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KEY POINTS

� Amarker of immunity that describes clinical efficacy for SARS-CoV-2 vaccines would be a
valuable clinical and epidemiological tool.

� A “correlate” or “surrogate” of SARS-CoV-2 vaccine-induced protection needs to be well-
defined, including clear endpoints (e.g., hospitalization, severe disease, transmission).

� Different statistical models and methodologies can be used to determine a correlate or
surrogate of protection.

� Many factors including host characteristics, vaccine platform, and immunologic parame-
ters may impact the correlate or surrogate of protection.
INTRODUCTION

Less than 18 months after the identification of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) and its genome, 13 authorized or approved COVID-19
vaccines are being deployed around the world,1 and many more candidates are
currently undergoing evaluation in clinical trials. In the United States, 3 vaccines
have been granted an Emergency Use Authorization (EUA) by the Food and Drug
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Administration: BNT162b2 (Pfizer/BioNTech), mRNA-1273 (Moderna), and
Ad26.CoV2.S (Janssen Biotech, Inc). Although the phase 3 clinical trials have demon-
strated clinical efficacy in preventing moderate to severe COVID-19 disease, the un-
derlying immune mechanisms that confer protection are still not known.
Furthermore, determining protection against SARS-CoV-2 infection in vaccinated
people using laboratory markers would be extremely useful. Efficacy studies, such
as randomized controlled trials (RCTs), depend on large and expensive clinical trials,
whereas large population studies during vaccine rollout often have confounding vari-
ables. Using a “surrogate” or “correlate” of protection allows for easier monitoring and
surveillance of a particular vaccine’s effectiveness, which can aid in both vaccine
development and licensure.2 Markers of immune responses can also be applied to
determine a population response for new variants or strains of a virus, across unique
characteristics of a population (eg, elderly, immunocompromised), and across
different manufacturing or lots. Furthermore, COVID-19 vaccine boosters may be
necessary, and a correlate of protection (CoP) would allow for efficient measurement
of persistent protection. To date, there is no accepted CoP for COVID-19 vaccine-
induced immunity.
The current knowledge regarding antibody-induced responses to SARS-CoV-2 vac-

cines, the definition of a CoP, proposed CoP for SARS-CoV-2, and special consider-
ations for defining an SARS-CoV-2 vaccine-induced CoP are discussed.
SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS 2 VACCINES AND
ANTIBODY RESPONSES

The varied COVID-19 vaccines that have been approved for emergency use or are still
undergoing clinical evaluation use different technologies, administration schedules,
and antigen targets (Table 1), which may result in different cellular and humoral re-
sponses following immunization. The available data on the dynamics, duration, and
magnitude of the antibody responses following COVID-19 immunization are discussed
in relation to different vaccine platforms.
Antibody responses to COVID-19 vaccines are commonly reported using 2 different

assays: immunoassays to detect binding antibodies (bAb) and neutralization assays to
detect neutralizing antibodies (nAb).3 Immunoassays, such as enzyme-linked immu-
nosorbent assays (ELISA), detect and quantify antibodies that have the capacity to
bind a specific antigen in vitro. Except for inactivated vaccines, all available COVID-
19 vaccines target the SARS-CoV-2 spike protein or one of its components (eg, recep-
tor binding domain or RBD, S1, S2). Thus, it is expected that these vaccines will lead to
the production of bAb against the spike protein, but not against the nucleocapsid pro-
tein. This antibody response signature is different from what is seen after natural infec-
tion or vaccination with inactivated vaccines, where detection of both spike and other
antigens (such as nucleocapsid) bAb is expected. Neutralization assays are used to
quantify functional antibodies that have the capacity to inhibit the replication of
SARS-CoV-2 in vitro. Alternatively, a pseudovirus expressing SARS-CoV-2 spike pro-
tein can be used instead of wild-type SARS-CoV-2, providing significant safety and
versatility advantages. In most phase 1/2 trials, a strong correlation was seen between
bAb and nAb elicited postvaccination.4–7

Dynamics of Antibody Responses Postvaccination

In participants without previous SARS-CoV-2 infection, bAb, such as immunoglobulin
G (IgG) against the full spike, S1, S2, or RBD, are usually detectable 14 days after the
initial dose and tend to further increase on days 21 to 28, when the second dose is



Table 1
Vaccine platforms, dose and schedule, and antigen targets

Vaccine
Platform Vaccine Name

Approved/
Authorized Vaccine Dose and Schedule Antigen Target

mRNA-based
vaccines

BNT162b2 (Pfizer/BioNTech) �85 countries
US EUA 12/11/2020

30 mg
2 doses, 21 d apart9

Prefusion-stabilized full-length S protein

mRNA-1273 (Moderna) �46 countries
US EUA 12/18/2020

100 mg
2 doses, 28 d apart5,11,85

Prefusion-stabilized full-length S protein

Vector vaccines AZD1222 (Astra-Zeneca)
Vector: ChAdeno

�139 countries
Not in the US

5 � 1010 VP
2 doses, 4–12 wk apart8,86

Full-length S protein

Ad26.CoV2.S (Janssen)
Vector: Ad26

�41 countries
USA EUA 2/27/2021

5 � 1010 VP, 1 dose4 Prefusion-stabilized full-length S protein

Sputnik V (Gamaleya Center)
Vector: rAd26/rAd5

�65 countries
Not in the US

1011 VP, 2 doses 21 d apart6 Full-length S protein

Convidicea (CanSino)
Vector: rAd5

�5 countries
Not in the US

5 � 1010 VP, 1 dose7 Full-length S protein

Inactivated
vaccines

CoronaVac (Sinovac) �24 countries
Not in the US

3 mg, 2 doses 14–28 d apart10,87 Inactivated SARS-CoV-2 (CN02 strain)

BBIBP-CorV (Sinopharm) �40 countries
Not in the US

4 mg, 2 doses 21–28 d apart63 Inactivated SARS-CoV-2 (HB02 strain)

Covaxin (Bharat Biotech) �9 countries
Not in the US

6 mg, 2 doses 28 d apart15,88 Inactivated SARS-CoV-2 (NIV-2020-770 strain)

WIBP-CorV (Sinopharm) 2 countries
Not in the US

5 mg, 2 doses 21 d apart89 Inactivated SARS-CoV-2 (WIV04 strain)

CoviVac (Chumakov Center) 1 country
Not in the US

N/A, 2 doses, 14 d apart Inactivated SARS-CoV-2 (strain N/A)

Subunit
vaccine

EpiVacCorona (Vector Institute) 2 countries
Not in the US

N/A, 2 doses 21–28 d apart
(NCT04780035)

Synthesized peptide antigens of SARS-CoV-2

ZF2001 (Anhui Zhifei Longcom
Biopharmaceutical)

2 countries
Not in the US

25 mg, 3 doses, 0–30–60 d16 Receptor-binding domain
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administered.5,8 All the 2-dose schedule vaccines show a prime-boost effect, with
further significant increase of bAb peaking around 7 to 14 days after the second
dose.5,9,10

In general, nAb are detected at a low level starting at day 14 and significantly in-
crease after the second dose.5,6,8 nAb tend to increase at a rate slower than bAb, how-
ever, like bAb, tend to peak 7 to 14 days postdosing schedule. The single-dose
vaccines Ad26.CoV2.S (Janssen Biotech, Inc), a nonreplicating adenovirus serotype
26 (Ad26) vector vaccine, and Convidicea (CanSino), a nonreplicating adenovirus
serotype 5 vector vaccine, produce bAb and nAb by day 28, that tend to further in-
crease by day 56 for Ad26.CoV2.S.4,7

Limiteddata are available regarding theduration of antibody responses post-COVID-
19 vaccines. Data generated from the phase 1 and phase 3 clinical trials are critical to
better understand the duration of protection, as participants in these trials were vacci-
nated as early as March 2020 and July 2020, respectively. This prolonged follow-up
period provides early understanding of the kinetics of antibody response and vaccine
efficacy over time and may guide the need for future booster dose. In the mRNA-173
phase 1 study, in which 33 participants received 2 doses of vaccine 28 days apart,
bAb and nAb titers decreased but persisted through 6 months after the second dose
as assessed by 3 different assays.11 There is also growing evidence from the phase 3
trials that vaccinationwithmessengerRNA (mRNA) vaccines remains clinically effective
to prevent confirmed symptomatic cases of COVID-19 for at least 6 months.12,13

Magnitude of Antibody Responses

The magnitude of postvaccination bAb and nAb published to date is difficult to
compare between COVID-19 vaccine types, because researchers use different assays
and methods to quantitate antibody levels. Furthermore, for bAb, assays target
different antigens, such as the full spike protein or one of its fragments (S1, S2,
RBD).14 For this reason, some groups have included a panel of control convalescent
serum specimen from individuals with prior COVID-19 to compare the vaccine-
induced responses with the natural infection. mRNA and vector vaccines were shown
to induce bAb and nAb titers similar to or higher than what is detected in convalescent
sera.4,5,8,9 For inactivated vaccines, only CoronaVac and Covaxin trials reported com-
parison with convalescent sera and showed respectively lower or similar nAb titers in
sera from vaccinated participants compared with convalescents sera.15 The recombi-
nant vaccine ZF2001 showed significantly higher nAb titers in vaccinated participants
than in convalescent sera.16 However, these data must be cautiously interpreted
because the serum panels differ among the different studies. Antibody titers after nat-
ural infection can vary significantly in convalescent individuals, based on host’s char-
acteristics, severity of disease, and timing from symptom onset.3,17

Impact of Previous Infection on Antibody Responses to Vaccines

In individuals with previous SARS-CoV-2 infection, postvaccination humoral re-
sponses differ significantly in terms of dynamics and magnitude. In those who
received BNT162b2 (Pfizer, Inc) or mRNA-1273 (ModernaTx, Inc), a rapid increase
of bAb is seen after the first dose, starting as early as 5 to 8 days.18 The titers quickly
peak at high levels between days 9 and 12 and do not significantly increase after the
second dose. In comparison with those without preexisting immunity, the titers were
10 to 45 times higher after the first dose and remained 6 times higher after the second
dose. Another study showed that 2 doses of BNT162b2 (Pfizer, Inc) in previously un-
infected individuals induced lower nAb titers than a single dose in those with previous
infection.
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COVID-19 Vaccines Humoral Responses and Variants

In the early phase 1/2 COVID-19 vaccine trials, vaccine-induced neutralizing activity
was assessed by neutralization assays using pseudovirus expressing the wild-type
Spike protein or using wild-type SARS-CoV-2. However, since January 2021, many
different genetic variants of SARS-CoV-2 have emerged around the world. These var-
iants have various substitutions, insertions, and/or deletions in the spike protein gene
that may lead to increased transmissibility or disease severity, and may also reduce
vaccine-induced protection.19 Current variants of concern according to the Centers
for Disease Control and Prevention include B.1.1.7 (first identified in United Kingdom),
P1 (first identified in Brazil), B1.351 (first identified in South Africa), and B.1.427 and
B.1.429 (first identified in California, USA). Emerging data have shown reduced, but
variable neutralizing activity of postvaccination sera on these variants, with a small
to moderate reduction in activity on the B.1.1.7, P1, B.1.427, and B.1.429,20,21 and
more significant reduction of neutralization was shown on the B1.351 variant, partic-
ularly with AZD1222, where complete virus escape has been described.22 In patients
with previous SARS-CoV-2 infection, a single dose of BNT162b2 substantially
increased the serum neutralizing activity against B.1.1.7, P1, and B.1.351, with similar
titers across patients for each variant.23

DEFINITION AND HISTORICAL EXAMPLES OF CORRELATES OF PROTECTION AND
RISKS

There are several definitions of the terms “correlate of protection” and “correlates of
risk.” Plotkin and Plotkin24 define a CoP as “a specific immune response to a vaccine
that is closely related to protection against infection, disease, or other defined end
point.” A CoP is typically a measurable immunemarker, and preferably one that is rela-
tively easy to obtain by standard laboratory techniques, for facile scalability and repro-
ducibility. Importantly, Plotkin and Plotkin argue that the correlate itself confers
protection, which they distinguish from a “surrogate,” which is not itself protective
but is an appropriate substitute for a different immune response that does offer pro-
tection. When defining a CoP, it is equally important to define the endpoint being
described. For example, does the immunologic parameter provide protection against
infection, transmission, hospitalization, or death? Depending on the outcome mea-
sure, the threshold value of a CoP may vary. The term “correlates of risk” was
described by Qin and colleagues25,26 as the statistical assessment of a CoP in the
context of a clinical trial. In this assessment, the clinical endpoint is the outcome mea-
sure of efficacy as predetermined in the clinical trial.
The humoral immune response is an essential feature of protection for many

vaccine-preventable diseases. Antibodies have been described as good correlates
of protection for several different types of pathogens, including tetanus, pneumo-
coccus, hepatitis A, hepatitis B, diphtheria, and Haemophilus influenzae b.27–29 Pas-
sive immunity from transfer of antibodies can be shown to be protective. For
example, antibodies transferred from maternal transmission to the fetus or antibodies
provided clinically by injection can confer protection, which demonstrates a direct
protective effect of the immune marker in question. Often, a discrete and quantitative
antibody threshold value for protection can be described. However, it should be noted
that antibody quality rather than quantity may also be important, and thus, a potential
limitation in identifying a simplistic quantity of antibody as being protective for a given
pathogen.
The immune system is complex and redundant. Thus, some have proposed that a

CoP for a given vaccine is not reflective in a single immune marker, but rather could
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be a series of immune markers in an immune cascade, or numerous independent
immune markers. For example, a clear correlate for measles protection has been
identified, with an antibody level of plaque reduction neutralization greater than
120 mIU/mL, as demonstrated by successful protection with maternal-fetal trans-
mission of antibodies.30 However, individuals who are unable to produce antibodies
because of humoral deficiencies can clear measles infection, demonstrating an
alternative pathway of T-cell–induced immunity that confers protection.31,32 There-
fore, multiple immune pathways may be important for generating protection
depending on the pathogen and characteristics of the host, with several unique cor-
relates of protection.

Methods to Evaluate Immune Correlates

Much controversy exists in the literature regarding the meaning and utilization of
immune-based correlates. A vaccine can be shown to induce a specific immune
response; however, this does not necessarily translate to clinical efficacy. A vaccine
may also have an immune response that is statistically associated with an assessment
of efficacy; however, this value does not directly translate into a causal relationship be-
tween the immune marker and protection. To further refine how correlates should be
described and thereby applied, several investigators have suggested validation
models using a combination of statistical and clinical data.
Prentice33 developed 4 criteria to evaluate endpoints for RCTs. These criteria have

been adapted in the context of vaccine trials, as listed below34:

1. Protection against the clinical endpoint is significantly related to having received
the vaccine.

2. The substitute endpoint is significantly related to the vaccination status.
3. The substitute endpoint is significantly related to protection against the clinical

endpoint.
4. The full effect of the vaccine on the frequency of the clinical endpoint is explained

by the substitute endpoint, as it lies on the sole causal pathway.

Although described specifically for RCTs, others have demonstrated that the Pren-
tice criteria can also be applied for observational studies, although this was elucidated
in relation to cancer research and not vaccinology research.35

Qin and colleagues25 proposed a framework to statistically describe 3 different
levels of correlates of protection and defined the data requirements needed to system-
atically validate the immune marker for each level. The 3 levels are defined as follows:
(1) “correlate of risk,” which is most closely associated with protection against a clin-
ical outcome as determined in a clinical trial; followed by (2) “level 1 specific surrogate
of protection” (further split between statistical and principal surrogates); and (3) “level
2 general surrogate of protection.” Although “correlate of risk” was initially described
in the context of a clinical trial, Qin’s methods have been adapted for use in the setting
of outbreak investigations, as with Ebola vaccinations in the Democratic Republic of
the Congo.36 Qin’s “level 1” statistical category must adhere to the Prentice criteria,
and “level 2” can be determined only through a large-scale phase 3 trial or large post-
licensure studies that have the statistical power to calculate vaccine efficacy across
populations.
The threshold method has also been described, in which a specific level of the im-

mune marker is identified. Individuals who have values above the threshold are
considered protected against the clinical endpoint, whereas those with levels below
the threshold are susceptible.29,37 Different statistical tests can estimate the threshold
by either (1) comparing preexposure immune marker levels to disease incidence
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immune marker levels in observational/cohort studies or (2) examining the proportion
of vaccinated and unvaccinated individuals below the threshold and calculating the
immune marker-derived vaccine efficacy.38,39 The threshold method and variations
have been used to describe specific antibody-associated levels of protection for
several vaccines, including the pneumococcal conjugate vaccine,29 meningococcal
C conjugate vaccine,40 and rubella vaccine.39

Although the methodologies described by Prentice, Qin, and others can be valuable
to statistically validate a CoP, the foundation rests on the measurement of the immu-
nologic marker. Assays that have a wide degree of variability and measurement error
will impact the subsequent statistical calculations used in thesemodels. Measurement
errors should be carefully considered for the SARS-CoV-2 antibody assays, which
have shown varying degrees of sensitivity and specificity, with no gold standard,
and with various types of assays used for different COVID-19 vaccine trials and
post-EUA analyses.41,42
THE PATH TO DEFINING CORRELATE OF PROTECTION FOR SEVERE ACUTE
RESPIRATORY SYNDROME CORONAVIRUS 2 VACCINES

Determining a CoP for SARS-CoV-2 is essential to determine both individual and pop-
ulation level immunity, and to describe protection both after natural infection and after
vaccination. Furthermore, as new variants emerge and current vaccines are adapted, a
defined CoP will be useful to efficiently generate and implement vaccination programs
and identify novel vaccines for use in specific populations. As described above, an
important factor in describing a CoP is defining and harmonizing the clinical or efficacy
endpoint. A uniform endpoint for SARS-CoV-2 has not been clearly defined, with het-
erogeneous outcome measures described across clinical trials and other COVID-19
studies.43 The current literature describes the insights gained from passive immuniza-
tion of monoclonal antibodies in humans as well as possible correlates of protection as
shown in animal models and cohort studies (summarized in Table 2). RCTs, large pop-
ulation observational studies, and challenge trials may also aid in identifying CoPs for
SARS-CoV-2. Furthermore, as new SARS-CoV-2 variants emerge, sieve analyses
may be used to better understand the mechanism behind vaccine protection by using
genetic and statistical approaches to measure dissimilarity between virus strains in
vaccinated individuals as compared with virus strains in placebo recipients.44 Similar
approaches have been used in the field of HIV-1 vaccines and prevention.45

Passive Immunity

described earlier, a true CoP is an immune component that is responsible for protec-
tion against a disease endpoint and can be demonstrated by passive transfer from an
immune individual to a naı̈ve individual. For SARS-CoV-2, monoclonal antibodies
(mAb) have been developed that validate the role of neutralization antibodies as a
mechanism of protection against disease.46 A double-blind, phase 1 to 3 trial investi-
gated the use of an antibody cocktail (REGN-COV2) in nonhospitalized, symptomatic
patients.47 The cocktail is composed of 2 neutralizing human IgG1 antibodies that
target the RBD of SARS-CoV-2. The interim analysis demonstrated reduction of the
SARS-CoV-2 viral load in participants who received the REGN-COV2 antibody cock-
tail, with a more pronounced effect in individuals who had not yet produced endoge-
nous antibody. Another randomized, placebo-controlled phase 2 study (BLAZE-1)
evaluated the role of LY-CoV555, an anti-spike neutralizing mAb that binds with
high affinity to the RBD region of SARS-CoV-2 in patients with mild to moderate
COVID-19 disease in the outpatient setting.48 For one of the 3 dose levels tested, there



Table 2
Proposed correlates of protection

Study Design Authors
Natural Infection or
Postimmunization Endpoint Correlates of Protection Identified

Passive immunity Weinreich et al,47 2021
Chen et al,48 2021

Passive antibody transfer SARS-CoV-2 viral load nAb, no specific threshold
determined

Animal model McMahan et al,50 2021 Natural infection SARS-CoV-2 PCR detection in BAL 50 for pseudovirus nAb titers; 100
for RBD ELISA titers; 400 for S
ELISA titers

Animal model Corbett et al,52 2020 Postimmunization SARS-CoV-2 PCR detection in BAL nAb, no specific threshold
determined

Animal model Mercado et al,51 2020 Postimmunization SARS-CoV-2 PCR detection in BAL nAb 100–250

Cohort study Addetia et al,58 2020 Natural infection SARS-CoV-2 PCR (nasopharyngeal)
and clinical symptoms

nAb were protective in 3 crew
members with levels of 1:174,
1:161, and 1:3082
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was a significant decline in viral load by day 11 as compared with the placebo group as
well as a trend toward fewer hospitalizations and lower symptom burden in patients
who received LY-CoV555. These data suggest a direct beneficial role of nAb in
COVID-19. Studies are ongoing to better understand if mAb would also be beneficial
in preventing SARS-CoV-2 infection in close contacts of infected individuals (eg,
NCT04452318), which would provide additional insight into the role of humoral immu-
nity in protection.

Animal Models

An animal model with rhesus macaques was developed and demonstrated SARS-
CoV-2 infection and replication in pneumocytes and bronchial epithelial cells.49

All macaques produced SARS-CoV-2 anti-spike bAb and nAb responses as well as
SARS-CoV-2–specific cellular immune responses. After 35 days from the initial viral
infection, the macaques were rechallenged with the same dose of SARS-CoV-2.
Limited levels to no levels of viral RNA were detected from bronchoalveolar lavage
(BAL) or nasal swabs in the rechallenged animals, which exhibited asymptomatic or
mild clinical disease. These data suggest immunologic control upon rechallenge.
However, because of the small sample size and near complete protection of the ani-
mals after rechallenge, no immune correlates of protection were identified. Given the
positive responses of bAb, nAb, and cellular immune activation, the relative domi-
nance of any one of these immune markers could not be determined.
The investigators next investigated the use of IgG transfer from convalescent ma-

caque sera to naı̈ve macaques who were subsequently challenged with SARS-CoV-
2 as well as depletion of CD81 T cells in convalescent macaques to identify a
CoP.50 The macaques who received the purified IgG were protected against the chal-
lenge infection in a dose-dependent manner. Using logistic regression models, anti-
body thresholds greater than 50 for pseudovirus nAb titers, 100 for RBD ELISA
titers, and 400 for S ELISA titers were demonstrated to be protective. In the CD81

T-cell–depleted group, some breakthrough infections occurred, suggesting that pro-
tection is not independently related to T-cell function, but that cellular immunity likely
plays a role, especially in the setting of low antibody titers.
The same macaque model was then used to assess for vaccine-induced protection

with DNA vaccine candidates and Ad26 vector vaccines.51 Viral replication in BAL fluid
and nasal secretions wasmeasured for the endpoint analyses. Because of variability in
the outcomes based on the different vaccine constructs administered, the investiga-
tors were able to evaluate for immune CoPs. An inverse correlation was described be-
tween nAb (both pseudovirus and live virus nAb titers) and RNA levels from BAL and
nasal secretions, suggesting nAb as an immune CoP, with nAb titers between 100 and
250 offering complete protection.
Nonhuman primate challenge models have also been used to evaluate immune re-

sponses and determine CoP after vaccination. To evaluate CoP in the context of
mRNA-1273 administration, nonhuman primates were challenged with intratracheal
and intranasal SARS-CoV-2 four weeks after the second vaccination with mRNA-
1273.52 The endpoint assessment was quantification of SARS-CoV-2 RNA in BAL fluid
and nasal secretions. mRNA-1273–induced serum neutralization activity was then
correlated with RNA from BAL and nasal secretions and was found to be negatively
correlated. Given this finding, in combination with the rapid reduction in viral replica-
tion 24 to 48 hours after challenge, the investigators speculated that antibodies do
serve as the primary mechanism of protection. However, a specific threshold could
not be determined, because the vaccine-induced immune response offered high pro-
tection with limited variation in viral replication.
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A limitation of animal models is the inability to entirely recapitulate human pathogen-
esis and disease. The concentration and inoculation of virus for the challenge in ani-
mals may not reflect true transmission dynamics in humans.

Cohort and Observational Studies

Cohort and observational studies can provide information about CoP through epide-
miologic analyses. Several cohort studies have examined rates of reinfection within
distinct populations, which can also provide clues regarding CoP.53–55 For example,
a large, prospective cohort study in the United Kingdom, the SIREN (SARS-CoV-2 Im-
munity and Reinfection Evaluation) study, enrolled more than 30,000 health care
workers and documented SARS-CoV-2 polymerase chain reaction (PCR) and anti-
body testing every 2 to 4 weeks.56 The investigators describe that the seropositive
participants (those with a prior history of SARS-CoV-2 infection) had an 84% lower
risk of reinfection (adjusted incidence rate ratio 0.159; 95% CI 0.13–0.19). The data
provide evidence that antibodies are protective against reinfection, although the in-
vestigators did not correlate specific antibody thresholds with protection.57

The outbreak that occurred on a fishery boat departing from Seattle was essential in
determining that nAb were protective against SARS-CoV-2. One hundred three out of
117 individuals were seronegative before departure and were subsequently infected.
Three members of the crew were seropositive with high nAb (1:174, 1:161, and 1:3082)
before departure and did not develop infection as evidenced by negative SARS-CoV-2
PCR from nasopharyngeal swabs and lack of clinical symptoms.58 Thus, high nAb
were associated with protection, but no exact threshold could be determined from
this observational study.

Challenge Studies

Human challenge studies involve the direct and controlled infection of healthy human
volunteers and have been used to investigate novel vaccine candidates. Unlike RCTs
or large population-based studies, controlled human challenge studies are faster and
require fewer participants to measure efficacy and immune responses. These designs
have been used to study other respiratory viral pathogens like influenza59 and HCoV-
229E and have been proposed to evaluate SARS-CoV-2.60,61 Challenge models are
attractive designs to determine immuneCoP, because the exact timing of natural infec-
tionand/or immunizationanddosecanbe tightly controlled, allowing for high-resolution
assessment of correlations between immune markers and efficacy endpoints.
COVID-19 human challenge studies have begun in the United Kingdom.62 The trials

are currently ongoing; no data have been released yet regarding early findings. Later
stages may offer insight to discerning CoP.

Randomized Controlled Trials

RCTs are well suited to define CoP, because clear clinical endpoints are established
and measures of both vaccine efficacy and immune markers are documented at
defined intervals. Using the threshold method and other statistical calculations, the
vaccine efficacy can be correlated with an immune marker level to determine a
CoP. Current evaluation of the phase 3 data is ongoing to determine a CoP, which
may vary for different vaccine constructs.

OTHER CONSIDERATIONS RELATING TO CORRELATES OF PROTECTION

Based on correlates of protection for other infectious diseases, other important factors
must be considered when defining immunologic markers of protection after COVID-19
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vaccination. This section reviews some of these considerations, such as host factors,
the vaccine platform and target antigen, and other important immunologic aspects of
the immune response to vaccination.

Host Factors

Host factors, such as age, chronic medical conditions, and the use of immunosup-
pressive therapies, have been shown to impact the antibody responses to COVID-
19 vaccines. These factors may also impact definitions of COVID-19 postvaccination
correlates or surrogates of protection.
Age is an important factor influencing humoral vaccine responses. Most of the

COVID-19 vaccine phase 1/2 trials showed that the magnitude of the vaccine-
induced antibody responses in older individuals is generally lower than the antibody
magnitude produced by younger individuals. For example, mRNA vaccines were
shown to produce lower titers of bAb and lower or similar titers of nAb in participants
older than 55 to 65 years of age.5,9 The same tendency was shown with vector vac-
cines, except for AZD1222, which showed similar bAb and nAb titers in all age
groups.4,8,10 BBIP-CorV, an inactivated vaccine, led to lower nAb production in those
aged 60 and older.63

The components of the immune response postvaccination that best correlate with
protection may differ quantitively and qualitatively because of immunosenescence.64

For example, in adults up to 50 years old, serum influenza hemagglutination inhibition
levels of about 1:40 correlate well with protection.24 However, higher postvaccination
titers �1:40 are common among older individuals who develop influenza, suggesting
that this threshold is not protective for older individuals.65 In older individuals, T-cell
responses may be a better correlate of vaccine protection against influenza.66

The effect of age on COVID-19 vaccine immune correlates is currently unknown.
The correlation of bAb and nAb titers after Ad26.CoV2.S was stronger in younger in-
dividuals than in those 65 years and older.4 This suggests a variation in the immune
response phenotype in older individuals, which could influence the definition of im-
mune correlates in this population.
Data are emerging regarding other host factors that are associated with lower hu-

moral responses to COVID-19 vaccines, such as chronic comorbidities and immuno-
compromised states. For example, patients undergoing maintenance hemodialysis
showed significant lower bAb than controls after 2 doses of BNT162b2.67 Individuals
with chronic inflammatory disease treated with immunosuppressive therapies, in
particular those receiving B-cell depletion therapy of corticosteroids, exhibit signifi-
cantly lower bAb and nAb titers after mRNA vaccines.68 Solid organ transplant recip-
ients were shown to have poor humoral responses after mRNA vaccines,69,70 with
older individuals and those receiving antimetabolite therapy having some of the poor-
est humoral responses.
Immunocompromised individuals have a significantly reduced humoral response to

COVID-19 vaccines. CoP in this population may be different than in the general pop-
ulation. For example, patients treated with B-cell depletion therapy (anti-CD20) are
usually unable to mount strong humoral immune responses to COVID-19 vaccines
or SARS-CoV-2 infection.71,72 However, infected individuals on such therapy still
have the ability to clear the virus, which suggest that the cellular immune response
or other arms of the immune system may have an important role.
Socioeconomic status, usually closely related to other factors, such as nutritional

status, risk, and frequency of exposure, has been shown to impact immune correlates
for other diseases. For example, the antibody titers associated with protection against
pneumococcal infection has been shown to be higher among infants who live in low-
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resource settings.29,73 The impact of socioeconomic status of environmental factors
on correlates of protection from SARS-CoV-2 vaccination is unknown. However,
because lower socioeconomic status has been already recognized as a risk factor
for disease incidence and mortality,74,75 it may be an important factor to consider
as well when defining immune correlates after vaccination.

Vaccine Platform and Vaccine Antigens

Vaccines using different technological platforms and antigen targets may induce
different qualitative and quantitative antibodies, which is another important factor to
consider when establishing immune correlates for COVID-19 vaccines. This concept
has been well described with other vaccines, such as those against H influenzae
type b (polysaccharide vs conjugated vaccine) and Bordetella pertussis (whole cell
vs acellular vaccine),76,77 where different platforms were shown to yield different im-
mune repertoire. COVID-19 vaccines use different technologies (mRNA, vector, sub-
unit, inactivated) and different antigen targets (full spike, prefusion stabilized spike
protein, RBD, inactivated virus), which may lead to different immune response quality
and repertoire. Inactivated vaccines have the unique characteristic of presenting the
whole virus to the immune system, which leads to the production of antibodies other
than anti-spike, such as antinucleocapsid.15 Even if the main target of nAb against
SARS-CoV-2 appears to be the spike protein,78 the antibody repertoire and diversity
produced by inactivated vaccines may have immunologic significance against SARS-
CoV-2 and the circulating variants that possess critical spike protein mutations.79,80

Immunologic Factors

The immune mechanisms leading to protection are complex and usually involve a
combination of both humoral and cellular responses.81 The impact of the relative
importance of these 2 branches of the adaptive immune system for protection against
SARS-CoV-2 is still unknown. Many studies have shown that antibodies are associ-
ated with protection against reinfection,56 but few have evaluated the implication of
cellular immune response on reinfection. COVID-19 vaccines have been shown to
induce strong humoral immunity, but T-cell responses were also elicited after vaccina-
tion.4,5 In a nonhumate primate study using an adenovirus-based vaccine (Ad26-
S.PP), T-cell responses did not seem to correlate with protection.51 It is still unknown
if the cellular response contributes to protection in humans; however, there are clues
that cellular responses are important. For example, the clinical protection from
BNT162 against COVID-19 may start as soon as 12 days after the first dose.82 How-
ever, nAb titers within the first 21 days after vaccination are low or undetectable.9 Re-
searchers showed that 3 weeks after the first BNT162b2 dose, nAb were not detected,
but strong responses of RBD and spike antibodies with Fc-mediated effector func-
tions and cellular responses largely by CD41 T-cell responses were seen.83

Mucosal immunity is another possible key component of COVID-19 protection, as
SARS-CoV-2 initially infects the respiratory mucosal surfaces.84 However, the
mucosal immunity that results from COVID-19 natural infection and vaccination and
its implication in defining COVID-19 correlates of protection remain largely unknown.

SUMMARY

The vaccine-induced CoP for SARS-CoV-2 has yet to be defined. When establishing a
CoP, it will be essential not only to identify the appropriate immune marker but also to
properly define the endpoint measure (eg, clinical disease, especially severe illness;
transmission, SARS-CoV-2 PCR positivity) and understand the nuances of CoP in



Correlate of Protection 123
terms of host and antigen characteristics. Furthermore, standardized assays for the
chosen immune marker or markers must be established in order to ensure compara-
bility between disparate vaccine platforms and conditions of use. Ideally, these assays
should be a test that is relatively easy to perform and does not require specialized
equipment or reagents to promote easy scalability across the globe. Much of the focus
has been to determine a humoral CoP, in part because of the ease of collection and
evaluation, although cellular responses are also likely to be important.
As new public health challenges relating to COVID-19 emerge, such as variant

strains, waning vaccine efficacy over time, and decreased vaccine efficacy for special
populations (such as immunocompromised hosts), it is important to determine a CoP
to allow accurate bridging studies for special populations and against variants of
concern. In the context of a global pandemic with dynamic threats to public health,
large-scale phase 3 clinical trials are inefficient to rapidly assess novel vaccine candi-
dates for variant strains or for special populations, because these trials are slow and
costly. Defining a practical CoP will aid in efficiently conducting future assessments to
further describe protection for individuals and on a population level for surveillance.

CLINICS CARE POINTS
� The clinical utility of a correlate or surrogate of vaccine-induced immunity would be useful to
assess individual and population-level protection, and allow for new vaccine candidates to
be tested without costly and large efficacy trials.

� Further standardization of laboratory SARS-CoV-2 serologic tests are an equally important
step to be able to use a correlate of protection in clinical practice.

� Clinicians and laboratorians must acknowledge that different vaccine platforms, circulating
variants, and host factors may impact the correlate of the protection, and that a single
marker of immunity may not be able specifically predict protection for all scenarios.
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