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Abstract
To determine the effect of oat β‑glucan (OBG) on acute glucose and insulin responses and identify significant effect
modifiers we searched the MEDLINE, EMBASE, and Cochrane databases through October 27, 2020 for acute, crossover,
controlled feeding trials investigating the effect of adding OBG (concentrate or oat-bran) to carbohydrate-containing test-
meals compared to comparable or different carbohydrate-matched control-meals in humans regardless of health status. The
primary outcome was glucose incremental area-under-the-curve (iAUC). Secondary outcomes were insulin iAUC, and
glucose and insulin incremental peak-rise (iPeak). Two reviewers extracted the data and assessed risk-of-bias and certainty-
of-evidence (GRADE). Data were pooled using generic inverse-variance with random-effects model and expressed as ratio-
of-means with [95% CIs]. We included 103 trial comparisons (N= 538). OBG reduced glucose iAUC and iPeak by 23%
(0.77 [0.74, 0.81]) and 28% (0.72 [0.64, 0.76]) and insulin by 22% (0.78 [0.72, 0.85]) and 24% (0.76 [0.65, 0.88]),
respectively. Dose, molecular-weight, and comparator were significant effect modifiers of glucose iAUC and iPeak.
Significant linear dose-response relationships were observed for all outcomes. OBG molecular-weight >300 kg/mol
significantly reduced glucose iAUC and iPeak, whereas molecular-weight <300 kg/mol did not. Reductions in glucose iAUC
(27 vs 20%, p= 0.03) and iPeak (39 vs 25%, p < 0.01) were significantly larger with different vs comparable control-meals.
Outcomes were similar in participants with and without diabetes. All outcomes had high certainty-of-evidence. In
conclusion, current evidence indicates that adding OBG to carbohydrate-containing meals reduces glycaemic and
insulinaemic responses. However, the magnitude of glucose reduction depends on OBG dose, molecular-weight, and the
comparator.

Introduction

β-glucan, a viscous soluble dietary fibre found naturally in
oats and barley, has a number of potentially beneficial
physiological effects which include reducing both post-
prandial glycaemic responses (PPGR) [1] and serum cho-
lesterol [2–4]. The ability of β-glucan to reduce PPGR was
established by a European Food Safety Authority (EFSA)
Panel review that concluded that 4 g of either oat β-glucan
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(OBG) or barley β-glucan (BBG) per 30 g of available
carbohydrates (avCHO) is required to obtain a consistent
reduction in PPGR [5]. A subsequent review confirmed this
by showing that OBG and BBG significantly reduced PPGR
in all studies that used doses >4 g/30 g avCHO [1]. How-
ever, we found that adding 1.7 g or 2.5 g OBG/30 g avCHO
to instant oats or muffin significantly reduced glucose iAUC
by 16% [6] and 24% [7], respectively. Thus, the amount of
OBG required to obtain a clinically meaningful reduction in
PPGR is not clear. The estimate of 4 g OBG/30 g avCHO is
imprecise because the previous reviews did not address the
confounding effects of β-glucan source and molecular
weight (MW) and their results are not expressed in such a
way that clinical relevance can be assessed.

Both EFSA [5] and Tosh [1] included studies using oats
or barley grains, flakes or flour as sources of β-glucan. This
is a problem because each gram of β-glucan in oats and
barley, respectively, is accompanied by ~13 g and ~11 g
avCHO whose effect on glucose and insulin responses is
influenced to a large extent by cooking and processing [8, 9].
Thus, the inclusion of whole grains, flakes and flour con-
founds the effect of β-glucan in potentially unpredictable
ways. Furthermore, since BBG differs from OBG with
respect to the ratio of β-(1→ 3) to β-(1→ 4) linkages, MW,
solubility and conformation [10], the effects of purified OBG
on PPGR may differ from those of purified BBG. This is
supported by the studies cited by Tosh [1] that used purified
β-glucan or β-glucan concentrates (OBG, n= 41; BBG, n=
10). Although all β-glucan doses >4 g/30 g avCHO (OBG,
n= 18 BBG, n= 1) significantly reduced PPGR, smaller
doses reduced PPGR more often with OBG than BBG, 15 of
23 (65%) vs 2 of 7 (22%, χ2 p= 0.028). Therefore, we
excluded studies using BBG from this analysis.

The MW and dose of OBG have independent effects on
PPGR [7]. EFSA [5] did not consider MW, and by
excluding treatments where the β-glucan MW had been
deliberately reduced to <250,000 g/mol, Tosh [1] was
unable to assess the effect of MW on PPGR.

Tosh [1] found that 4 g β-glucan/30 g avCHO reduced
glucose iAUC by an average of 27 ± 3 mmol×min/L relative
to a variety of different comparators. However, the clinical
relevance of this difference depends on the population
studied and the nature of the comparator. For example,
blood glucose iAUC in 77 subjects without diabetes varied
from ~80 to ~550 mmol × min/L after consuming 50 g
glucose, and ~40 to ~450 mmol × min/L after 50 g avCHO
from white bread [11]. Thus, a 27 mmol × min/L difference
in iAUC is equivalent to reductions varying from 5–34%
relative to glucose or 6–68% relative to white bread.
Assessing the relative differences within trials and con-
sidering the nature of the comparator test-meal may provide
more precise and clinically meaningful estimates of the
effect of OBG on PPGR.

For these reasons, we aimed to synthesize the evidence
from acute, crossover, single-meal, controlled feeding trials
of the effect of OBG on postprandial glucose and insulin
responses in humans regardless of health status, and to
explore whether OBG dose, MW, nature of the comparator,
health status, OBG food form, study methodology quality,
duration of follow-up and risk of bias modified these
effects.

Methods

This systematic review and meta-analysis was conducted
according to the Cochrane Handbook for Systematic
Reviews of Interventions [12]. Data were reported in
accordance with the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) guidelines
[13]. The study protocol was registered on the Open Sci-
ence Forum (OSF) registry [14].

Data sources

MEDLINE, EMBASE, and the Cochrane Central Register
of Controlled Trials were searched through October 27,
2020. Electronic searches were supplemented with manual
searches of references from included studies. The detailed
search strategy is outlined in Supplementary Table 1.

Study selection

We included randomized and non-randomized acute,
crossover, single-meal, controlled feeding trials that inves-
tigated the effects of OBG or oat bran (high in OBG) added
to a carbohydrate-containing meal in humans regardless of
health status on at least one of the following 4 variables:
glucose and insulin incremental area-under-the-curve
(iAUC) and incremental peak-rise (iPeak). To be inclu-
ded, the comparator (control) test-meal had to contain an
equivalent amount of avCHO as the OBG-containing test-
meal; however, the sources of avCHO did not have to be the
same. In some studies, the sources of avCHO in the control
and the OBG test-meals were comparable (matched control;
e.g., OBG-containing spaghetti vs OBG-free spaghetti) and
in some they were different (unmatched control; e.g., OBG-
containing spaghetti vs white bread). We excluded trials of
parallel design, chronic feeding, studies in which partici-
pants were not fasting at baseline, and trials that did not
provide appropriate outcome data, used non-oat sources of
β-glucan (e.g., BBG), and used oats or oat flour as the sole
source of OBG. We excluded non-oat sources of β-glucan
because, as explained above, their structure and effect on
glycaemic responses differs from that of OBG. We exclu-
ded studies using oats or oat flour as the sole source of OBG
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because each gram of OBG in oats or oat flour is accom-
panied by about 13 g avCHO which itself influences glu-
cose and insulin responses in ways which are affected by
cooking and processing [8] and, thus, confounds the effect
of OBG in potentially unpredictable ways.

Data extraction

Two investigators (AZ and JCN) independently reviewed
and extracted relevant data from each included report.
Extracted data included participant characteristics (e.g.,
health status, age, sex, BMI), OBG dose (expressed as g
OBG/30 g avCHO [5]), OBG MW (< 300 kg/mol= low;
300 to <1000 kg/mol=medium; ≥1000 kg/mol= high),
intervention and comparator meal characteristics (nature of
foods [e.g. glucose, bread, muffins, pasta, juice] and mac-
ronutrient composition [total carbohydrate, total fibre,
soluble fibre, available carbohydrate (avCHO), protein,
fat]), study design, duration of follow-up, setting, funding
sources, and outcome data. In the absence of numerical
values for outcome data and the inability to contact study
authors, values were extracted from figures using Plot
Digitizer, version 2.5.1 (Free Software Foundation, Boston,
MA). If outcome data were provided for multiple follow-up
durations (e.g., 120 min and 180 min) in a single study, the
data points for the 120 mins were preferred to minimize
heterogeneity. Similarly, matched control comparisons were
preferred to unmatched control comparisons when avail-
able. The same two investigators also assessed risk of bias
and study methodology quality from each included report.
Risk of bias was evaluated using version 2 of the Cochrane
risk-of-bias (RoB 2) tool, where bias was assessed in five
distinct domains (bias arising from the randomization pro-
cess, bias due to deviations from intended interventions,
bias due to missing outcome data, bias in measurement of
the outcome, and bias in selection of the reported result).
Within each domain, the investigators answered one or
more signalling questions and these answers led to judge-
ments of “low risk of bias”, “some concerns”, or “high risk
of bias” [10, 15]. Study methodology quality was assessed
for each trial comparison based on eleven predetermined
criteria outlined in Supplementary Table 2 which was
adapted from a previous study [11, 16]. This assessment
identified protocol components that have been established
as significant determinants of the accuracy and precision of
PPGR measurements [17–28]. The score was used to inform
the responses to the signalling questions in the “bias in
measurement of the outcome” domain of the RoB 2 tool and
to determine the influence of study methodology quality in
the relationship between OBG and PPGR. One of the cri-
teria (criteria #10) was specific to iAUC methodology and
was excluded for iPeak outcomes. Studies were categorized
as having high methodology quality and a low risk of bias

in measurement of the outcome if they specified the OBG
dose and met ≥7 or ≥6 of the other criteria for iAUC and
iPeak outcomes, respectively. Studies which did not meet
these thresholds were considered to have low methodology
quality and some concerns for risk of bias in the measure-
ment of the outcome. Any discrepancies in data extraction,
risk of bias, and study methodology quality assessments
were reconciled by consensus with a third reviewer
(TMSW).

Outcomes

The primary outcome was glucose iAUC. Secondary out-
comes were insulin iAUC, glucose iPeak and insulin iPeak.

Data synthesis and analysis

The pooled effect estimate for each outcome was expressed
as a ratio of means (RoM) with 95% confidence intervals
(CIs). RoM is a method to present continuous measures on a
ratio scale and is calculated by dividing the mean value in
the intervention group by the mean value in the control
group (Supplementary Fig. 1). This method facilitates
clinical interpretation (e.g., RoM of 1.2 indicates an
increase of 20% in the intervention group compared to the
control group; a RoM of 0.7 indicates a reduction of 30%)
and controls for baseline differences in the comparator
groups across studies [29–31]. Paired analyses were applied
to all comparisons [31, 32]. If multiple comparisons were
available in the same population, we controlled for unit of
analysis error by dividing the N of the respective arm by the
number of times it was included.

STATA Version 16 (StataCorp, TX, USA) was used to
conduct all analyses. Natural log-transformed RoM (ln
[RoM]) and standard error (SE) of the ln[RoM] were pooled
using the generic inverse variance method with DerSimo-
nian and Laird random effects models [33, 34]. Fixed
effects models were only used if fewer than 5 trials were
present for an outcome [35]. Linear dose-response was
modelled using one-stage random effects with restricted
maximum likelihood methods assuming a linear function
[36]. Non-linear dose response was modelled with restricted
cubic splines with three knots. The Wald’s test was used to
examine departure from linearity.

Inter-study heterogeneity was assessed using the
Cochran Q statistic and quantified using the I2 statistic,
where I2 ≥ 50% and PQ < 0.10 were considered evidence of
substantial heterogeneity [12]. Potential sources of het-
erogeneity were investigated by sensitivity analyses and
subgroup analyses. For determination of whether a single
trial comparison exerted undue influence, sensitivity ana-
lyses were performed in which we recalculated the pooled
effect estimates and heterogeneity after removing each
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individual trial. Studies whose removal explained the het-
erogeneity, changed the direction or significance of the
effect, or altered the effect size by 10% or more were
considered influential. We conducted a priori subgroup and
publication bias analyses for all relationships with ≥10 trial
comparisons. A priori and post hoc categorical subgroup
analyses were conducted using meta-regression with a P <
0.05 indicative of a significant difference between sub-
groups. A priori subgroups included health status, OBG
dose, comparator, food form, duration of follow-up, risk of
bias, and study methodology quality. By mistake, MW was
not included in the registered list of subgroups, and, since
this was not discovered until after the initial analysis had
been completed, we cannot prove that examination of the
effect of MW was done a priori; therefore it has to be
considered as a post hoc subgroup analysis. Publication
bias was assessed by visual inspection of funnel plots for
asymmetry and formal testing by the Egger’s and Begg’s
tests [37, 38]. If evidence of publication bias was detected,
Duval and Tweedie nonparametric “trim and fill” analyses
were applied to assess the effect of the imputed “missing”
studies [39].

Grading of the evidence

The overall certainty of the evidence was evaluated using
the GRADE tool where the certainty of the evidence was
graded as high, moderate, low, or very low certainty [40–42].
Randomized controlled trials are graded as high certainty
evidence by default and then downgraded on the basis of
the following pre-specified criteria: risk of bias (weight of
studies shows important risk of bias as assessed by the
RoB2 tool), inconsistency (substantial unexplained inter-
study heterogeneity, I2 ≥ 50% and PQ < 0.10), indirectness
(presence of factors that limit generalizability of the results),
imprecision, and publication bias (significant evidence of
small-study effects). For the purposes of GRADE we con-
sidered the results to be imprecise if the 95% CIs of the
pooled effect estimates were wide or overlapped 0.8
(equivalent to a 20% reduction in glucose iAUC which
Health Canada considered to be the minimum physiologi-
cally relevant difference [43]). Certainty of the evidence
was upgraded if a dose-response was detected.

Results

Search results

We identified a total of 1522 reports, of which 1353 were
excluded based on title and/or abstract review (Supple-
mentary Fig. 2). The remaining 169 articles were reviewed
in full and 135 were excluded. A total of 35 reports

Table 1 Summary of trial characteristics.

Characteristica

Trial comparisons 103

Participants 538

Follow-up duration, minutes 120 (60–240)

Participant characteristics

• Age, years 37 (22–66)

• Male:femaleb (%) 50:50

• BMI, kg/m2 24.9 (20.6–31.1)

Health Status, # of trial comparisons

• Healthy 77

• Type 2 Diabetes 11

• Overweight 9

• Mixed (Health & Overweight) 5

• Metabolic Syndrome 1

Intervention characteristics

• OBG dose, g 4.2 (0.2–11.7)

• OBG dose, g/30 g available carbohydrates 2.8 (0.1–22.6)

• Food source, # of trials

⚬ OBG-enriched/oat bran muffins 23

⚬ OBG/oat bran added to glucose/dextrose 20

⚬ OBG-enriched/oat bran cereal 13

⚬ OBG-enriched/oat bran added to oatmeal
porridge

13

⚬ Oat granola/muesli with oat bran flakes 10

⚬ OBG-enriched bread 8

⚬ OBG-enriched/oat bran snack bar or product 7

⚬ OBG-enriched/oat bran beverage (juice,
shake, drink)

7

⚬ Oat bran pasta 2

• Available carbohydrate, g 50 (13–75)

Comparator characteristics

• Type

⚬ Matched 66

⚬ Unmatched 37

• Food source, # of trial comparisons

⚬ Glucose/dextrose/maltodextrin solution 32

⚬ White bread 21

⚬ Muffin 16

⚬ Wheat porridge or oatmeal without
added OBG

12

⚬ Wheat granola/muesli with cornflakes 7

⚬ Snack bar/product 5

⚬ Cornflakes cereal 4

⚬ Juice/shake/drink 4

⚬ Durum wheat pasta 2

• Available carbohydrate, g 50 (13–75)

Setting, # of trial comparisons

• North America 70

• Europe 25
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[6, 7, 44–76], containing data for 103 trial comparisons
involving 538 participants, met the eligibility criteria and
were included in the final analyses.

Trial characteristics

Table 1 and Supplementary Table 3 show the summary and
individual characteristics of all included trials and trial
comparisons. The median follow-up duration across all
trials was 120 min (range 60–240). All trials were in out-
patient settings with the majority conducted in North
America (68%) and Europe (24%). Trial funding came from
agency sources (42%), industry sources (27%), or both
(9%), with no funding information reported in 22% of the
trials. Participants were males and females (50% male, 50%
female) aged (median (range) of the reported means) 37
(22–66) years with a BMI of 24.9 (20.6–31.1) kg/m². Most
trials were conducted in healthy participants (75%) with
some in individuals with type 2 diabetes (11%), those who
were overweight (9%), both healthy and overweight (5%),
or had metabolic syndrome (1%).

The interventions involved consumption of OBG
added to various foods including muffins (22%), glucose/
dextrose solutions and gels (19%), cereals (13%), por-
ridges (13%), muesli (10%), bread (8%), snack bars or
products (7%), juices/shakes/drinks (7%) and pasta (2%).
Four food form categories were identified: gels, liquids,
semi-solids (hot cereals) and solids (bread, muffins, food
bars and granola). A median (range) of 4.2 (0.2–11.7) g
OBG was added to a median 50 (13–75) g avCHO, for a
median OBG dose per 30 g avCHO of 2.8 (0.1–22.6) g.
The comparators in these trials included glucose/dex-
trose/maltodextrin solutions (31%), white bread (20%),

muffins (16%), porridge or oatmeal (12%), granola or
muesli with cornflakes (7%), snack bars (5%), cornflakes
cereal (4%), juice/shakes/drinks (4%), and pasta (2%)
without added OBG.

Risk of bias

Supplementary Tables 4–7 show individual risk of bias
assessments. Low study methodology quality was identified
in 23%, 41%, 3% and 15% of trial comparisons for iAUC
glucose and insulin and iPeak glucose and insulin, respec-
tively, and were assessed as having some concerns for risk
of bias in the measurement of the outcome. Supplementary
Figs. 3–6 show summary risk of bias assessments. Most
trials included for glucose iAUC and iPeak were assessed as
having low overall risk of bias whereas, 71% of trials for
insulin iAUC either had some concerns or high overall risk
of bias and 69% of trials for iPeak insulin had some con-
cerns for overall risk of bias.

Effect of oat β-glucan on glucose iAUC

In 98 trial comparisons involving 508 participants, pooled
analysis showed that OBG reduced glucose iAUC by 23%
(RoM 0.77 [95% CI 0.74, 0.81], p < 0.001 with substantial
heterogeneity, I2= 59.9%, PQ < 0.001) (Fig. 1A). Removal
of individual trials did not alter the direction, significance,
or magnitude (10% or more) of the effect or the evidence for
heterogeneity. There was significant effect modification by
comparator (p= 0.034, residual I2= 58.0%, PQ < 0.001),
OBG dose (p < 0.001, residual I2= 7.2%, PQ= 0.284), and
OBG MW (p= 0.004, residual I2= 38.6%, PQ= 0.004),
(Fig. 1A, Supplementary Figs. 7–9). Only OBG doses
>1.5 g/30 g avCHO and MW> 300 kg/mol were shown to
significantly reduce glucose iAUC. Duration was a sig-
nificant effect modifier (p= 0.021, residual I2= 58.3%, PQ

< 0.001) with the largest reduction seen for a postprandial
period of 240 min which was limited to one study with 3
trial comparisons (Supplementary Fig. 10A). Food form
was also a significant effect modifier (p= 0.045, residual
I2= 60.1%, PQ < 0.001) with the effect of liquid food forms
being significantly less than solid (p= 0.01) and semi-solid
(p= 0.02) (Supplementary Fig. 10A).

No significant effect modifications were observed by
health status (p= 0.35, residual I2= 59%, PQ < 0.001),
study methodology quality (p= 0.226, residual I2= 59.9%,
PQ < 0.001) and overall risk of bias (p= 0.61, residual
I2= 60%) (Fig. 1A, Supplementary Figs. 10A, 11–12).

A significant linear dose-response relationship was
observed suggesting an 8% reduction in glucose iAUC per
1 g OBG/30 g avCHO (slope 0.92 [95% CI 0.91, 0.94],
p < 0.001) (Fig. 2A and Supplementary Fig. 13). When this
relationship was assessed based on MW (Fig. 3A–C),

Table 1 (continued)

Characteristica

• South America 4

• Australia 3

• Asia 1

Funding source, # of trial comparisonsc

• Agency 43

• Industry 28

• Agency & Industry 9

• Not reported 23

OBG oat β-glucan, BMI body mass index.
aMedian (range) of mean data, unless otherwise indicated.
b30/31 studies provided data on sex.
cAgency funding is that from government, university, or not-for-profit
sources. Industry funding is that from trade organizations that obtain
revenue from the sale of products.
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medium and high MW OBG demonstrated significant dose-
response relationships (p < 0.001) whereas, low MW OBG
did not (p= 0.052). The dose-response with high MW
OBG was more precise than with medium MW OBG (slope
0.92 [0.91, 0.93] vs. 0.93 [0.91, 0.96], respectively). Sup-
plementary Figs. 14 and 15 show the dose-response rela-
tionship by health status and study methodology quality,
respectively. More precise dose-response relationships
were observed in trials assessing healthy individuals (slope
0.93 [0.92, 0.94]) compared to those with type 2 diabetes
(slope 0.91 [0.86, 0.97]), and in trials of high study
methodology quality (slope 0.93 [0.91, 0.94]) compared to
those with low study methodology quality (slope 0.91
[0.86, 0.96]). The slope of the dose-response relationship
was greater but less precise for the unmatched comparators
(0.90 [0.86, 0.93]) than the matched comparators (0.94

[0.92, 0.96]) but the confidence intervals overlapped
(Supplementary Fig. 16).

Effect of Oat β-glucan on glucose iPeak

In 66 trial comparisons involving 313 participants, pooled
analysis showed that OBG reduced glucose iPeak by 28%
(0.72 [0.64, 0.76], p < 0.001, with substantial heterogeneity,
I2= 82.6%, PQ < 0.01) (Fig. 1B). Removal of individual
trials did not alter the direction, significance, or magnitude
(10% or more) of the effect or the evidence for hetero-
geneity. There was significant effect modification by the
comparator (p < 0.011, residual I2= 82.4%, PQ < 0.001),
OBG dose (p < 0.001, residual I2= 65.2%, PQ < 0.001) and
OBG MW (p < 0.001, residual I2= 70.0%, PQ < 0.001)
(Fig. 1B, Supplementary Figs. 17–19). Greater reductions in

Fig. 1 Effect of oat β-glucan on postprandial glycaemic and insu-
linaemic responses. Pooled effect estimates of the effect of oat
β-glucan on the incremental area under the curve (iAUC) for blood
glucose (A), incremental peak rise (iPeak) for blood glucose (B),
iAUC insulin (C), and iPeak insulin (D). Pooled effect estimates are
expressed as ratios of means (RoMs, black diamond) with 95% CIs
(solid lines). Pooled analyses were conducted using the generic inverse

variance method with random effects models. Interstudy heterogeneity
was tested by the Cochran Q statistic (χ2) at a significance level of
PQ < 0.10 (not shown) and quantified by I2. The residual I2 value
represents unexplained heterogeneity for each subgroup. n, number of
trial comparisons. *Differences between subgroups were tested using
meta-regression and the significance level was reported as a p value,
where p < 0.05 was considered significant.
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glucose iPeak were observed when OBG containing foods
were compared to unmatched comparators than with mat-
ched comparators. OBG MW> 300 kg/mol led to greater
reductions in glucose iPeak compared to MW < 300 kg/
mol. Duration was a significant effect modifier (p= 0.024,
residual I2= 82.8%, PQ < 0.001) with the largest reduc-
tion seen for a postprandial period of 240 min which was
limited to one study with 3 trial comparisons (Supple-
mentary Fig. 10B). Food form was also a significant effect
modifier (p= 0.029, residual I2= 82.8%, PQ < 0.001)
with a larger reduction observed in meals where OBG was
consumed in semi-solid versus liquid form (Supplemen-
tary Fig. 10B). No significant effect or heterogeneity
modifications were observed by health status (p= 0.267,
residual I2= 82.3%, PQ < 0.001), study methodology
quality (p= 0.347, residual I2= 82.8%, PQ < 0.001), and
overall risk of bias (p= 0.15, residual I2= 82%) (Fig. 1B,
Supplementary Figs. 10B, 20–21).

A significant linear dose-response relationship was
observed suggesting a 9% reduction in glucose iPeak per
1 g OBG/30 g avCHO (slope 0.91 [95% CI 0.89, 0.93],

p < 0.001) (Fig. 2B and Supplementary Fig. 13). When this
relationship was assessed based on MW (Fig. 3D–F),
medium and high MW OBG demonstrated significant dose-
response relationships (p < 0.001) whereas, low MW OBG
did not (p= 0.108). Supplementary Figs. 14–16 show the
dose-response relationship by health status, study metho-
dology quality, and the comparator. More precise dose-
response relationships were observed in trials assessing
healthy individuals (slope 0.91 [0.89, 0.94]) compared to
those with type 2 diabetes (slope 0.90 [0.83, 0.97]), in high
study methodology quality trials (slope 0.91 [0.89, 0.93])
compared to low study methodology quality trials (slope
0.86 [0.76, 0.98]), and matched comparators (slope 0.92
[0.90, 0.94]) compared to unmatched comparators (slope
0.89 [0.85, 0.93]).

Effect of Oat β-glucan on insulin iAUC

In 34 trial comparisons involving 231 participants, pooled
analysis showed that OBG reduced insulin iAUC by 22%
(0.78 [0.72, 0.85], p < 0.001, with no evidence of

Fig. 2 Effect of oat β-glucan dose on postprandial glycaemic and
insulinaemic responses. Pooled dose-response relationship between
oat β-glucan and incremental area under the curve (iAUC) for blood
glucose (A), incremental peak rise (iPeak) for blood glucose (B),
iAUC insulin (C), and iPeak insulin (D). Changes in the outcomes (y-
axis) are presented as ratios of means (RoMs). Oat β-glucan dose is
presented on a 1 g/30 g available carbohydrate scale. Individual

comparisons are represented by the circles, with the weight of the
study in the overall analysis represented by the size of the circles. The
central straight line represents the fitted dose response estimate with
outer dashed lines representing the 95% confidence intervals (CIs),
which was modelled using one-stage random effects with the generic
inverse variance and restricted maximum likelihood methods, assum-
ing a linear function.
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heterogeneity, I2= 27.9%, PQ= 0.10) (Fig. 1C). Removal
of individual trials did not alter the direction, significance,
or magnitude (10% or more) of the effect or the evidence for
heterogeneity. No significant effect modifications were
observed by dose, MW, comparator, health status, food
form, duration, study methodology quality, and risk of bias
(Fig. 1C, Supplementary Figs. 10C, 22–26).

A significant linear dose-response relationship was
observed suggesting a 10% reduction in insulin iAUC per
1 g OBG/30 g avCHO (slope 0.90 [95% CI 0.86, 0.94],
p < 0.001) (Fig. 2C and Supplementary Fig. 13). Health
status (not illustrated due to limited data in type 2 diabetes
population) and the comparator did not modify the dose-
response relationship (Supplementary Fig. 16). A larger
dose-response relationship was observed in trials of low
study methodology quality (slope 0.82 [0.77, 0.87]) com-
pared to trials of high study methodology quality (slope
0.92 [0.88, 0.96]) (Supplementary Fig. 15).

Effect of Oat β-glucan on insulin iPeak

In 13 trial comparisons involving 115 participants, pooled
analysis showed that OBG reduced insulin iPeak by 24%
(0.76 [0.65, 0.88], p < 0.001, with no evidence of hetero-
geneity, I2= 51.5%, PQ= 0.11) (Fig. 1D). Removal of
individual trials did not alter the direction, significance, or
magnitude (10% or more) of the effect or the evidence for
heterogeneity. No significant effect modifications were
observed by dose, MW, comparator, food form, duration,
study methodology quality, and risk of bias (Supplementary
Figs. 10D, 27–30). Subgroup analysis by health status was
not conducted as data were limited to only healthy indivi-
duals (Supplementary Fig. 31).

A significant linear dose-response relationship was
observed suggesting a 11% reduction in insulin iAUC per
1 g OBG/30 g avCHO (slope 0.89 [95% CI 0.86, 0.92], p <
0.001) (Fig. 2D and Supplementary Fig. 13). A significant

Fig. 3 Effect of oat β-glucan molecular weight and dose on post-
prandial glycaemic responses. Pooled dose-response relationship by
low, medium and high molecular weight oat β-glucan on the incre-
mental area under the curve (iAUC) for blood glucose (A–C) and
incremental peak rise (iPeak) for blood glucose (D–F). Changes in the
outcomes (y-axis) are presented as ratios of means (RoMs). Oat
β-glucan dose is presented on a 1 g/30 g available carbohydrate scale.
Individual comparisons are represented by the circles, with the weight
of the study in the overall analysis represented by the size of the circles.

The light grey and blue circles represent the trial comparisons with
matched and unmatched comparators, respectively. The central straight
line represents the fitted dose response estimate with outer dashed lines
representing the 95% confidence intervals (CIs), which was modelled
using one-stage random effects with the generic inverse variance
and restricted maximum likelihood methods, assuming a linear func-
tion. The vertical dashed line represents the dose level at which the
upper-bound 95% CIs cross the physiologically relevant threshold of
a 20% reduction.

The effect of oat β-glucan on postprandial blood glucose and insulin. . . 1547



dose-response relationship was observed in trials of high
methodology quality (slope 0.89 [0.86, 0.93]) whereas trials
of low study methodology quality did not demonstrate a
significant dose-response relationship (slope 0.95 [0.82,
1.10]) (Supplementary Fig. 15). The dose-response rela-
tionship was similar when assessed by the comparator
(Supplementary Fig. 16).

Publication bias analyses

Visual inspection of funnel plots for publication bias
showed no evidence of asymmetry or small-study effects for
glucose and insulin iAUC and iPeak (Supplementary Fig.
32). Both Egger and Begg tests were non-significant for all
outcomes.

GRADE assessment

A summary of the GRADE assessments for each outcome is
shown in Supplementary Table 8. Our certainty in the
evidence was high for the effect of OBG on reducing glu-
cose and insulin iAUC and iPeak. We identified serious
imprecision in the insulin iAUC and iPeak pooled effect
estimates, as the upper bounds of the 95% Cis overlapped
the minimally important difference of 0.8, which could not
be explained by our subgroup analyses. There was evidence
of imprecision of the glucose iAUC pooled effect estimate,
however subgroup analyses illustrated precise pooled effect
estimates at doses ≥3.5 g/30 g available carbohydrates of
OBG and from high MW OBG and thus, no downgrade was
applied. We also identified serious inconsistency in the
glucose iPeak due to significant unexplained heterogeneity
(I2= 82.6%). Substantial heterogeneity of the pooled effect
estimate was observed in glucose iAUC (I2= 59.9%),
however, the between-study variance was largely explained
by dose (residual I2= 7.2%, PQ= 0.284) and partially by
molecular weight (residual I2= 38.6%, PQ= 0.004).
Although 71% of trials for insulin iAUC either had some
concerns or high overall risk of bias, and 69% of trials for
iPeak insulin had some concerns for overall risk of bias,
subgroup analyses suggest that risk of bias was not a sig-
nificant effect modifier of the pooled effect estimates and
thus, no downgrades were applied. We upgraded our cer-
tainty in the evidence for glucose and insulin iAUC and
iPeak due to the presence of dose-response relationships.

Discussion

Summary of findings

This systematic review and meta-analysis of acute, crossover,
single-meal, controlled feeding trials, including 103

comparisons in 538 participants from 35 reports, showed that
OBG reduced glucose and insulin iAUC by 23% and 22%,
respectively, and glucose and insulin iPeak by 28% and 24%,
respectively. OBG dose, MW, the comparator, intervention
food form, and study duration were significant effect modifiers
of the reduction in glucose iAUC and iPeak.

Significant linear dose-responses were found for all
endpoints, with each g OBG/30 g avCHO reducing glucose
iAUC by (mean [95% CI]) 8 [6, 9]%, glucose iPeak by 9
[7, 11]%, insulin iAUC by 10 [6, 14]% and insulin iPeak by
11 [8, 14]%. However, the dose-response relationships for
glycaemic response became steeper and had smaller 95% CI
as OBG MW increased; for OBG with MW< 300 kg/mol,
300 to <1000 kg/mol and ≥1000 kg/mol, respectively, each
g OBG/30 g avCHO reduced glucose iAUC by 5 [9,0]%, 7
[4, 9]% and 8 [7, 9]% and glucose iPeak by 2 [4,0]%, 8
[5, 11]% and 11 [8, 13]%. All outcomes were similar in
participants with and without diabetes.

Results in relation to previous studies

Our findings are consistent with an earlier review by Tosh
[1] which showed that OBG elicited a dose-dependent
reduction in glucose iAUC and also significantly reduced
glucose iPeak and insulin iAUC. However, Tosh expressed
the differences in iAUC as absolute values (mmol×min/L),
excluded treatments where the β-glucan MW had been
deliberately reduced to <250 kg/mol and excluded studies in
individuals with diabetes. Our results also show that OBG
significantly reduced glycaemic and insulinaemic responses,
but expressing the results as RoM rather than absolute
values allows the magnitude and clinical utility of the
effects to be determined, and allows for valid comparison of
the effects in subjects with and without diabetes. Further-
more, by including in our analysis studies using low MW
OBG we were able to determine how much low MW OBG
reduces glucose and insulin responses in comparison to the
effects of medium and high MW OBG.

In substantiating the health claim for OBG and BBG on
the reduction of PPGR, the EFSA panel [5] provided a
narrative review of 6 studies, 2 of which we included
[54, 57] and 4 of which we did not because the sources of
β-glucan were oat flour or barley [77–80]. The basis for the
panel’s opinion that “…the studies above show an effect of
oat and barley beta-glucans in decreasing post-prandial
glycaemic responses … at doses of at least 4 g per 30 g
available carbohydrates” is difficult to appreciate because
information about the number of comparisons, the dose of
β-glucan and endpoint used (e.g., iPeak, iAUC) is not
provided. Our pooled result from 98 comparisons is similar
to the EFSA conclusion in suggesting that a dose of >3.5 g
OBG/30 g avCHO is required to obtain a ≥20% reduction in
glucose iAUC. However, our results suggest that if high
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MW OBG is used, ≥20% reductions in glucose iAUC and
iPeak can be obtained with 2.9 and 2.5 g OBG /30 g
avCHO, respectively. Furthermore, based on 5 studies in
participants with diabetes considered by the EFSA panel
(only 3 of which we included [47, 56, 69] since the other 2
were not acute test meal studies [81, 82]), the EFSA panel
noted that “the evidence provided does not establish that
results obtained in patient populations treated with anti-
diabetic medications can be generalized to the target
population with respect to postprandial glycaemic respon-
ses” [4]. The rationale for this conclusion is not clear, but
our results show that OBG reduces glycaemic responses to a
similar, or perhaps even greater, extent in individuals with
type 2 diabetes than in those without diabetes, respectively,
for glucose iAUC (35% vs. 22%) and glucose iPeak (41%
vs. 28%). This is consistent with the finding that the relative
glycaemic responses of foods compared to glucose (i.e.,
their glycaemic index values) are similar in subjects with
and without diabetes [83].

Effect modifiers and other sources of heterogeneity

Effect modifiers of the effect of OBG on glucose response
were OBG dose, MW, the comparator, intervention food
form, and study duration, but there were no significant
effect modifiers for insulin response.

OBG dose and MW

The mechanism by which viscous fibres reduce postprandial
glucose and insulin responses is thought to be related to
their ability to increase the viscosity of the contents of the
gastrointestinal tract (GIT) [84]. The viscosity of OBG
solutions is determined by the concentration and MW of the
OBG [85]. This is consistent with our finding that both dose
and MW significantly modify the effect of OBG on gly-
caemic response. However, in order to increase the viscosity
of the contents of the GIT, the OBG consumed has to be
released from the food matrix. The solubility, or bioavail-
ability, of OBG in foods varies [7, 65, 66] and reducing
OBG solubility reduces its effect on glycaemic responses
[60]. Thus, unmeasured variation in OBG solubility may
contribute to the unaccounted for heterogeneity of our
results. Furthermore, the viscosity of glucose solutions
containing OBG is not always related to their glycaemic
impact [59] because the concentration, and hence viscosity,
of OBG solutions within the stomach may be reduced by
gastric fluid secretions [86]. High viscosity could reduce
glycaemic responses by delaying gastric emptying or
reducing the rate of digestion and absorption of carbohy-
drates in the small intestine, or both; however, the exact
mechanism is not completely understood. For example, we
recently showed that consuming 4 g OBG in a breakfast

test-meal reduced both the rate of gastric emptying and the
glycaemic response, effects which were abrogated by
reducing the dose of OBG or by reducing its MW [76].
Nevertheless, there was no correlation between gastric
emptying and glycaemic response elicited by the 4 test
meals within the 28 subjects.

Comparator

The effect of OBG on glucose responses was greater for
unmatched vs matched Control test-meals. The nature of the
comparator is important because source of avCHO, quan-
tified by glycaemic-index (the extent to which the avCHO
in a food raises glucose iAUC relative to an equal weight of
glucose), is an independent determinant of glucose iAUC
[87]. For test-meals containing equivalent amounts of
avCHO, protein and fat, differences in glycaemic-index are
proportional to differences in glucose iAUC [88]. In 26
(81%) of the 32 unmatched comparisons the source of
avCHO in the Control test-meals was glucose, dextrose,
maltodextrin or white bread, with the source in the other 6
being cream of rice, wheat muffin or cornflakes. If the
glycaemic-index of the avCHO in an OBG test-meal is less
than that of its Control, the difference in glucose iAUC
would be larger than if their glycaemic-indices had been
equivalent. The estimated mean glycaemic-index of the
unmatched Control test-meals, 81, was 14% greater than
that of the OBG test-meals, 71, a difference which could
account for the 10% lower mean ROM for the unmatched vs
matched comparators 0.73 vs 0.80.

Intervention food form

OBG in liquid form had a smaller effect on glycaemic
response than in semi-solid or solid food forms. It seems
unlikely this is due to food form per se, since, if anything,
an equivalent amount of OBG in liquid form, vs solid form,
may be more soluble in the gut and, hence, have a greater
effect on glycaemic response. The effect modification due
to food form is more likely accounted for by the lower MW
of the OBG contained in the liquid vs the semi-solid and
solid forms. If an OBG-enriched liquid is to remain a
palatable liquid, the OBG must be hydrolyzed to reduce its
MW and viscosity, whereas high MW OBG can be incor-
porated into palatable semi-solid and solid foods. This is
likely why none of the liquid test meals contained high-MW
OBG. The percentage of low-, medium- and high-MW
OBG contained in the n= 11 liquid forms (45%, 55%, 0%,
respectively) differed significantly from that in 11 semi-
solid (9%, 55%, 36%, p= 0.036) and the 26 solid forms
(19%, 35%, 46%, p= 0.020), with the distribution in semi-
solid and solid forms being similar. An estimate of the
effect of MW in the different forms can be obtained by
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multiplying the mean % reduction for low-, medium- and
high-MW OBG (13%, 25% and 32%, respectively, for
glucose iAUC) by the respective proportion of low-, med-
ium- and high-MW OBG within each form and summing
the products (e,g., the expected iAUC reduction for liquids=
0.13×0.45+ 0.25×0.55+ 0.32 × 0= 0.20). The expected
reductions for glucose iAUC, 20%, 26% and 26% for
liquid, semi-solid and solid, respectively, are similar to
those observed, 14%, 22%, 25%, as are those for glucose
iPeak, 19%, 31%, 29%, vs 22%, 37%, 22%.

Study duration

Although study duration was an effect modifier, sensitivity
analyses showed that the difference was attributed to the
one study with a 4 h postprandial duration. It is known that
the method used to calculate iAUC, the duration of blood
sampling and the interval between blood samples can
influence glucose iAUC [17, 89] and iPeak [20]. Further-
more, the method used by authors to calculate iAUC is
often not indicated, and the likelihood of incorrect calcu-
lation may be >50% [26]. These factors may contribute
towards unexplained heterogeneity in the results.

Clinical implications

In synthesizing the available data on the effect of OBG on
acute glycaemic responses, the question arises as to whether
reducing acute glucose and insulin responses has any clin-
ical relevance. Reducing the glycaemic impact of high
carbohydrate meals with treatments which reduce the rate of
carbohydrate absorption, such as α-glucosidase inhibitors
[90, 91] and low glycaemic index foods [92] have desirable
physiological effects for many people, particularly for those
with pre-diabetes or diabetes. Our findings suggest that the
acute effects of OBG on glucose and insulin responses in
subjects without diabetes can be extrapolated to people with
diabetes. Whether the acute effect of OBG on postprandial
glucose response translates into clinically meaningful ben-
efits in long-term glycaemic control is not clear. An earlier
systematic review and meta-analysis of 4 randomized con-
trolled trials in 350 individuals with type 2 diabetes found
that OBG consumption of 2.5–3.5 g/day significantly low-
ered HbA1c by 0.21% and fasting plasma glucose by
0.52 mmol/L, without affecting fasting plasma insulin
concentrations [93]. However, an updated analysis showed
no effect on HbA1c (mean difference, −0.55% [95% CI
−1.21, 0.11]) and fasting glucose (−0.54 mmol/L [−1.70,
0.62]) when data were pooled from 5 trials in 535 indivi-
duals with type 2 diabetes [94]. Furthermore, the mechan-
ism by which OBG improved glycaemic control in these
studies may not be related to an effect on acute glycaemic
response but rather to an ability of OBG to favourably alter

the colonic microbiome [95]. There is a need for more long-
term randomized controlled trials to confirm the effect of
OBG on glycaemic control in diabetes and determine a
mechanism of action.

If the acute effect of OBG on postprandial glucose
responses is beneficial, how large of an effect is required for
physiological relevance? Health Canada opined that the
minimum physiologically relevant difference in glucose
iAUC is 20% [43]. We used this conservative value to
assess whether there was imprecision of the results as an
indicator of certainty of the evidence. However, differences
in diet glycaemic index of 10–15% may be clinically rele-
vant. For example, in a randomized clinical trial of
210 subjects with type 2 diabetes with baseline HbA1c of
7.1% studied for 6 months, a 14% reduction in diet GI was
associated with a clinically meaningful reduction of HbA1c
of 0.32% relative to control (p < 0.001) [96, 97]. Our results
suggest that only ~2 g/30 g avCHO of high MW OBG is
required to reduce glucose iAUC by 14% with 95% cer-
tainty (Fig. 3C).

Limitations

The pooled effect estimates were imprecise for insulin
iAUC and iPeak, as the 95% CIs overlap the minimally
important difference for clinical benefit. This imprecision
may be due to the limited range of doses included. Although
the dose response for each outcome showed that the 95%
CIs of the regressions entered the bounds of the minimally
important difference as the dose increased, the categorical
dose response analysis illustrated imprecision across all
dose ranges. Therefore, more studies, including interven-
tions with doses >4.5 g/30 g available carbohydrate of
OBG, may improve the precision of the effect of OBG on
insulin outcomes. There was also substantial heterogeneity
in the overall pooled effect estimate for glucose iPeak, that
could only be partially explained by ranges in dose and
molecular weight of the included trials.

Of note, our health status category was based on population
demographics described in the included studies, therefore it is
possible that there may be some overlap between the healthy
and overweight categories, in which populations that were
categorized as healthy likely also included overweight indivi-
duals. Data were also limited in individuals with type 2 dia-
betes for insulin iAUC and not available for insulin iPeak and
thus, more studies would be useful to improve the precision of
our findings in this population.

Conclusion

Our synthesis of the available evidence from acute, cross-
over, single-meal, controlled feeding trials demonstrates
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that OBG leads to a clinically meaningful reduction in
postprandial glucose responses provided that a sufficient
amount of high MW OBG is provided. OBG interventions
also resulted in clinically meaningful but imprecise reduc-
tions in insulin iAUC and iPeak, for which dose may
modify the magnitude of the effect. Health status, OBG
food form, postprandial duration, study methodology
quality and risk of bias did not meaningfully modify these
effects. More studies are needed to improve precision in the
effects of OBG in diabetes and to explore whether the acute
reductions in glycaemic response translate into clinically
meaningful benefits in long-term glycaemic control. These
conclusions apply to the addition of purified OBG or oat
products highly enriched in OBG to food. Although OBG is
present in oats, it is unclear if our findings can be extra-
polated to commercial foods containing oats as a source of
OBG due to the presence of other nutrients (avCHO, protein
and fat) and differences in food processing which may
modify these effects.
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