated the nonpara-
metric local-weighted regression curves and linear mixed-effects
model analyses from a subset of the data meeting more restricted
criteria: LS# 2 on the first MRI with abnormal findings.13 To
illustrate lesion growth across time, we plotted raw volumes in
months from t0. This section of the analysis was performed by a
biostatistician using R statistical and computing software,
Version 3.5.3 (http://www.r-project.org/).

Data Availability
Following publication, any data not published within this article
will be anonymized and shared by request from any qualified
investigator.

RESULTS
Clinical Characteristics
Thirty-six patients met the inclusion criteria, resulting in 174 scans
available for analysis. The total LS range across all MRIs with
abnormal findings was 0.5–7.5. At the time of first MR imaging
with abnormal findings, patients had a median age of 89.1 months
(range, 47.2–449 months), with a median MR imaging LS of 1
(range, 0.5–7.5, Online Supplemental Data). Twenty-three patients
were diagnosed with progressive CALD, accounting for 101 MRIs
in the study. The median age at first MR imaging with abnormal
findings was 71.8months (range, 47.2–137.5 months), with an ini-
tial LS of 1 (range, 1–7). Thirteen patients underwent spontaneous
arrest of cerebral disease, accounting for the remaining 73 MRIs.
The median age at first MR imaging with abnormal findings was
185.6months (range, 96.3–449 months), with an initial LS of 3
(range, 0.5–7.5). Patients with arrested CALD were older at the
time of diagnosis (15.5 versus 6.0 years of age, P, .001).

A total of 23 patients met the more restricted criteria (LS# 2
at first MR imaging with abnormal findings), resulting in 125
MRIs eligible for analysis. The LS range was 0.5–6. Nineteen
patients with progressive CALD were identified, accounting for
90 MRIs. They were 69.5 months of age (range, 47.2–137.5
months) at diagnosis and had an initial LS of 1 (range, 1–2). Four
of the patients with arrested CALD were identified, accounting
for the remaining 35 MRIs. They were 136.3 months of age
(range, 96.3–185.6 months) and had an initial LS of 1 (range, 0.5–
2). Patients with arrested CALD were older at the time of diagno-
sis (11.4 versus 5.8 years of age, P¼ .003).

Lesion Segmentation
The intraclass correlation coefficient between lesion segmenta-
tions produced by 2 raters (E.J.M. and A.L.) on 39 MRIs from the
data set was 0.874 (95% CI, 0.772–0.932; P, .001), indicating a
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significant, good-to-excellent degree of reliability between seg-
mentations produced by different raters.

Disease Progression is Inversely Correlated with Age
Patient-specific lesion volumes were plotted across time against
patient age in months (Fig 1). There was a moderate-to-strong
negative correlation between patient age and lesion velocity
(n¼ 112, r ¼ �0.6631, P, .001, Fig 2A). Accordingly, lesion
acceleration inversely correlated with patient age (n¼ 89, r ¼
�0.4010, P, .001, Fig 2B).

The Loes Score is Insensitive to Early Lesion Growth
There was a very strong correlation between lesion volume and
LS (n¼ 132, r ¼ 0.8086, P, .001). The median volume of a
lesion with an LSof 1 was 0.51mL (interquartile range, 0.36–1.46
mL; range, 0.05–8.26 mL). The median volume of a lesion with
an LSof 2 was 3.18mL (interquartile range, 2.45–3.67 mL; range,
0.68–11.41 mL). The median fold change on longitudinal MRIs
with an LS of 1 (ie, DLS¼ 0) was 1.83 (n¼ 16; interquartile
range, 1.47–5.71; range, 1.11–29.14). Similarly, the median rate of
lesion growth on longitudinal MRIs with an LS of 1 was 0.08mL/
month (n¼ 30; interquartile range, 0.05–0.25 mL/month; range,
0.01–2.58 mL/month; Fig 3).

Lesions in Progressive CALD Undergo Early, Sustained
Acceleration
The 2-way interaction term between phenotype and time was sig-
nificant for the rate of lesion growth (Table). For every 1month,
lesion velocity increased by 0.10mL/month in patients with pro-
gressive CALD (b ¼ 0.10 [95% CI 0.05–0.14], P, .001). There
was a marginally larger effect in the restricted cohort (b ¼ 0.11
[95% CI, 0.06–0.15], P, .001). The rate of lesion growth in
patients with progressive CALD increased with time, consistent
with exponential growth kinetics.

Lesion Growth Trajectories Diverge between Phenotypes
before the Onset of Cerebral Symptoms
The 2-way interaction term between phenotype and time was sig-
nificant for lesion growth measured by fold change (Table).
Lesion volume increases by a factor of 2.5 from baseline every
month in patients with progressive CALD (fold change b ¼ 2.49
[95% CI, 2.10–2.89], P, .001). This model is limited to MRIs of
asymptomatic patients, with a median initial LS of 1 (range, 1–7),
and an LS range of 1–7 on subsequent MRIs (Fig 4).

The results of the phenotype and time interaction from the re-
stricted cohort were similar to those of the full cohort (Table): There

FIG 2. A, Lesion growth velocities over sequential MR imaging pairs and B, acceleration over sequential MR imaging triplets, stratified by age in
patients with progressive CALD (red) and arrested CALD (blue). Presymptomatic lesion progression is inversely correlated with age (P, .001).

FIG 1. A, Patient-specific lesion trajectories of each cohort plotted against patient age. B, Zoomed view of outlined area in 1A): 0–18 years of age
on the x-axis and 0- to 10-mL lesion volume on the y-axis. Note the exponential growth trajectories for patients with progressive CALD.
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was a marginally larger effect for fold change in lesion volume across
time (b ¼ 2.54 [95% CI, 2.04–3.04], P, .001). This model is lim-
ited to MRIs of asymptomatic patients with a median initial LSof 1
(range, 1–2) and an LS range of 1–6 on subsequent MRIs (Fig 4).

In both linear mixed-effects models, the main effect term for
phenotype was not significant, indicating that the 2 groups did
not differ at onset. This is expected because baseline MRIs with
abnormal findings have a common corrected value for both phe-
notypes (ie, fold change¼ 1, lesion velocity¼ 0 mL/month). The
median rate of lesion growth directly following the first MR
imaging with abnormal findings in the progressive group was sig-
nificantly faster than that in the arrested group (0.448mL/month
versus 0.003mL/month, P¼ .001).

To approximate real-time Newborn Screening MR imaging
surveillance of early CALD, we plotted raw volumes from t0 in
the restricted cohort of patients (Fig 5).

DISCUSSION
Our study aimed to explore cerebral lesion growth as a potential
early biomarker for progressive CALD. The implementation of

the adrenoleukodystrophy Newborn Screening has provided the
opportunity to monitor for new cerebral lesions from birth.14,22

The early, accurate diagnosis of progressive disease is para-
mount because HSCT is most successful when initiated in the
window before the onset of neurologic symptoms.7,9,10,23 This
may be equally important for other treatment approaches as
well; a recent trial of autologous hematopoietic stem cell gene
therapy has produced encouraging results in boys with early
CALD.19 Because symptoms accelerate with time in patients
with progressive CALD,3,5,6 we hypothesized that disease accel-
eration could be radiographically captured before symptom
onset. We completed the primary aim by modeling the 3D
expansion of early cerebral lesions from longitudinal MRIs
obtained in presymptomatic patients with progressive and
arrested CALD. Our results demonstrate that disease progres-
sion is inversely correlated with age, early lesions can grow
while appearing radiographically stable, lesions undergo sus-
tained acceleration in early-stage progressive CALD, and
growth trajectories diverge between phenotypes in the presymp-
tomatic time period.

FIG 3. Serial MRIs demonstrating accelerated lesion growth without a change in the LS in patient 11.

Estimates produced by the linear mixed-effects models for fold change and lesion velocity in the full and restricted cohorts

Fold Change Lesion Velocity
Estimate 95% CI P Estimate 95% CI P

Full cohort
Time 0.01 –0.03–0.04 .768 0.00 –0.00–0.00 .989
Phenotype (progressive) –3.00 –6.94–0.94 .142 0.340 –0.10–0.77 .136
Time*phenotype (progressive) 2.49 2.10–2.89 ,.001 0.100 0.05–0.14 ,.001

Restricted cohort
Time 0.01 –0.06–0.08 .752 0.00 –0.01–0.01 .899
Phenotype (progressive) –3.43 –11.08–4.21 .386 0.15 –0.47–0.78 .632
Time*phenotype (progressive) 2.54 2.04–3.04 ,.001 0.11 0.06–0.15 ,.001

Note:—Asterisk indicates the interaction between phenotype and time in the linear mixed effects model.
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To further understand lesion expansion from the earliest time
points, thus approximating what may be found by Newborn
Screening MR imaging surveillance, we repeated the analysis on
the subset of longitudinal MRIs that had an LS# 2 at diagnosis.
In this restricted cohort, patients with both progressive and

arrested CALD were diagnosed at a
younger age with smaller lesions. Again,
all measures of growth differed between
phenotypes, indicating that trajectories
diverge very early in disease and may be
detected by calculating lesion velocity
and fold change from the MR imaging
following diagnosis.

Suspicion for progressive CALD
should be highest in younger patients
whose lesions follow an exponential
growth curve. Our recent work dem-
onstrated the inverse relationship
between rates of demyelinating lesion
growth and age in a cohort of asymp-
tomatic patients with CALD.4 The
current study validates our previous
results in a larger, international cohort.
Biologically, our findings are consistent
with the timing of dynamic myelination
into late adolescence and adulthood24

and the suggestion that following trans-
plantation, more developed white mat-
ter tracts in adolescence protect against
further neurocognitive decline com-
pared with children with CALD under-
going the procedure.17 Stated another
way, younger children with younger

myelin may be more vulnerable to cerebral disease progression
than older patients with more developed myelin.

The proposed model has identified features of early lesion
growth that have the potential to inform the timely selection of
patients appropriate for rescue therapy. This feature is pertinent

FIG 5. Nonparametric local-weighted regression curves demonstrating the early lesion growth
trajectories between phenotypes measured by raw lesion volume across time in the cohort of
patients with an initial LS# 2.

FIG 4. A, Lesion growth trajectories from the time of the first abnormal MR imaging finding in presymptomatic patients with progressive (n = 23,
red) versus arrested (n¼ 13, blue) CALD. Lesion volume increased 2.5� per month (fold change b ¼ 2.49 [95% CI, 2.10–2.89], P, .001) in the
patients with progressive CALD. B, In the cohort of patients with an initial LS# 2 (restricted cohort; n¼ 19 progressive, n¼ 4 arrested), lesion
growth was similar (b ¼ 2.54 [95% CI, 2.04–3.04], P, .001) for the patients with progressive CALD.
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to recent observations that altered cerebral microvascular perfu-
sion in perilesional normal-appearing white matter precedes
lesion progression.16 Early patient identification would help miti-
gate risk and maximize neurologic outcomes, decrease the num-
ber of MRIs required to identify the correct patients for
treatment, reduce patient exposures to anesthesia and contrast
agents, and widen the presymptomatic treatment window.
Patients treated expeditiously with an LS# 2 have demonstrated
superior posttransplantation neurocognitive and neuropsychiat-
ric outcomes and less posttransplantation disease progression on
MRI.13 Lesion volumetry may also prove to be a more sensitive
method to monitor for disease activity posttreatment. In terms of
feasibility, the biomarker itself is based on the acquisition of
standard T2-weighted images and, therefore, makes the analysis
paradigm possible across all platforms. Conceptually, an analysis
of growth kinetics can be applied to other leukodystrophies, as it
has been in other white matter diseases.25,26

Longitudinal imaging within subjects provides strength to the
analysis. The statistical analyses accounted for the correlation
between repeat patient measures, thus allowing each patient to
act as an internal control for his or her lesion-specific changes
across time. Sequential pair and triplet data points are required to
calculate lesion growth velocity and acceleration, respectively,
which improve the accuracy of the study conclusions. However,
important limitations apply. First, we analyzed retrospective data
and are limited by when subjects came to medical attention. The
result is lesion onset (the transition from a normal MR imaging
finding with a LS= 0 to an abnormal MR imaging finding with a
LS $ 0.5) is not available for most of the arrested CALD cohort.
This issue limits the comparison with the patients with progres-
sive CALD for whom lesion onset was factored into the model.
Only a standardized, prospective imaging surveillance program
will reveal the true growth trajectory and behavior of cerebral
adrenoleukodystrophy lesions across time. Second, there were an
unequal number of scans per patient and unequal time between
repeat measures. This intra- and intersubject heterogeneity pre-
cluded the use of more preferable methods of longitudinal mathe-
matic modeling, including fitting more complex, nonlinear
models. Third, the number of subjects, specifically in the arrested
cohort, is limited. As with many rare diseases, the generalizability
of the study conclusions is limited due to the number of available
cases. Fourth, while most scans were sequentially obtained on the
same MR imaging scanner for each subject, 5 subjects had their
1–2 MRIs obtained on a 1.5T unit. This may have introduced var-
iability in the interpretation of disease onset and the degree of
white matter involvement. If present, the variability is small:
Sicotte et al27 demonstrated a 10% average difference in total
white matter lesion volume between 1.5T and 3T scanners. A
similar effect may have been introduced by performing some
measurements on the axial T2-weighted sequence versus 3D T2
FLAIR sequences. Fifth, our analysis did not include isolated pat-
tern 3, 4, or 5 lesions because they are exceedingly rare in this age
group.5 Sixth, manual lesion segmentations are time- and
resource-intensive, making integration into clinical workflow dif-
ficult. Adaptation of pre-existing volume measurement method-
ologies or automated deep learning approaches to lesion
segmentation may support workflow integration.28,29 Finally, the

proposed models require validation before entertaining their use in
clinical practice. While our models provide insight into early lesion
behavior, we emphasize caution when interpreting the results in the
context of clinical practice. If validated, our results lay the founda-
tion for diagnostic criteria aimed at identifying early-stage progres-
sive CALD in a fashion similar to that of other progressive
neurologic diseases.30

CONCLUSIONS
The addition of adrenoleukodystrophy to Newborn Screening
has provided clinicians a novel, presymptomatic approach to dis-
ease. Understanding early lesion evolution is paramount for the
accurate, early diagnosis of patients with progressive CALD. Our
study indicates that measuring the volumetric changes in newly
developing cerebral lesions across time can distinguish CALD
phenotypes before symptom onset. When factored into the over-
all clinical presentation of a patient with a new brain lesion, our
method may aid in the accurate prediction of patients eligible for
therapy.
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