
2682 | CANCER DISCOVERY NOVEMBER  2021	 AACRJournals.org

Redox Regulation in Cancer Cells during 
Metastasis 
Alpaslan Tasdogan1, Jessalyn M. Ubellacker1, and Sean J. Morrison1,2

Mini review

1Children’s Research Institute and Department of Pediatrics, The University of 
Texas Southwestern Medical Center, Dallas, Texas. 2Howard Hughes Medical 
Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.
A. Tasdogan and J.M. Ubellacker contributed equally to this article.
Corresponding Author: Sean J. Morrison, Children’s Research Institute, 
The University of Texas Southwestern Medical Center, 6000 Harry Hines 
Boulevard, Dallas, TX 75235. Phone: 214-648-2352; E-mail: Sean.Morrison@
UTSouthwestern.edu
Cancer Discov 2021;11:2682–92
doi: 10.1158/2159-8290.CD-21-0558
This open access article is distributed under the Creative Commons Attribution 
License 4.0 International (CC BY).
©2021 The Authors; Published by the American Association for Cancer Research

abstract Metastasis is an inefficient process in which the vast majority of cancer cells are 
fated to die, partly because they experience oxidative stress. Metastasizing cancer 

cells migrate through diverse environments that differ dramatically from their tumor of origin, leading 
to redox imbalances. The rare metastasizing cells that survive undergo reversible metabolic changes 
that confer oxidative stress resistance. We review the changes in redox regulation that cancer cells 
undergo during metastasis. By better understanding these mechanisms, it may be possible to develop 
pro-oxidant therapies that block disease progression by exacerbating oxidative stress in cancer cells.

Significance: Oxidative stress often limits cancer cell survival during metastasis, raising the possibility 
of inhibiting cancer progression with pro-oxidant therapies. This is the opposite strategy of treating 
patients with antioxidants, an approach that worsened outcomes in large clinical trials.

INTRODUCTION
Metastasis is the leading cause of death in patients with 

cancer because disseminated disease is no longer curable by 
surgery and is often therapy-resistant (1). Metastasis requires 
cancer cells to delaminate from their tumor of origin, invade 
the surrounding tissue, then migrate through tissue, blood, 
and/or lymph to new sites, all while surviving diverse and 
changing environments (2). Very few cancer cells survive this 
process, and many that do are unable to proliferate or persist 
in metastatic sites (3–6).

Cancer cells must be plastic to survive metastasis (7, 8). 
Genetic heterogeneity increases with disease progression (9), 
contributing to therapy resistance (10). Whole-genome dupli-
cations, chromosomal rearrangements, and chromosomal 
instability contribute to the increase in genetic heterogeneity 
(9, 11, 12). The genetic changes do not appear to confer meta-
static competence, but rather arise by chance within primary 
tumors and are positively or negatively selected during metas-
tasis (8, 11, 13). For example, copy-number changes in MYC 

(14) or MAPK pathway components (15) can enhance survival 
during metastasis. Recurrent coding sequence mutations have 
generally not been observed to arise during metastasis (11, 
15–17), suggesting that there are not specific metastasis sup-
pressor mutations. Rather, cancer cells undergo epigenetic 
(18, 19), transcriptional (7, 20–22), and metabolic (23–25) 
changes during metastasis. These reversible sources of hetero-
geneity conspire with genetic heterogeneity to confer fitness 
upon rare cells to survive and grow in metastatic sites.

Multiple factors contribute to the death of cancer cells dur-
ing metastasis, including immune-mediated destruction (26, 
27), growth factor deprivation (28), and diverse metabolic 
stresses (29). Redox stress is one important metabolic stress 
that limits the survival of cancer cells (24, 30). We review 
the role of redox regulation in metastasis and the metabolic 
adaptations that confer oxidative stress resistance.

METASTASIZING CELLS EXPERIENCE 
OXIDATIVE STRESS

Cancer cells experience oxidative stress during certain criti-
cal phases of their evolution and progression. The mecha-
nisms that cause cancer cells to experience oxidative stress 
are poorly understood but likely include hyperactivation of 
anabolic pathways (31, 32), increased mitochondrial function 
(33), malfunction of the electron transport chain as a result 
of mitochondrial DNA mutations (34, 35), and oncogenic 
pathway activation (36–38). As a consequence, cancer cells 
are often more dependent than normal cells upon cellular 
antioxidants including glutathione (39, 40), thioredoxin (39), 
antioxidant enzymes (e.g., glutathione peroxidase, ref. 41; 
catalase, ref. 42; and superoxide dismutase, refs. 43, 44), and 
their transcriptional regulators, such as Nrf2 (45, 46) and 
BACH1 (ref. 47; Fig. 1A). Glutathione is an abundant redox 
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buffer that is present mainly in the reduced form within cells. 
It opposes the development of oxidative stress by neutralizing 
(reducing) reactive oxygen species (ROS) including oxygen 
free radicals, peroxides, and lipid peroxides, as well as by 
glutathionylating thiol groups on proteins to protect them 
from oxidation (Fig. 1B). Glutathione can be regenerated 
from its oxidized form, glutathione disulfide, by glutathione 
reductase, using a reducing equivalent from NADPH. Con-
sequently, metabolic pathways that generate NADPH from 
NADP+ are important sources of reducing equivalents for 
oxidative stress resistance (ref. 48; Fig. 1A).

Cancer cells that survive the oxidative stress they experi-
ence during transformation (39) are able to bring oxidative 

stress under control, allowing the activation of anabolic 
pathways to drive tumor growth (31). However, when cells 
in primary tumors detach from extracellular matrix during 
invasion, they experience changes in signaling pathway acti-
vation and metabolism that again increase oxidative stress 
(49–51). There is evidence that cancer cells either proliferate 
or invade surrounding tissues but generally do not do both 
at the same time (52, 53), raising the possibility that invasion 
requires cells to downregulate anabolic pathways.

Oxidative stress likely increases further when metastasiz-
ing cancer cells enter the blood (24, 54–57), which has among 
the highest levels of oxidants in the body, including oxygen 
and iron. Oxidative stress limits the survival of cancer cells 

Figure 1.  Metabolic pathways that generate NADPH are important sources of reducing equivalents for oxidative stress resistance. A, Glutathione 
(GSH) and thioredoxin (TRXred) are redox buffers that are used by antioxidant enzymes such as superoxide dismutase (SOD), peroxiredoxin (PRDX), and 
glutathione peroxidase 4 (GPX4) to neutralize ROS, including O2

−, H2O2, and lipid ROS. The reduced forms of GSH and TRX can then be regenerated from 
the oxidized forms [glutathione disulfide (GSSG); TRXox] by glutathione reductase (GR) or thioredoxin reductase (TRXR), which obtain reducing equiva-
lents from NADPH. NADP+ is generated de novo from NAD+ by NAD kinase (NADK; ref. 167). NADP+ is then reduced to NADPH by the pentose phosphate 
pathway, the folate pathway, malic enzyme (ME1, 2, or 3), glutamate dehydrogenase (GDH1/2), or isocitrate dehydrogenase (IDH1/2; ref. 86). Other 
abbreviations in this panel include electron transport chain (ETC), glucose-6-phosphate dehydrogenase (G6PD), phosphogluconate dehydrogenase (PGD), 
dihydrofolate reductase (DHFR), methylenetetrahydrofolate dehydrogenase 1/2 (MTHFD1/2), NADPH oxidase (NOX), superoxide dismutase (SOD), and 
catalase (CAT). B, Schematic of reactions in which antioxidant enzymes transfer reducing equivalents between NADPH, GSH, and ROS.
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during metastasis (24). Treatment of mice with antioxidants 
increases the frequency of circulating cancer cells in the 
blood and metastatic disease burden (24, 30, 47, 58, 59). This 
has been observed in multiple cancers, in patient-derived 
xenografts growing in immunocompromised mice as well 
as in mouse cancers growing in syngeneic immunocompe-
tent mice. Consistent with this, cancer cells undergo meta-
bolic changes during invasion and metastasis that would be 
expected to reduce the generation of ROS (60–65).

Nascent metastatic nodules continue to exhibit signs of 
oxidative stress, including increased ROS levels and low ratios 
of glutathione to oxidized glutathione and NADPH to NADP+ 
(24), although the degree of oxidative stress differs among 
sites of metastasis (66). Oxidative stress is likely to slow 
the ability of metastatic cells, at least in some sites, to fully 
reactivate the anabolic pathways required for tumor growth, 
even after they have extravasated from the blood. For exam-
ple, lipogenesis requires reducing equivalents from NADPH; 
inhibiting acetyl-CoA carboxylase decreases NADPH con-
sumption by fatty acid synthesis and preserves NADPH for 
other cellular processes (67). Cancer cells shut down anabolic 
pathways during metastasis to conserve reducing equivalents 
to manage oxidative stress. Indeed, it is conceivable that dor-
mancy in metastatic cells is sometimes caused by a prolonged 
failure to fully bring oxidative stress under control, leading to 
prolonged quiescence. Nonetheless, once metastatic tumors 
have grown beyond a few millimeters in diameter, cancer cells 
likely have undergone the adaptations needed to control oxi-
dative stress, allowing broad activation of anabolic pathways.

Dietary supplementation with antioxidants has been pro-
posed to provide health benefits, including suppressing the 
development of cancer by reducing ROS levels (68). Con-
sequently, many clinical trials have been performed to test 
whether dietary supplementation with antioxidants can sup-
press the development of cancer. However, dietary antioxidants 
have consistently failed to reduce cancer incidence or cancer-
related deaths in human clinical trials (69). Consistent with the 
data from experimental models, dietary supplementation with 
antioxidants in humans tended to increase cancer incidence 
and cancer-related deaths (70–73). The data thus suggest that 
antioxidants generally promote the development and progres-
sion of cancer in both animal models and in humans.

Although oxidative stress commonly limits the survival of 
cancer cells during transformation and metastasis, ROS also 
promotes cancer progression in certain contexts (74). ROS 
can cause DNA damage, contributing to the formation of 
oncogenic mutations, and can serve as progrowth signaling 
molecules (33). Genetic changes that increase the genera-
tion of ROS can promote cancer progression, and treatment 
with antioxidants has sometimes been observed to inhibit 
metastasis (75–79). For example, inhibition of TIGAR, an 
enzyme that promotes the entry of glucose into the pentose 
phosphate pathway, increases ROS levels in pancreatic ductal 
adenocarcinoma, leading to increased migration, invasion, 
and metastasis (80). One possibility is that modest increases 
in ROS levels can promote the activation of signaling path-
ways that are adaptive for cancer cells (33), particularly in 
early-stage cancers, while the higher ROS levels observed in 
metastasizing cancer cells are toxic. Another possibility is that 
different types of ROS have different effects on cancer cells. 

For example, hydrogen peroxide created by mitochondrial 
ROS might promote metastasis (81), whereas lipid peroxides 
created by membrane lipid oxidation might undermine sur-
vival during metastasis (55).

There may also be differences among cancers or model 
systems, in which oxidative stress limits disease progression 
in certain cancers while promoting disease progression in 
others. It is conceivable that mouse models of cancer tend 
to have lower ROS levels than human cancers due to lower 
mutation burdens. Cancer cell lines may have been selected 
for the capacity to withstand oxidative stress as a result of 
being propagated in culture. These will be important pos-
sibilities to consider as the field dissects the role of ROS and 
oxidative stress in cancer progression.

MECHANISMS OF OXIDATIVE STRESS 
RESISTANCE DURING METASTASIS

There are heritable, stable, and cell-intrinsic differences 
among cancers in their metastatic potential based on meta-
bolic and transcriptional differences, including those that 
confer oxidative stress resistance (54, 82, 83). There is also 
heterogeneity among cancer cells within the same tumor 
that influences metastatic potential (54, 84, 85). For example, 
melanoma cells within hypoxic regions of primary tumors 
express higher levels of the lactate transporter MCT1, and 
higher levels of MCT1 confer oxidative stress resistance that 
increases survival in the blood (54). MCT1 seems to pro-
mote oxidative stress resistance by increasing lactate uptake, 
which decreases intracellular pH and the NAD+/NADH ratio. 
This promotes pentose phosphate pathway function, a major 
source of NADPH for oxidative stress resistance (86). Con-
sistent with this, hypoxic cells within primary tumors exhibit 
transcriptional changes that appear to confer an oxidative 
stress–resistant phenotype that promotes the survival of 
metastasizing cells in the blood, increasing their potential 
to form metastatic tumors (87). Increased MCT1 expression 
may be one element of this phenotype.

De novo serine synthesis (88) and serine degradation (89) 
both yield NADPH and are used by cancer cells to man-
age oxidative stress, particularly during hypoxia. Although 
cancer cells that metastasize through the blood would not 
be expected to be hypoxic, these pathways nonetheless pro-
mote metastasis, potentially by acting in cancer cells within 
hypoxic environments (e.g., in lymph or after extravasation 
into metastatic sites). Inhibition of either phosphoglycerate 
dehydrogenase, an enzyme involved in serine synthesis, or ser-
ine hydroxymethyltransferase, an enzyme involved in serine 
degradation, increases ROS levels and reduces the formation 
of metastatic tumors (88, 89). Serine biosynthesis also pref-
erentially promotes the growth of metastatic tumors as com-
pared with primary tumors by promoting mTORC1 signaling 
(90). It is not clear whether the change in mTORC1 signaling 
contributes to the change in ROS levels. ROS also induces 
the expression of β-globin, the oxygen-binding protein best 
known for its function in erythrocytes, in circulating breast 
cancer cells (57). This appears to protect the cancer cells from 
oxidative stress, perhaps by scavenging ROS.

There is genetic evidence that some cancers, including 
melanoma and lung cancer, give rise to polyclonal metastases 
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(91, 92). There are likely multiple cellular mechanisms that 
contribute to the formation of polyclonal metastases, includ-
ing metastasis-to-metastasis spread (93). Another mechanism 
that may contribute to polyclonal metastasis is that some 
circulating cancer cells move through the blood in clusters. 
Clustering can occur among cancer cells or between cancer 
cells and neutrophils. In both cases it increases cancer cell 
survival and their ability to form metastatic tumors as com-
pared with single circulating cancer cells (94–96). Clustering 
may promote the survival of cancer cells in the blood partly 
by reducing their exposure to oxygen, reducing the produc-
tion of mitochondrial ROS (97). E-cadherin expression by 
metastasizing cells also promotes survival by limiting oxida-
tive stress (98). It is tempting to speculate that E-cadherin 
acts by promoting cell–cell interaction, although E-cadherin 
deletion does not reduce the fraction of cancer cells that are 
present in cell clusters.

Oxidative stress kills metastasizing cancer cells by inducing 
ferroptosis (55, 56), a form of cell death marked by lipid oxi-
dation (Fig. 2A; ref. 99). During ferroptosis, polyunsaturated 
fatty acids (PUFA) in membrane phospholipids are oxidized 
by redox-active iron. The resulting lipid peroxides can be 
scavenged by dietary antioxidants such as vitamin E or by cer-
tain cellular antioxidant defenses, such as GPX4 (100–102); 
however, accumulation of the lipid peroxides can overwhelm 
the cellular antioxidant defenses, leading to the induction of 
ferroptosis. At least in melanoma, ferroptosis does not appear 
to limit the growth of primary cutaneous tumors, in which 
little oxidative stress is evident, but does limit the survival of 
metastasizing cells (55). Circulating melanoma cells attempt 
to manage lipid oxidation by increasing the transcription 
of transferrin, which reduces intracellular iron levels and 
lipid peroxidation (56), and by increasing the incorporation 
of monounsaturated fatty acids (MUFA) into membrane 
lipids to displace PUFAs (55). Ferroptosis sensitivity marks 
a therapy-resistant cell state that is observed across several 
cancers, including melanoma, and that involves the increased 
synthesis of PUFAs (103), including polyunsaturated ether 
phospholipids (104). This raises the possibility that many 
cancers may become more sensitive to ferroptosis during 
metastasis and that disease progression could be inhibited by 
interventions that increase lipid peroxidation (85, 103–105).

The susceptibility of metastasizing cancer cells to ferrop-
tosis appears to be influenced by both cell-autonomous lipid 
metabolism and by lipids taken up from the environment. 
Fatty acid transporters, including CD36, tend to be more 
highly expressed by cancer cells as compared with normal cells 
and promote metastasis or poor prognosis in multiple can-
cers (106, 107). Stearoyl-CoA desaturase (SCD1) is involved 
in the conversion of saturated to MUFAs in melanoma cells. 
Melanomas that are high for the Microphthalmia-associated 
transcription factor (MITF), which promotes aggressive pro-
liferation but suppresses invasion (108), are dependent upon 
SCD1, perhaps to sustain membrane lipid biosynthesis (85, 
109, 110). In contrast, melanomas that are low for MITF and 
less proliferative but more invasive are less dependent upon 
SCD1 (85). One possibility is that these MITFlo melanomas 
become more dependent upon MUFAs taken up from their 
environment during metastasis (55) because there is less 
SCD1-mediated production of MUFAs cell-intrinsically.

The literature on the effects of a high-fat diet on cancer 
is mixed (111). Some studies found that high-fat diets (112, 
113) or dietary supplementation with palmitic acid, a satu-
rated fatty acid (106), can promote metastasis. Other studies 
found that ketogenic high-fat diets can reduce metastatic 
disease burden, partly by increasing oxidative stress in cancer 
cells (114, 115). One possibility is that variability in outcomes 
among studies reflects differences in the PUFA or MUFA 
content of the diets that were administered. Many factors 
likely contribute to these differences in outcomes, including 
differences among high-fat diets in fatty acid, protein, and 
carbohydrate composition. In addition to the effects of fatty 
acids on redox homeostasis, fatty acids also play critical roles 
in membrane biosynthesis and energy metabolism that have 
effects on cancer progression independent of the effects on 
redox status (85, 116, 117).

METASTASIS THROUGH LYMPHATICS
Many cancers, including epithelial cancers and melano-

mas, form metastases in draining lymph nodes prior to 
forming metastases at distant sites (118–121). Genetic stud-
ies in human and mouse cancers have shown that regional 
lymph node metastases can give rise to distant metastases 
(91–93, 122). In mouse models, cancer cells in lymph nodes 
are capable of metastasizing to distant sites through the 
blood (123–125). However, some distant metastases arise 
from clones that differ from those in lymph nodes. In these 
instances, it is possible the metastatic cells entered the blood 
directly from primary tumors, or transited through lymphat-
ics without forming lymph node tumors (92, 122). Obviously, 
it is also possible that they formed lymph node tumors that 
were neither detected nor sampled for analysis.

Lymphatics promote the migration and survival of cancer 
cells. Some cancers form more tumors after intralymphatic 
injection as compared with intravenous injection (55, 126). 
VEGFC and various chemokines promote the migration of 
cancer cells into lymphatic vessels, facilitating metastatic 
spread (127–131). When VEGFC is overexpressed in mouse 
lungs, it increases lymphatic vessel density, increasing the 
spread of cancer cells from the lung to other organs (131). 
The capacity to oxidize fatty acids promotes the survival of 
cancer cells in lymphatics (132) and their formation of meta-
static tumors (106). Consistent with this, fatty acid oxidation 
promotes oxidative stress resistance and metastatic potential 
in colorectal cancer cells (133).

Melanoma cells that metastasize through lymph are meta-
bolically different from cells that metastasize through blood 
(55). Melanoma cells in lymph experience less oxidative stress 
and form more metastases than melanoma cells in the blood 
(55). One of the ways in which lymph protects from ferrop-
tosis is by having high levels of the MUFA oleic acid, which 
protects cells from lipid oxidation by reducing the abun-
dance of PUFAs in membranes. PUFAs, but not MUFAs, are 
oxidized during ferroptosis due to the bis-allylic hydrogens 
they contain (Fig. 2B and C; ref. 99). Compared with the 
blood, lymph also contains lower concentrations of oxygen 
and iron, oxidants that contribute to ferroptosis (55). These 
observations suggest that melanoma cells tend to metastasize 
initially through lymphatics because lymph protects them 
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Figure 2.  The regulation of ferroptosis. A, Lipid ROS, including lipid peroxides, arise as a result of the oxidation of polyunsaturated fatty acids (PUFA), 
driven by Fenton reactions in which redox active iron generates hydroxyl radicals (•OH). These PUFAs are present in membrane phospholipids (PL). Cells 
have multiple antioxidant defenses that oppose the accumulation of lipid ROS including the selenocystine (Se) enzyme, glutathione peroxidase 4 (GPX4), 
and the reducing agents squalene (100), tetrahydrobiopterin (BH4; ref. 105), and ubiquinol/α-tocopheral. Abbreviations include transferrin receptor 
protein 1 (TFR1), acyl-CoA synthetase long-chain family member 4 (ACSL4), lysophosphatidylcholine acyltransferase 3 (LPCAT3), lysyl oxidase (LOX), 
six-transmembrane epithelial antigen of prostate 3 (STEAP3), divalent metal transporter 1 (DMT1), ferroptosis suppressor protein 1 (FSP1; refs. 168, 
169), dihydrofolate reductase (DHFR), 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), TRNA Isopentenyltransferase 1 (TRIT1), glutathione (GSH), 
glutathione disulfide (GSSG), farnesyl-diphosphate farnesyltransferase 1 (FDFT1). B, Schematic of reactions in which iron generates hydroxyl radicals 
(•OH) that react with bis-allylic hydrogens in PUFAs to generate lipid ROS (99). C, Generation of stable lipid alcohols from lipid ROS by GPX4.
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from oxidative stress. Moreover, while in lymph, cancer cells 
increase MUFA incorporation into phospholipids, reducing 
their susceptibility to ferroptosis when they subsequently 
enter the blood.

MITOCHONDRIAL FUNCTION AS A 
DETERMINANT OF METASTASIS

Mitochondrial function has been studied only to a lim-
ited extent in cancer cells during metastasis, leaving many 
questions unanswered. One of the key impediments is that 
circulating cancer cells are rare, making it difficult to obtain 
enough cells for many assays. Nonetheless, mitochondria 
are a major source of ROS in cells and there is increasing 
evidence that mitochondrial function reduces the survival 
of metastasizing cancer cells, at least partly by increasing 
ROS levels (134). Mitochondrial mass and mitochondrial 
membrane potential decline in circulating melanoma cells in 
the blood as compared with the primary tumors from which 
they arise (24). One possibility is that these changes reflect 
decreased mitochondrial function in an effort to manage the 
production of mitochondrial ROS. However, flow cytometric 
measurements of mitochondrial membrane potential do not 
always correlate with mitochondrial or electron chain func-
tion (135). Lung cancer cell lines with metastatic potential 
have lower mitochondrial membrane potential and reduced 
mitochondrial function as compared with nonmetastatic 
lung cancer cell lines (136). PGC1α, a transcription factor 
that promotes mitochondrial biogenesis, seems to promote 
invasion and metastasis in some contexts (76) while inhibit-
ing metastasis in others, including in melanoma (84, 137). 
Melanoma cells in primary tumors are heterogeneous for 
PGC1α expression, with PGC1αlo cells exhibiting increased 
metastatic potential, again consistent with the idea that 
reduced mitochondrial function promotes metastasis (84). 
However, there are many mechanisms downstream of PGC1α 
that appear to contribute to its effects on metastasis, includ-
ing mechanisms independent of mitochondrial function (76, 
84, 137). Additional studies of mitochondrial function dur-
ing metastasis are required.

Metabolic pathways associated with mitochondrial func-
tion influence metastatic potential. For example, increased 
asparagine availability, either from the diet or from biosyn-
thesis, promotes metastasis (138). Asparagine is synthesized 
from aspartate, and aspartate synthesis depends on electron 
transport chain function (139–141). This raises the possibil-
ity that asparagine is limiting in metastasizing cancer cells 
because mitochondrial function is limited in an effort to 
manage oxidative stress (136).

PRO-OXIDANT THERAPIES
The studies above suggest that cancer progression might be 

inhibited with pro-oxidant therapies that exacerbate oxida-
tive stress in cancer cells or block the metabolic adaptations 
that confer oxidative stress resistance (ref. 142; Fig. 3). The 
anticancer activity of radiation reflects, in part, the forma-
tion of hydroxyl radicals that attack DNA (143). Widely used 
chemotherapies, including procarbazine, paclitaxel, daunoru-
bicin, and doxorubicin, kill cancer cells partly by promoting 

oxidative stress (144–146). Many small-molecule drugs with 
direct or indirect pro-oxidant effects have been tested in clini-
cal trials for a wide range of cancers (147), and new strategies 
for developing prooxidant small molecules are being explored 
(148, 149). For example, Imexon is a small molecule that 
binds to thiols, depleting glutathione and increasing ROS 
levels, which has been tested for activity against non-Hodgkin 
lymphoma (150). Arsenic trioxide is used for the treatment of 
acute promyelocytic leukemia and may act partly by impair-
ing electron transport chain function, leading to electron 
leakage and the generation of superoxide (151). These ROS-
generating agents might damage mitochondrial DNA, which 
is more vulnerable to ROS than nuclear DNA (152), further 
increasing the generation of ROS as a result of defects in 
electron transport chain function (153). While a number of 
effective anticancer therapies have pro-oxidant effects, it is 
uncertain to what extent their anticancer activities reflect 
these pro-oxidant activities as compared with other activities 
independent of ROS.

Ascorbate (vitamin C) is generally considered an antioxi-
dant, but it exists in oxidized and reduced forms and when 
it is infused intravenously it selectively kills cancer cells by 
acting as a pro-oxidant (154). This is because the super-
physiologic levels of ascorbate that can be achieved by intra-
venous infusion lead to the uptake of the fully oxidized form 
of ascorbate, dehydroascorbate, via the GLUT1 transporter, 
which is highly expressed in cancer cells with MAPK pathway 
activation. Once taken up by the cancer cells, dehydroascor-
bate is reduced back to ascorbate, inducing oxidative stress 
by consuming reducing equivalents. Ascorbate also alters 
the activity of epigenetic enzymes, such as TET2, which use 
ascorbate as a cofactor (155, 156). Building on the original 
studies by Linus Pauling that reported prolonged survival 
in patients with cancer administered high-dose intravenous 
ascorbate (157), the recent work demonstrating the pro-
oxidant and epigenetic effects of high-dose ascorbate has led 
to a number of clinical trials testing activity against a wide 
range of cancers (158).

Figure 3.  Potential pro-oxidant therapies. It may be possible to inhibit 
the metastasis or progression of some cancers using pro-oxidant thera-
pies that exacerbate the oxidative stress experienced by cancer cells.
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Dietary interventions could also have pro-oxidant effects. 
Ketogenic diets may suppress metastasis partly by increas-
ing oxidative stress in cancer cells (114). Ketogenic diets are 
designed to minimize dietary carbohydrates, reducing blood 
glucose and insulin levels (159). However, ketogenic diets 
also increase dietary fat, commonly increasing PUFA levels. 
Increased incorporation of PUFAs into membrane phospho-
lipids renders cancer cells more susceptible to the accumu-
lation of lipid ROS and ferroptosis (160). This raises the 
possibility that ketogenic diets may exert anticancer effects 
partly by altering lipid metabolism (161) or by increasing 
PUFA levels in the membranes of cancer cells (162). Nonethe-
less, it remains to be tested whether a high PUFA diet or other 
approaches to promote PUFA incorporation into cancer cells 
could inhibit disease progression.

FUTURE DIRECTIONS
New technical approaches to study metastasis, including 

whole-body imaging of metastasis patterns (163), improved 
techniques for the isolation of circulating cancer cells from 
patients (164), screens to identify gene products that modu-
late metastasis (165, 166), and lineage tracing of bar-coded 
cancer cells to trace routes of metastasis (83), are accelerating 
progress.

In at least some cancers, metastasizing cells appear to 
experience unusually high levels of oxidative stress, raising 
the possibility that these cells might be particularly sensitive 
to pro-oxidant therapies. It is an open question whether such 
therapies could prevent disease progression in patients with 
high-risk primary or regionally metastatic lesions. Nonethe-
less, this merits deeper study in preclinical models. Beyond 
this big-picture question, there are a number of pressing bio-
logical questions central to understanding redox regulation 
during metastasis:

●	 Does oxidative stress limit the survival of metastasizing 
cells from all cancers or only certain cancers?

●	 What causes the oxidative stress experienced by metastasiz-
ing cells?

●	 Are anabolic pathways downregulated in metastasizing 
cells to preserve reducing equivalents? Does this sometimes 
lead to dormancy in metastatic cells?

●	 How is mitochondrial function modulated in metastasiz-
ing cancer cells as compared with the primary tumors from 
which they arise?

●	 Do micrometastases continue to experience oxidative 
stress? For how long?

●	 To what extent do interactions with immune and stromal 
cells influence oxidative stress in cancer cells?

●	 Do differences in oxidative stress among distinct metastat-
ic sites influence organotropism?
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