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Abstract

Background: EGFR amplification occurs in about 1% of metastatic colorectal cancers (mCRCs) but is not routinely tested as a
prognostic or predictive biomarker for patients treated with anti-EGFR monoclonal antibodies. Herein, we aimed to character-
ize the clinical and molecular landscape of EGFR-amplified mCRC. Methods: In this multinational cohort study, we compared
clinical data of 62 patients with EGFR-amplified vs 1459 EGFR nonamplified mCRC, as well as comprehensive genomic data of
35 EGFR-amplified vs 439 EGFR nonamplified RAS/BRAF wild-type and microsatellite stable (MSS) tumor samples. All statistical
tests were 2-sided. Results: EGFR amplification was statistically significantly associated with left primary tumor sidedness
and RAS/BRAF wild-type status. All EGFR-amplified tumors were MSS and HER2 nonamplified. Overall, EGFR-amplified sam-
ples had higher median fraction of genome altered compared with EGFR-nonamplified, RAS/BRAF wild-type MSS cohort.
Patients with EGFR-amplified tumors reported longer overall survival (OS) (median OS ¼ 71.3 months, 95% confidence interval
[CI] ¼ 50.7 to not available [NA]) vs EGFR-nonamplified ones (24.0 months; 95% CI ¼ 22.8 to 25.6; hazard ratio [HR] ¼ 0.30, 95%
CI ¼ 0.20 to 0.44; P < .001; adjusted HR ¼ 0.46, 95% CI ¼ 0.30 to 0.69; P < .001). In the subgroup of patients with RAS/BRAF wild-
type mCRC exposed to anti-EGFR-based therapy, EGFR amplification was again associated with better OS (median OS ¼
54.0 months, 95% CI ¼ 35.2 to NA, vs 29.1 months, 95% CI ¼ 27.0 to 31.9, respectively; HR ¼ 0.46, 95% CI ¼ 0.28 to 0.76; P ¼ .002).
Conclusion: Patients with EGFR-amplified mCRC represent a biologically defined subgroup and merit dedicated clinical trials
with novel and more potent EGFR-targeting strategies beyond single-agent monoclonal antibodies.

The anti-EGFR monoclonal antibodies (mAbs) cetuximab and
panitumumab are used in patients with RAS/BRAF wild-type
metastatic colorectal cancer (mCRC). Both primary tumor sided-
ness and molecular selection beyond RAS and BRAF mutational
status help refine the identification of patients with higher

chance of benefit from EGFR inhibition, for example, those with
left-sided primary tumors and lack of rare primary resistance
alterations (HER2/MET amplification, gene fusions, PIK3CA/
PTEN pathway deregulation, and microsatellite instability [MSI-
high]) (1,2). Even after initial tumor responses, the emergence of
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secondary resistance almost invariably limits the long-term ef-
ficacy of EGFR blockade. The clinical experience suggests that
an extremely limited subset of patients shows exceptional and
long-lasting responses to anti-EGFR-based therapies even
across multiple lines. Therefore, although the implementation
of biomarkers has proceeded over time according to the para-
digm of negative selection, preclinical evidence suggested that
some biomarkers, such as EGFR amplification and IRS2 amplifi-
cation or activating mutations, may have a positive predictive
value (3).

EGFR dependency in colorectal cancer relies on the func-
tional activation of the receptor by high levels of endogenous
ligands, such as AREG and EREG, and accounts for the therapeu-
tic efficacy of anti-EGFR mAbs in most of well-selected patients
(4, 5). However, EGFR constitutive activation secondary to gene
amplification might define a small subset of oncogene-addicted
colorectal tumors for which cetuximab or panitumumab might
be used as the matched targeted therapy.

Considering the rarity of patients with EGFR-amplified
mCRC, the association between EGFR amplification and specific
clinical and molecular features and the outcomes with anti-
EGFR mAbs have not been addressed yet. Moreover, it is not
clear whether this molecular subgroup may deserve the person-
alized development of new anti-EGFR strategies. Based on these
considerations, we conducted a multinational effort aimed at

investigating the landscape of EGFR amplification in patients
with mCRC.

Methods

Patient Population

As shown in Figure 1, 62 patients with EGFR-amplified mCRC
were retrieved from 7 screening sources: TRIBE-2 trial (6),
VALENTINO trial (7), PICCOLO trial (8), and prospective datasets
established at Fondazione IRCCS Istituto Nazionale dei Tumori
di Milano, Memorial Sloan Kettering Cancer Center, Vall
d’Hebron Institute of Oncology, and Samsung Medical Center.
We also retrieved clinical data from 1459 patients bearing EGFR-
nonamplified mCRC that served as a retrospective control co-
hort (see Figure 1). The assays used to test for EGFR amplifica-
tion for each screening platform are detailed in Supplementary
Table 1 (available online). Briefly, all cases were assessed by
next-generation sequencing (NGS) and required at least 6 EGFR
copies. In cases with available tumor tissue, in situ hybridiza-
tion was also performed. In situ hybridization criteria to identify
EGFR amplification were EGFR/CEP7 ratio of at least 2 and the
presence of EGFR gene clusters or at least 15 gene copies in at
least 10% of cells (9). The study was approved by the Fondazione
IRCCS Istituto Nazionale dei Tumori di Milano institutional

Screening source EGFR-amplified samples

TRIBE-2 trial (N = 296) n = 1

VALENTINO trial (N = 98) n = 1

PICCOLO trial (N = 323) n = 4

Is�tuto Nazionale dei Tumori (N = 79)
Clinical and Molecular Dataset n = 5

Memorial Sloan Ke�ering Cancer Center (N = 4550)
Clinical and Molecular Dataset n = 35

Vall d’Hebron Ins�tute of Oncology (N = 155)
Clinical and Molecular Dataset n = 4

Samsung Medical Center (N = 184)
Clinical and Molecular Dataset n = 12

EGFR-amplified mCRCs (n = 62)

Clinicopathological characteris�cs and survival 
data available,

N = 62

Comprehensive NGS data available n = 55,
by means of:

Caris MI TumorSeekTM, n=1  (TRIBE-2 trial)

Founda�onOne®, n = 6
(Valen�no trial, Is�tuto Nazionale dei Tumori)

MSK-IMPACTTM, n = 35
(Memorial Sloan Ke�ering Cancer Center)

OncomineTM comprehensive cancer panel, n = 12
(Vall d’Hebron Ins�tute of Oncology, 

Samsung Medical Center)

EGFR nega�ve mCRCs with 
clinical data available n = 1459

from:  
TRIBE-2 trial, n = 295

VALENTINO trial, n = 97
PICCOLO trial, n = 272

Is�tuto Nazionale dei Tumori, n = 74  
Memorial Sloan Ke�ering Cancer Center, n = 464

Vall d’Hebron Ins�tute of Oncology, n = 85
Samsung Medical Center, n = 172

Figure 1. Study flow diagram. mCRC 5 metastatic colorectal cancer; NGS ¼ next-generation sequencing.A
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review board (INT 117/15) and was conducted in accordance
with the ethical principles for medical research involving hu-
man subjects adopted in the Declaration of Helsinki.

Molecular Analyses

Comprehensive NGS data were available for 55 out of 62 EGFR-
amplified tumors. NGS assays for every screening platform are
detailed in Figure 1 and Supplementary Table 1 (available on-
line). Genes present in all gene panels were kept for the analy-
ses. Frequency of genomic alterations including mutations,
copy number variations (CNVs), and gene fusions were com-
pared with those reported in a subgroup of RAS/BRAF wild-type,
microsatellite stable (MSS) mCRC (10). CNV data were acquired
as .seg files from cBioportal (10) for both EGFR-amplified and -
nonamplified samples and processed with the copynumber
package (11).

For patients with available plasma samples in concomitance
with the emergence of secondary resistance to anti-EGFR-based
therapy, digital droplet polymerase chain reaction was per-
formed to detect KRAS, NRAS, BRAF and EGFR extracellular do-
main (ECD) mutations in circulating tumor DNA, as previously
described (12).

Statistical Analyses

Overall survival (OS) was calculated as the time from diagno-
sis of metastatic disease until death or last follow-up for alive
patients. Association between EGFR amplification status and
patients or/and disease characteristics was assessed by
means of Kruskal-Wallis, v2, or Fisher exact test, as appropri-
ate. The Kaplan-Meier estimator and Cox proportional haz-
ards regression were used for survival analysis with the
survival, survminer, and survMisc packages. Follow-up time
was estimated using the reverse Kaplan-Meier method. In
Cox proportional hazards regression models, all the covari-
ates statistically significantly associated with OS at the uni-
variable analyses were included in the multivariable model.
The assumption of proportionality was verified by means of
the Grønnesby and Borgan overall goodness-of-fit test (13).
EGFR CNV was modeled by means of 3-knots natural cubic
splines (using the splines package) to assess flexible fit and to
check for nonlinearity (14). Furthermore, a maximally se-
lected log-rank statistic method for OS was used to find an
optimal cutoff value of EGFR CNV using the maxstat package
(15). All tests were 2-sided at a equals 5%. Statistical analyses
were performed using the R (version 3.5.0) and R Studio (ver-
sion 1.1.447).

Table 1. Patients and disease characteristics in the entire study population and according to EGFR status

Characteristics
Total

(N¼ 1521)
EGFR-non-amplified

(n¼ 1459)
EGFR-amplified

(n¼ 62) Pa

Age, y .07
Median (IQR) 60 (51-67) 60 (51-68) 56 (50-62)

Sex, No. (%) .15
Female 710 (46.7) 687 (47.1) 23 (37.1)
Male 811 (53.3) 772 (52.9) 39 (62.9)

ECOG PS, No. (%) .30
0 807 (54.6) 769 (54.3) 38 (61.3)
1-2 670 (45.4) 646 (45.7) 24 (38.7)

Primary tumor location, No. (%) <.001
Rectum 368 (24.3) 338 (23.3) 30 (48.4)
Left colon 675 (44.7) 648 (44.7) 27 (43.5)
Right colon 468 (31.0) 463 (32.0) 5 (8.1)

Primary tumor resection, No. (%) <.001
Yes 647 (51.9) 601 (50.7) 46 (74.2)
No 600 (48.1) 584 (49.3) 16 (25.8)

Synchronous metastases, No. (%) .07
No 313 (25.1) 291 (24.5) 22 (35.5)
Yes 936 (74.9) 896 (75.5) 40 (64.5)

No. of metastatic sites, No. (%) <.001
1 702 (46.5) 658 (45.5) 44 (71.0)
>1 807 (53.5) 789 (54.5) 18 (29.0)

RAS/BRAF status, No. (%) .002
All wild type 768 (50.6) 709 (48.7) 59 (95.2)
RAS mutated 623 (41.0) 621 (42.7) 2 (3.2)
BRAF mutated 127 (8.4) 126 (8.6) 1 (1.6)

MSI status, No. (%) .19
MSS 1240 (96.0) 1178 (95.8) 62 (100)
MSI-high 52 (4.0) 52 (4.2) 0 (0)

Anti-EGFR therapy, No. (%) .002
Yes 555 (63.1) 520 (36.0) 35 (56.5)
No 950 (36.9) 923 (64.0) 27 (43.5)

aP values were based on Fisher exact test, v2, or Kruskal-Wallis test, whenever appropriate. All statistical tests were 2-sided. ECOG PS ¼ Eastern Cooperative Oncology

Group performance status; IQR ¼ interquartile range; MSI-high ¼microsatellite instability high; MSS ¼microsatellite stable.
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Results

Patient Population

The overall prevalence of EGFR amplification in the screened
population was 1.1% (62 out of 5685 screened samples). Baseline
features and clinical outcomes of patients with EGFR-amplified
mCRC were compared with a cohort of 1459 patients without
EGFR amplification (Figure 1).

Clinical and Pathological Characteristics of EGFR-
Amplified mCRC

As shown in Table 1, EGFR-amplified mCRCs were located more
frequently in the rectum (48.4% vs 23.3%), and only 5 cases were
right-sided. Regarding mutational profile, EGFR-amplified can-
cers were more frequently RAS/BRAF wild type (95.2% vs 48.7%),
and all of them were MSS. As expected, history of exposure to
anti-EGFR therapy was more frequent in patients with EGFR-
amplified vs -nonamplified cancers (56.5% vs 36.0%). Primary
tumor resection (74.2% vs 50.7%) and 1 single site of metastases

(71.0% vs 45.5%) were also statistically significantly associated
with EGFR amplification. Of note, RAS/BRAF wild-type mCRCs
arising from the left colon or rectum had a 10.70-fold higher
chance of bearing EGFR amplification compared with other

cases (odds ratio [OR] ¼ 10.70, 95% confidence interval [CI] ¼
5.34 to 24.66; P < .001).

Molecular Characteristics of EGFR-Amplified mCRC

Comprehensive NGS data were available for 55 EGFR-amplified
tumors, with 134 genes sequenced in all samples (Figure 1). The

alterations profiles are depicted in the heatmap in Figure 2, A.
Notably, TP53 was the most frequently mutated gene, with
alterations occurring in almost all samples (52 of 55, 94.5%).
Among the others, APC and SMAD4 were found altered in at
least 20% of the samples.

We then investigated whether EGFR amplification was asso-
ciated with particular patterns of either gene amplifications or
chromosomal alterations. To reduce potential biases related to
the heterogeneity of sequencing platforms, we restricted our

A

B C D

Figure 2. EGFR-amplified samples alterations profile. A) Heatmap showing the genomic profiles of patients with EGFR amplification. B) Copy number variation fre-

quency for chromosome 7 of EGFR-amplified samples (EGFR is located in the p arm of chromosome 7). Gains are shown in red and losses are shown in blue; the thresh-

old for both gains and losses is set at 0.5. C) and (D) show copy number variation frequencies for, respectively, patients with and without EGFR amplification. amp ¼
amplification; CNV ¼ copy number variation; del ¼ deletion; dup ¼ duplication; IG ¼ intragenic; rear ¼ rearrangement; splicevar ¼ splice variant.
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analysis to the Memorial Sloan Kettering Cancer Center cohort
including 439 EGFR-nonamplified, RAS/BRAF wild type, MSS con-
trols as described in Yaeger et al. (10). HER2 amplification was
found in 26 of 439 EGFR nonamplified cases, whereas none of
the 35 EGFR-amplified carried this alteration (5.9% vs 0%; P ¼
.24), possibly suggesting their mutual exclusivity as drivers of
oncogene addiction. Notably, samples with EGFR amplification
were enriched in the amplification of the p arm of chromosome
7 (P < .001; Figure 2, B). The complete copy number alteration
profiles of both EGFR-amplified and -nonamplified tumors are
depicted in Figure 2, C and D; overall, EGFR-amplified samples
were enriched in chromosomal gains and losses, and they
showed a higher median fraction of genome-altered compared
with nonamplified samples (35.2% vs 21.8%; P < .001;
Supplementary Figure 1, available online).

Prognostic Impact of EGFR Amplification in mCRC

Median follow-up time was 40.3 (interquartile range [IQR] ¼
28.7-58.9) months. Patients with EGFR-amplified mCRC showed
a better OS (median OS ¼ 71.3 months [95% CI ¼ 50.7 to NA; 5-
year OS rate ¼ 53.5% [95% CI ¼ 40.1% to 71.5%]) compared with
patients with EGFR-nonamplified cancers (median OS ¼
24.0 months [95% CI ¼ 22.8 to 25.6]; 5-year OS rate ¼ 14.6% [95%
CI ¼ 12.0% to 17.8%]; hazard ratio [HR] ¼ 0.30, 95% CI ¼ 0.20 to
0.44, P < .001) (Figure 3). Similar results were observed in the
subgroup of patients with RAS/BRAF wild-type status
(Supplementary Figure 2, available online). In the multivariable
model including the other characteristics statistically signifi-
cantly associated with OS (ie, age, sex, Eastern Cooperative
Oncology Group performance status, primary tumor location,

primary tumor resection, presence of synchronous metastases,
number of metastatic sites, and RAS/BRAF status), the presence
of EGFR amplification had an independent positive prognostic
impact (adjusted HR ¼ 0.46, 95% CI ¼ 0.30 to 0.69; P < .001),
whereas the exposure to anti-EGFR therapy was no longer sta-
tistically significant (adjusted HR ¼ 0.99, 95% CI ¼ 0.80 to 1.22; P
¼ .90; Table 2).

Implications of EGFR Amplification in Patients With RAS/
BRAF Wild-Type mCRC Treated With anti-EGFR Agents

In the subgroup of 465 patients with RAS/BRAF wild-type mCRC
who received an anti-EGFR-containing regimen during their dis-
ease history, 34 had EGFR amplification, and 431 were EGFR non-
amplified. EGFR amplification was associated with a statistically
significantly better OS compared with EGFR-nonamplified sta-
tus (median OS ¼ 54.0 months [95% CI ¼ 35.2 to NA] vs 29.1
months [95% CI ¼ 27.0 to 31.9]; 5-year OS rate ¼ 48.6% [95% CI ¼
32.4% to 73.0%] vs 23.2% [95% CI ¼ 18.3% to 29.4%]; HR ¼ 0.46,
95% CI ¼ 0.28 to 0.76, P ¼ .002) (Figure 4). Notably, among
patients with RAS/BRAF wild-type and EGFR-amplified tumors,
there was no statistically significant OS difference according to
exposure to anti-EGFR therapy or not (P ¼ .21; data not shown).
Treatment data and clinical outcomes in individual patients
with EGFR amplification are shown in Supplementary Table 2
(available online).

In the subgroup of patients with EGFR-amplified, RAS/BRAF
wild-type mCRC who received an anti-EGFR-based option dur-
ing their disease history, EGFR CNV status was available for 34
patients (Supplementary Table 2, available online). Regarding
CNV as a continuous variable, we observed a nonlinear effect on

Events
Median OS 

(95% CI)  
5-yr OS rate 

(95% CI)
HR 

(95% CI)
P

EGFR-nonamplified 983 24.0 months
(22.8 to 25.6)

14.6%                
(12.0 to 17.8)

Ref

<0.001EGFR-amplified 27 13.0 months
(50.7 to not available)

53.5%              
(40.1 to 71.5) 

0.30 
(0.20 to 0.44)

Figure 3. Kaplan-Meier estimates of overall survival according to the presence of EGFR amplification in the entire study population (N¼1521). Blue lines indicate

patients with EGFR nonamplified mCRC (n¼1459), whereas violet lines indicate patients with EGFR-amplified mCRC (n¼62). Patients with EGFR-amplified mCRC

showed a better overall survival compared with patients with EGFR-nonamplified mCRC. CI ¼ confidence interval; HR ¼ hazard ratio; mCRC ¼ metastatic colorectal

cancer; OS ¼ overall survival.
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the log-hazard function (Supplementary Figure 3, A, available
online). Starting from this observation, we then modeled a cut-
off for EGFR CNV and found that patients with 6-8 EGFR copies
had better OS compared with those with EGFR CNV of more
than 8 (5-year OS rate ¼ 90.0% [95% CI ¼ 73.2% to 100%] vs 24.5%
[95% CI ¼ 9.8% to 61.2%]; HR ¼ 5.28, 95% CI ¼ 1.47 to 18.97, P ¼
.01) (Supplementary Figure 3, C, available online). We sought to
investigate whether EGFR-amplified mCRCs with higher EGFR
CNV are enriched with on-target genomic co-alterations, which
may impair single-agent EGFR targeting with mAbs
(Supplementary Table 2, available online). We discovered the
novel EGFR-LANCL2 fusion in 1 sample bearing 250 EGFR copies
(Supplementary Figure 4, available online), and we found 2 EGFR
deletions: one involving exons 25-28 in one sample with 41
EGFR copies as already described in Cho et al. (16) and one in-
volving exons 5-7 in one sample with 29 gene copies. EGFR path-
ogenic mutations were never detected in EGFR-amplified
subgroup. Finally, liquid biopsies obtained at the time of sec-
ondary resistance to anti-EGFR-based therapy were available for
a small subgroup of 5 patients and were analyzed for the pres-
ence of RAS, BRAF, and EGFR ECD mutations. Notably, although
no alterations were detected in 2 samples possibly because of
low amounts of circulating tumor DNA, only EGFR ECD

mutations but no RAS/BRAF-acquired mutations were detected
in the 3 analyzed cases (Supplementary Table 2 and
Supplementary Figure 5, available online).

Discussion

Anti-EGFR agents cetuximab or panitumumab are recom-
mended in eligible patients with RAS/BRAF wild-type, left-sided
mCRC, independently from the presence of other molecular
alterations, especially positive predictors such as EGFR amplifi-
cation (17). Moreover, investigating the role of EGFR amplifica-
tion as a driver of oncogene addiction is challenging because of
its low prevalence (about 1%). In recent years, HER2 amplifica-
tion (found in 3% of all mCRCs) has been increasingly recog-
nized as a relevant therapeutic target for several anti-HER2
targeted strategies (18). Here, we showed that, as for HER2 over-
expression or amplification, EGFR amplification is highly
enriched in left-sided, RAS/BRAF wild-type, and MSS tumors.
These associations are even stronger than those reported in
HER2-amplified tumors: in fact, RAS/BRAF co-mutations or
right-sided primary site are extremely uncommon in EGFR-am-
plified subgroup. Finally, HER2 and EGFR amplifications are mu-
tually exclusive in our dataset.

Table 2. Cox proportional hazards regression models for overall survival

Characteristics

Univariable analysis Multivariable model

HR (95% CI) Pa HR (95% CI) Pa

Age, 10 years increase 1.09 (1.03 to 1.15) .001 1.08 (1.01 to 1.15) .02
Sex .03 .06

Female Referent Referent
Male 0.87 (0.77 to 0.98) 0.86 (0.74 to 1.01)

ECOG PS <.001 <.001
0 Referent Referent
1-2 1.51 (1.33 to 1.72) 1.49 (1.28 to 1.74)

Primary tumor location <.001 .23
Rectum Referent Referent
Left colon 0.90 (0.77 to 1.05) 0.84 (0.69 to 1.02)
Right colon 1.20 (1.02 to 1.42) 0.92 (0.74 to 1.14)

Primary tumor resection <.001 <.001
Yes Referent Referent
No 1.70 (1.47 to 1.96) 1.47 (1.23 to 1.75)

Synchronous metastases <.001 .03
No Referent Referent
Yes 1.42 (1.19 to 1.69) 1.25 (1.02 to 1.52)

No. of metastatic sites <.001 <.001
1 Referent Referent
>1 1.67 (1.47 to 1.90) 1.34 (1.15 to 1.56)

RAS/BRAF status <.001 <.001
All wild type Referent Referent
RAS mutated 1.23 (1.07 to 1.40) 1.36 (1.10 to 1.68)
BRAF mutated 2.57 (2.08 to 3.17) 2.41 (1.78 to 3.27)

MSI status .62
MSS Referent
MSI 1.10 (0.75 to 1.60)

EGFR status <.001 <.001
Not amplified Referent Referent
Amplified 0.30 (0.20 to 0.44) 0.46 (0.30 to 0.69)

Anti-EGFR therapy .002 .90
No Referent Referent
Yes 0.81 (0.71 to 0.92) 0.99 (0.80 to 1.22)

aP values are based on the Likelihood ratio test, 2-sided, in Cox proportional hazard regression analyses. ECOG PS ¼ Eastern Cooperative Oncology Group performance

status; CI ¼ confidence interval; HR ¼ hazard ratio; MSI ¼microsatellite instability high; MSS ¼microsatellite stable.
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Although EGFR amplification was associated with positive
prognostic features such as RAS/BRAF wild-type status and left-
sided primary tumor location, it was independently associated
with better OS: notably, the 5-year OS rate of patients with
EGFR-amplified mCRC was 53.5%. Several explanations may be
hypothesized for such a robust impact. In fact, EGFR amplifica-
tion may be associated with enhanced chemosensitivity, as de-
scribed for glioblastoma (19), and may be theoretically
predictive of exceptional efficacy of anti-EGFR mAbs. In our
dataset, the overall outcome of the EGFR-amplified population
was excellent, and the anti-EGFR-based regimens and treat-
ment lines were highly heterogeneous. Because of these rea-
sons, we could not demonstrate a positive predictive role of
EGFR amplification. Moreover, exposure to anti-EGFR therapy
was not statistically significantly associated with OS, suggesting
that EGFR amplification may be just a prognostic factor or, if
anything, a mixed prognostic-predictive one.

A relevant matter of discussion is whether monotherapy
with anti-EGFR agents achieve sufficient target inhibition in
EGFR-amplified CRCs. The lesson learned from HER2-amplified
CRC is based on the lack of effectiveness of either treatment
with mAbs or tyrosine-kinase inhibitors alone and the role of
dual HER2 inhibition as the treatment mainstay. In patients-
derived xenografts of EGFR-amplified gastroesophageal cancer,
we previously showed that dual EGFR blockade with a mAb plus
a tyrosine-kinase inhibitor had superior efficacy compared with
single agent anti-EGFR treatments (20). Consistently, a recent
post hoc analysis of the REAL-3 trial showed that the presence
of EGFR amplification was not a positive predictor of greater effi-
cacy from the addition of panitumumab to initial triplet chemo-
therapy (21). Based on all of these considerations, optimized
EGFR blockade strategies are warranted in the small but rele-
vant subgroup of patients with EGFR-amplified mCRC.

Although acknowledging the lack of CRC-specific data on
differential efficacy of the approved mAbs according to the pres-
ence of EGFR amplification or not, we attempted to investigate
further biomarkers that may stratify outcomes in the subgroup
of patients with EGFR-amplified mCRC and exposed to anti-
EGFR-based therapy. Considering that the typical alterations of
primary resistance to anti-EGFR agents beyond RAS and BRAF
(1) are anectodical in EGFR-amplified subtype, we focused on
EGFR CNV as an immediately available variable. Paradoxically,
we noted that patients with EGFR hyperamplification had infe-
rior outcomes compared with those with relatively lower CNV.
Such results must be interpreted with extreme caution because
of technical reproducibility, lack of external validation of CNV
cutoff, and small sample size. However, the development of
more efficient EGFR-targeting strategies other than single-agent
mAbs could be even more important for patients with higher
EGFR CNV. Indeed, in these cancers with EGFR hyperamplifica-
tion, we found the presence of complex on-target EGFR rear-
rangements, such as large deletions and the newly described
EGFR-LANCL2 fusion. Liquid biopsies obtained in selected clini-
cal cases at the time of secondary resistance to anti-EGFR mAbs
showed the emergence of on-target EGFR ECD mutations, but
not RAS/BRAF mutations, consistent with the evidence previ-
ously reported for patients with longer responses (22) and for
clinical case of EGFR-amplified gastric cancer (23). Based on
these considerations on the importance of EGFR as a CRC driver
gene, we assume that patients with EGFR-amplified mCRC are
the optimal candidates for more potent EGFR inhibition strate-
gies and potential chemo-free options, such as second-
generation oligoclonal antibodies targeting multiple epitopes of
EGFR or anti-EGFR antibody drug conjugates (24). Because of the
low frequency of these alterations, we therefore advocate the
design of umbrella studies of novel EGFR inhibition strategies in

Events
Median OS 

(95% CI)  
5-yr OS rate (95% 

CI)
HR 

(95% CI)
P

EGFR-nonamplified 277 29.1 months
(27.0 to 31.9)

23.2% (18.3 to 29.4) Ref

0.002EGFR-amplified 18 54.0 months
(35.2 to not available)

48.6 % (32.4 to73.0) 0.46 (0.28 to 0.76)

Figure 4. Kaplan-Meier estimates of overall survival according to the presence of EGFR amplification in the subgroup of patients with RAS/BRAF wild-type mCRC treated with

anti-EGFR agents (n¼465). Blue lines indicate patients with EGFR-nonamplified mCRC (n¼431), whereas violet lines indicate patients with EGFR-amplified mCRC (n¼34).

Patients with EGFR-amplified mCRC showed a better overall survival compared with patients with EGFR nonamplified mCRC. P values were calculated by means of the likeli-

hood ratio test, 2-sided, in a Cox univariable regression model. CI¼ confidence interval; HR¼ hazard ratio; mCRC¼metastatic colorectal cancer; OS¼ overall survival.
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multiple tumor types including mCRC and gastroesophageal
cancers, thus potentially leading to agnostic trials.

Our study has several limitations, including the retrospec-
tive data collection and the major reliance of the overall dataset
on institutional databases—particularly the Memorial Sloan
Kettering Cancer Center one—rather than clinical trials. Second,
the heterogeneity of anti-EGFR-based regimens and treatment
lines prevented a reliable analysis on the potential predictive
role of EGFR amplification. Third, the NGS platforms used in the
several screening sources were clearly different. Because NGS
analyzes both tumor and stromal DNA, this technique may un-
derestimate the true prevalence of EGFR amplification by ex-
cluding cases with relatively lower gene copy number and
higher grade of genomic heterogeneity, especially when the tu-
mor cellularity of the sample is low. On the other hand, the
adoption of 6 CNV cutoff to identify EGFR amplification reason-
ably reflected the presence of a homogeneous pattern of EGFR
amplification and thus prevented the well-known reproducibil-
ity issues of in situ hydridization assay alone (25). Finally, inter-
lesion heterogeneity of EGFR status may have influenced the
outcomes of patients included in this cohort, and liquid biopsy
data are warranted.

In conclusion, the spread availability of comprehensive ge-
nomic profiling for patients with mCRC allows the concomitant
assessment of guideline-recommended biomarkers and further
actionable drivers such as EGFR status, favoring patients’ inclu-
sion in clinical trials with innovative drugs (26). Noteworthy, we
highlighted the importance of testing for EGFR amplification in
patients with mCRC, because EGFR-amplified mCRC represents
a specific subtype with a favorable prognosis and is worthy of
dedicated clinical trials with novel EGFR-targeting drugs.
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