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Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) studies have focused primarily on 

characterizing functional or effective connectivity of discrete brain regions. A major drawback 

of this approach is that it does not provide a mechanistic understanding of brain cognitive 

function or dysfunction at cellular and circuit levels. To overcome this limitation, we combined 

the methods of computational neuroscience with traditional macroscale connectomic analysis 

and developed a Multiscale Neural Model Inversion (MNMI) framework that links microscale 

circuit interaction with macroscale network dynamics and estimates both local coupling and 
inter-regional connections via stochastic optimization based on blood oxygen-level dependent 

(BOLD) rs-fMRI. We applied this method to the rs-fMRI data of 66 normal healthy subjects and 

66 individuals with major depressive disorder (MDD) to identify potential biomarkers at both 

local circuit and global network level. Results suggest that the recurrent excitation and inhibition 

within the dorsal lateral prefrontal cortex (dlPFC) might be disrupted in MDD, consistent with the 

commonly accepted hypothetical model of MDD. In addition, recurrent excitation in the thalamus 

was found to be abnormally elevated, which may be responsible to abnormal thalamocortical 

oscillations often observed in MDD. Overall, our modeling approach holds the promise to 

overcome the limitation of traditional large-scale connectome modeling by providing hidden 

mechanistic insights into neuroanatomy, circuit dynamics and pathophysiology.
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1 Introduction

Brain cognitive functions depend on the complex interplay among distributed brain regions 

and networks [1] characterized by functional magnetic resonance imaging (fMRI) [2]. To 

delineate brain network interactions for both healthy and patient cohorts, such fMRI analysis 

has predominately focused on macroscale systemic modeling of inter-regional interactions 

including undirected functional connectivity [3] and directed effective connectivity [4]. 

Despite the great success of macroscopic connectome modeling with resting-state fMRI (rs

fMRI) in charactering the interaction of the large-scale functional systems, their applications 

to fundamental neuroscience problems and clinical translation are still limited. This is 

because such connectivity analysis is largely descriptive and superficial, and therefore 

cannot offer a deep mechanistic understanding of neural circuit functions or dysfunction. 

Addressing this limitation is a key to unlocking the power of computational neuroscience 

modeling for the macroscale systemic neuroscience studies.

Recent development in computational neuroimaging has started to deal with this problem. 

Dynamic causal modeling (DCM) is one of them, which was recently redesigned to 

incorporate a two-state model for each brain region [5] and the latest DCM used a standard 

neural mass model of neuronal dynamics within a canonical microcircuit [6]. Nevertheless, 

the two-state model is an only simple extension of the one-state model without modeling 

realistic neural dynamics (e.g., oscillations), and the DCM with the neural mass model 

currently only applies to task-based fMRI. More recently, Wang et al. [7] inverted a 

large-scale circuit model of the cerebral cortex using dynamic mean field modeling of 

rs-fMRI to study macroscale cortical hierarchy. Despite its applicability to rs-fMRI, the 

computational model they used is oversimplified with only a single type (excitatory) of the 

neural population modeled for each brain region and the inter-regional connection weights 

were only allowed to be scaled by a factor homogenously for all connections, making it 

less realistic in real applications. Moreover, to the best of our knowledge, no rs-fMRI based 

neural mass model has been applied to study abnormal circuit dynamics in brain disease 

populations.

To advance our understanding of the underlying circuit mechanisms of the functional 

interactions among remote brain regions and promote clinically-orientated studies, 

built upon the previous modeling work [4, 6, 7], we developed a Multiscale Neural 
Model Inversion (MNMI) framework (Fig. 1) that links microscale intra-regional circuit 

interactions with macroscale inter-network dynamics. Specifically, we used biologically 

plausible Wilson-Cowan oscillators [8] to model the oscillatory dynamics of local neural 

circuits consisting of excitatory and inhibitory neural populations (E, I) coupled with 

reciprocal interactions (Fig. 1, Neural Mass Model). Different brain regions are connected 

through inter-network connectivities initialized based on diffusion MRI. The neural activity 

is converted into BOLD signals through a hemodynamic model to generate the conventional 

functional connectivity (FC) matrix. By computing the difference between the simulated 

(FCS) and empirical FC matrices (FCR), both local coupling weights (WEI, WIE) and 

inter-region connection strength (W12, W13, …; Fig. 1) can be estimated using a stochastic 

optimization.
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We applied this modeling framework to solve a real clinical problem, i.e., identification 

of potentially abnormal intra-regional and inter-network interactions in major depressive 

disorder (MDD), a devastating mental disorder without clear neuropathological mechanism 

but causing severe personal distress and tremendous cost to the society. Results indicate 

that the MDD patients might have disrupted recurrent excitation/inhibition in the dorsal 

lateral prefrontal cortex (dlPFC) as well as abnormally elevated excitation in the thalamus, 

consistent with experimental/clinical observations and the hypothetical MDD models [9, 

10]. Our method offers a new multiscale modeling approach to understand brain cognitive 

functions and their deteriorations in various neurological and psychiatric disorders.

2 Methods

2.1 Data Acquisition and Pre-processing

Structural Connectivity.—The structural connectivity (SC) matrix was derived based on 

the probabilistic tractography with the diffusion MRI data from the Human Connectome 

Project. Tissue segmentation was performed using the T1-weighted image (aligned with 

the diffusion MRI data) based on Freesurfer using the pipeline described in [11]. After 

preprocessing, the probabilistic tractography [12] was employed in the diffusion MRI’s 

native space using the 2nd order integration over fiber orientation distributions (iFOD2) 

algorithm (considering fiber crossing) to reconstruct two million streamlines within the 

whole brain with random seeds and the output fiber tracks were cropped at the grey 

matter-white matter interface. Finally, based on the tractography result and the Desikan

Killiany atlas that includes 84 regions of interest (ROIs) [13], we calculated an 84 × 84 

structural connectivity matrix as a prior of the inter-network connectivity. The SC matrix 

was normalized by the largest streamline number within the matrix.

FMRI Data Acquisition and Pre-processing.—The fMRI data was obtained from a 

single-center, large-cohort first-episode, treatment-nïve MDD resting-state fMRI database, 

consisting of 66 MDD adults and 66 matched normal controls (NC) [14]. The data was 

acquired with a 3.0-T scanner and preprocessed using a widely adopted pipeline (http://

rfmri.org/DPARSF). FC between any pair of the selected brain regions were calculated 

according to the Desikan-Killiany atlas using Pearson’s correlation between regional 

averaged BOLD rs-fMRI time series.

2.2 Neural Mass Model

As a proof of concept, we included eight pre-defined ROIs selected from the default 

mode (DMN), executive control (EXE), salience (SAL) and limbic (LIM) networks 

according to the Desikan-Killiany atlas. They were chosen based on the hypothetical MDD 

neuropathology [15, 16] and two representative ROIs were chosen for each functional 

network [DMN: medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC); 

EXE: dorsal lateral prefrontal cortex (dlPFC) and superior parietal cortex (sPar); SAL: 

dorsal anterior cingulate cortex (dACC) and insula; LIM: thalamus (Thal) and amygdala 

(Amyg)]. It is generally accepted that the functional interactions among these networks are 

altered in MDD [17]. Of note, more regions could be easily included in the future as a 

natural extension of our method proposed in a general form.
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The regional brain dynamics are modeled by the biologically motivated nonlinear Wilson

Cowan oscillator [8]. The population-level activity of the jth region is governed by the 

following two equations [18]:

τe
dEj(t)

dt = − Ej(t) + S CLM∑k W kjEk(t) + W EEEj(t) − W IEIj(t) + P + ξ(t)
(1)

τi
dIj(t)

dt = − Ij(t) + S W EIEj(t) + ξ(t) (2)

where Ej and Ij are the mean firing rates of the excitatory and inhibitory neuron populations 

in brain region j, τe and τi are the excitatory and inhibitory time constants (0.01 and 

0.02 s, respectively), WEE, WEI and WIE are the local connection strength (3.0), P is a 

constant external excitatory input (0.3), and ξ(t) is random additive noise following a normal 

distribution centering at 0 with standard deviation of 0.2. It is important to mention that the 

constant input P and noisy input ξ(t) represent the extrinsic inputs from other un-modeled 

brain regions to allow the generalization ability of the model. The long-range connectivity 

strength from region k to region j is represented by Wkj (and that from region j to k is Wjk, 

with Wkj = Wjk) that was derived from the empirical structural connectivity and scaled by 

an inter-network coupling factor CLM (5.0; from network L to network M). The nonlinear 

response function S is modeled as a sigmoid function S = 1 ∕ 1 + e− x − μ
σ  (μ = 1.0; σ 

= 0.25). The default model parameters given above are adapted from previous study [18] 

and were initial values for recurrent excitation (WEE) and inhibition (WIE) weights and the 

inter-network coupling factor (CLM); their actual values were estimated using stochastic 

optimization (Sect. 2.4).

2.3 Hemodynamic Model

The hemodynamic response of each ROI is computed by convolving the mean firing rates 

of the local excitatory and inhibitory neural populations with the canonical hemodynamic 

response function (HRF) as defined in Eqs. 3-8 with parameters taken from [4]. Specifically, 

for each region jth, the neuronal activity xj (Ej and Ij) drives a vasodilatory signal sj that is 

subject to auto-regulatory feedback. Blood flow fj responds in proportion to the vasodilatory 

signal and leads to change in blood volume νj and deoxyhemoglobin content qj. The 

hemodynamic state equations are given by [4]:

s.j = xj − κsj − γ(fj − 1) (3)

f
.
j = sj (4)

τv.j = fj − vj
1 ∕ α

(5)
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τq.j = fjO(fj, ρ) ∕ ρ − vj
1 ∕ αqj ∕ vj (6)

The oxygen extraction O is a function of flow:

O(fj, ρ) = 1 − (1 − ρ)1 ∕ f (7)

where ρ is the resting oxygen extraction. The simulated BOLD signal is taken to be a static 

nonlinear function of volume and deoxyhemoglobin that depends on the relative contribution 

of intravascular and extravascular components:

yj = v0(k1(1 − qj) + k2(1 − qj ∕ vj) + k3(1 − vj)) (8)

where ν0 is the resting blood volume fraction, and k1, k2 and k3 are the intravascular, 

concentration and extravascular coefficients, respectively. The neural activity from 

excitatory populations and inhibitory populations are summed up within each region with 

respective weighting (excitatory: 2/3; inhibitory: 1/3) to obtain the full BOLD time series 

[19] that will be used to calculate simulated FC matrix.

2.4 Stochastic Optimization of Model Parameters

A total of 22 model parameters were optimized, including 8 recurrent excitation (WEE) 

and 8 recurrent inhibition (WIE) weights (one for each ROI) as well as six inter

network scaling coupling factors (CLM) among the four functional networks. We used an 

expectation-maximization (EM) algorithm, a stochastic optimization method, to estimate 

the model parameters [4, 7]. The initial values of the model parameters were set to be: 

ψ0 = W EE
i , W IE

i , CLM = [3.0, 3.0, 5.0], which resulted in balanced excitation and inhibition. 

The optimization is to iteratively update the model parameter sets until they lead to the 

smallest L2 norm error between the empirical (observable, calculated using rs-fMRI data) 

and simulated FC matrices for each subject. For more details, see [7]. The maximum 

iteration steps were set to be 256, but we observed good convergence within 256 steps for all 

the subjects.

2.5 Numerical Integration

The neural mass model and the hemodynamic model were simulated using the 4th order 

Runge-Kutta (RK) scheme with an integration step of 5 ms. We simulated the network for 

a total of 80 s, and the first 20 s of the BOLD signals was discarded to remove transient 

effects. The optimization procedure with model simulation were coded with MATLAB 

(R2018b) and run at a high performance computer cluster. Please note that we only 

simulated 80 s BOLD signals as a proof-of-concept study, but it can be easily extended 

to longer simulated BOLD signals under the same framework.
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2.6 Statistical Test

We used two-sample t-test to compare the estimated model parameters from the NC and 

MDD groups. The significant level was set to a false discovery rate (FDR) of q < 0.1 (a 

relatively loose threshold but strictly corrected for multiple comparisons).

3 Experiments and Results

3.1 Simulated Model Responses

All the 22 parameters in the multiscale neural model were successfully estimated for 

each of the NCs and MDDs. The average minimal error was similar (p > 0.5) between 

NC (1.28 ± 0.2) and MDD (1.26 ± 0.22). A segment of activity of the excitatory neural 

populations within the eight ROIs with corresponding BOLD signals for the best matched 

subject (similar results for other subjects) are respectively shown in Figs. 2A and B. Both 

the neural activity and BOLD signals displayed rhythmic fluctuations, and high levels of 

neural activity led to larger amplitude of BOLD signals (e.g., thalamus). Note that it is the 

correlation among simulated BOLD signals, rather than the raw time series of BOLD signals 

determined how the parameters were updated in stochastic optimization. The normalized 

structural connectivity of the eight ROIs is shown in Fig. 3A. The empirical and simulated 

FC matrices are shown in Figs. 3B and 3C, respectively, and they are highly similar 

(Pearson’s correlation: 0.93; L2 norm error: 0.78).

3.2 Estimated Parameters of Multiscale Neural Model

The average recurrent excitation and inhibition weights of the eight ROIs are shown in 

Figs. 4A and 4B, respectively. We noticed that the amygdala exhibited the largest recurrent 

excitation with the lowest recurrent inhibition, which may be due to the important role of 

amygdala in emotion processing and neurochemical control. Among the eight ROIs, the 

recurrent excitation in the dlPFC was significantly reduced in the MDDs, while the recurrent 

excitation in the thalamus was abnormally elevated in the MDDs compared to the NCs 

(Fig. 4A). In addition, the current inhibition weight within the dlPFC was also significantly 

decreased in the MDDs (Fig. 4B). It is worth noting that we did not observe significant 

difference in any inter-network connectivities between the two groups (results not shown). 

Such findings confirm the importance of modeling regional cellular and circuit interactions 

in detection of imaging biomarkers of mental disorders.

4 Discussions

In this study, we developed a Multiscale Neural Model Inversion (MNMI) framework that 

enabled the integration of microscale cellular/circuit interactions with macroscale network 

dynamics and estimation of both local coupling weight and inter-regional connection 

strength using rs-fMRI data. By applying the MNMI framework to rs-fMRI data collected 

from normal control and depressive subjects, we observed that depression could be 

associated with reduced excitation and inhibition in the dlPFC as well as increased 

excitation in the thalamus. Our findings are consistent with decreased glucose metabolism 

in the dlPFC measured by positron emission tomography (PET, an invasive imaging 

technique) in MDD [9]. The potential biomarker of imbalanced excitation and inhibition 

Li et al. Page 6

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mirrors a common clinical practice for effective MDD treatment using transcranial magnetic 

stimulation (TMS) targeting at the left dlPFC to persistently increase its excitation [20]. In 

addition, in an fMRI experiment involving negative picture–caption pairs versus positive 

picture–caption pairs, the thalamus showed greater responses in MDD patients compared 

to controls [10], thus supporting the elevated recurrent excitation found by our model. 

Moreover, due to the essential role of the thalamus in generating cerebral oscillations [21], 

increased thalamic excitation may be responsible for abnormal thalamocortical oscillations 

as observed in MDD [22].

Overall, the MNMI framework is able to better characterize potential intra-regional 

pathophysiological mechanisms of MDD than the traditional FC analysis that only focuses 

on inter-regional co-activity. In addition, it provides a feasible approach to estimate the 

parameters of neural mass models based on empirical fMRI data, which contributes to better 

multiscale neural mass analysis. By using more biophysically realistic neuronal models 

and circuits in future, this modeling framework holds the promise to provide mechanistic 

insights into neuroanatomy, circuit dynamics and pathophysiology in neuroimaging studies.
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Fig. 1. 
A multiscale neural modeling framework to study pathophysiological mechanisms of MDD.
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Fig. 2. 
Simulated neural activity and BOLD signals. (A) A segment of simulated activity of 

excitatory neural populations from the eight ROIs for the best matched subject. (B) 

Simulated BOLD signals from the eight ROIs for the best matched subject.
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Fig. 3. 
Structural connectivity and functional connectivity. (A) Normalized structural connectivity 

among the eight ROIs. (B) Empirical functional connectivity (FC) for the best matched 

subject. (C) Simulated FC for the best matched subject.
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Fig. 4. 
Average estimated model parameters for the NC and MDD groups. (A) Average recurrent 

excitation weight within the eight ROIs. (B) Average recurrent inhibition weight within the 

eight ROIs. Error bars indicate standard error. Connection weights with significant group 

difference are denoted with red stars.
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