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Abstract

Elevated noise levels in positron emission tomography (PET) images lower image quality and 

quantitative accuracy and are a confounding factor for clinical interpretation. Recent advances 

in deep learning have ushered in a wide array of novel denoising techniques, several of which 

have been successfully adapted for PET image reconstruction and post-processing. The bulk of 

the deep learning research so far has focused on supervised learning schemes, which, for the 

image denoising problem, require paired noisy and noiseless/low-noise images. This requirement 

tends to limit the utility of these methods for medical applications as paired training datasets 

are not always available. Furthermore, to achieve the best-case performance of these methods, it 

is essential that the datasets for training and subsequent real-world application have consistent 

image characteristics (e.g., noise, resolution, etc.), which is rarely the case for clinical data. 

To circumvent these challenges, it is critical to develop unsupervised techniques that obviate 

the need for paired training data. In this paper, we have adapted Noise2Void, a technique that 

relies on corrupt images alone for model training, for PET image denoising and assessed its 

performance using PET neuroimaging data. Noise2Void is an unsupervised approach that uses 

a blind-spot network design. It requires only a single noisy image as its input, and, therefore, 

is well-suited for clinical settings. During the training phase, a single noisy PET image serves 

as both the input and the target. Here we present a modified version of Noise2Void based on 

a transfer learning paradigm that involves group-level pretraining followed by individual fine­

tuning. Furthermore, we investigate the impact of incorporating an anatomical image as a second 

input to the network. We validated our denoising technique using simulation data based on the 

BrainWeb digital phantom. We show that Noise2Void with pretraining and/or anatomical guidance 

leads to higher peak signal-to-noise ratios than traditional denoising schemes such as Gaussian 

filtering, anatomically guided non-local means filtering, and block-matching and 4D filtering. We 

used the Noise2Noise denoising technique as an additional benchmark. For clinical validation, we 

applied this method to human brain imaging datasets. The clinical findings were consistent with 

the simulation results confirming the translational value of Noise2Void as a denoising tool.

1. Introduction

Positron emission tomography (PET) is an in vivo molecular imaging technique that 

enables 3D visualization of radiotracers which bind to specific molecular targets with 
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functional or physiological significance. PET has emerged as a vital player in clinical 

settings for deep-tissue mapping of cellular metabolism, neuroreceptor density, pathological 

protein aggregation, etc. with applications spanning oncology, neurology, cardiology, and 

beyond (Farwell et al. 2014, Delbeke et al. 1999, Salmon et al. 2015, Farde et al. 1989, 

Bergmann et al. 1984). Accurate interpretation of PET images is of high clinical significance 

both in the context of diagnostics and therapeutic assessment. Elevated noise levels in 

PET images, however, pose a challenge to accurate quantitation and adversely impact 

clinical workflows. Specific protocol-related contributors to PET noise include radiotracer 

dose reduction (which can limit a patient’s radiation exposure) and scan time reduction 

(possibly to limit patient discomfort or increase throughput). Both tracer dose and scan 

time reduction could lead to reconstructed images with reduced photon counts and, hence, 

higher noise levels. The reconstruction of low-count PET images is usually followed by 

a post-filtering step for denoising. Typically, clinical workflows rely on simple Gaussian 

filters that smooth over the local neighborhood of each voxel. While convenient to use, the 

Gaussian filter is not edge-preserving and leads to spillover of intensities across different 

regions-of-interest (ROIs). To date, a broad range of edge-preserving and/or non-local 

filters have been applied to PET images. Efforts geared toward preserving edges in PET 

images include anisotropic smoothing techniques like the bilateral filter (Hofheinz et al. 

2011), wavelet-based techniques (Lin et al. 2001), and spatiotemporal smoothing techniques 

designed for dynamic PET images (Tauber et al. 2011, Christian et al. 2010, El Fakhri et 

al. 2005). The non-local means (NLM) filter (Buades et al. 2005), which was demonstrated 

to outperform traditional edge-preserving approaches, has been successfully applied to PET 

imaging (Dutta, Leahy & Li 2013). Block-matching and 3D (BM3D) filtering (Dabov et 

al. 2007) and its higher dimensional variants BM4D and BM5D have also been applied to 

PET imaging (Ote et al. 2020). A number of newer techniques use innovative strategies 

to incorporate high-resolution anatomical information into existing denoising frameworks. 

In particular, the performance of wavelet denoisers (Boussion et al. 2009, Le Pogam et al. 

2013) and NLM filters (Chan et al. 2014, Arabi and Zaidi 2020) have been improved by the 

incorporation of anatomical information. Guided filtering (He et al. 2013), another approach 

that integrates cross-modality information, has also been used for PET image denoising (Yan 

et al. 2015).

Over the last several years, the image processing and computer vision community has 

witnessed the emergence of a broad range of novel denoising techniques that exploit recent 

advances in deep learning. Several of these methods have been adapted for the PET image 

denoising and low-dose image reconstruction tasks. Neural networks used to denoise PET 

images include those with simpler architectures, such as basic convolutional neural networks 

(CNNs) (Gong et al. 2019, da Costa-Luis and Reader 2021), as well as those with more 

sophisticated architectures like encoder-decoder setups (Chen et al. 2020, Xu et al. 2017), 

U-Net (Liu and Qi 2019, Schaefferkoetter et al. 2020), or generative adversarial networks 

(Wang et al. 2018, Zhou et al. 2020). However, the majority of existing deep learning based 

denoising approaches are supervised learning techniques, which require paired training data, 

i.e., corrupt input and clear target image pairs for network training. In addition, despite 

their high best-case accuracy in one dataset, the generalizabilty of these approaches rests on 

the consistency of image characteristics across datasets. These constraints have generated 
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a strong interest in unsupervised denoising techniques for PET (Cui et al. 2019). The 

Noise2Noise (N2N) technique, which relies on two or more input noise realizations and 

obviates the need for high-count ground truth images, partially addresses the challenges 

associated with supervised learning (Lehtinen et al. 2018). This technique has been adapted 

for PET image denoising (Chan et al. 2019, Yie et al. 2020), but its utility is limited by 

the additional constraint it poses in that it requires more than one noise realization. Very 

recently, a new technique known as Noise2Void (N2V) has been developed, which does 

not require paired training samples or multiple noise realizations (Krull et al. 2019). In this 

paper, we present an adaptation of N2V denoising for PET neuroimaging and assess the 

performance of this approach using simulation and clinical studies. We show here that N2V 

denoising performance can be enhanced by transfer learning (via group-level, simulation­

based pretraining) and the incorporation of anatomical information. In section 2, we describe 

the network architecture, the simulation and clinical datasets, and strategies for network 

training, validation, and group-level pretraining. In section 3, we present simulation and 

clinical results evaluating the performance of the N2V denoising framework and comparing 

it with alternative denoising techniques. In section 4, we discuss this approach and highlight 

its benefits and limitations. Finally, we summarize our results in section 5.

2. Methods

2.1. Network Architecture

The N2V approach is based on network training using input and target images that are 

identical and noisy. In this setting, a conventional network would generate a prediction that 

is identical to the input. N2V, however, uses a blind-spot network design as illustrated in 

Figure 1. A blind-spot network applies a mask on each input patch that excludes the central 

pixel. Whereas a network with a regular receptive field and the noisy image patch set as 

both the input and the training target would output a replica of the noisy input, a blind-spot 

masking scheme that excludes the central pixel of the input encourages a blind-spot network 

to seek information from neighboring pixels and use this information to learn to remove 

noise.

We implemented the well-known U-Net architecture (Ronneberger et al. 2015) as a blind­

spot network. The network has three resolution levels. The first convolutional (conv) layer 

has 64 3 × 3 filters with the filter number doubling after each downsampling step, which is 

realized by 2 × 2 max pooling (max pool) layers. The last (output) layer has only one filter. 

Each convolutional layer is followed by a rectified linear unit (ReLU) activation function, 

except for the last layer. The stride of convolution is set to 1 with a padding of 1 pixel. The 

full network is shown in Figure 2.

The network is trained using an L2 loss function. For an unknown denoised PET image 

vectorized as x ∈ ℝN and a target PET image (which, in this case, is the same as the input 

noisy image) xinput ∈ ℝN, where N is the number of voxels, the L2 loss function, denoted as 

Φtraining x ∣ xinput , is computed as:
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Φtraining x ∣ xinput = x − xinput 2 . (1)

It is not efficient to train N2V using patches where only the central pixel is excluded. To 

improve the method’s efficiency, 5% of the pixels in a given patch were selected to be 

masked out on a random basis – an idea proposed in the original N2V paper (Krull et al. 

2019).

2.2. Network Inputs

Two versions of the network were implemented: one with a noisy PET image as a single­

channel input and another with a multi-channel input consisting of a noisy PET image 

and a magnetic resonance (MR) image. The inputs consist of transverse patches of size 

64 × 64 (PET only) or 64 × 64 × 2 (PET and MR input channels) extracted from the 3D 

image volumes. The input intensities were normalized to the intensity range [0, 1]. Data 

augmentation was achieved by randomly rotating the inputs by 1 to 360° and randomly 

cropping them to the size of 64 × 64 or 64 × 64 × 2.

2.3. Simulation Data

Realistic simulations were performed using the 3D BrainWeb digital phantom (http://

brainweb.bic.mni.mcgill.ca/brainweb/). For training and validation of the N2V network, we 

used 3D segmented image volumes from 20 subjects derived from the BrainWeb simulated 

brain database. The atlases contained the following ROI labels: gray matter, white matter, 

and cerebrospinal fluid (CSF). PET images with a realistic gray-to-white contrast ratio of 

4:1 emulating the 18F-fluorodeoxyglucose (18F-FDG) radiotracer were synthesized from the 

segmented volumes (Song et al. 2020b). The 3D static noiseless (ground truth) PET images 

had a voxel size of 1 mm × 1 mm × 1 mm with grid dimensions of 256 × 256 × 256. These 

“ground-truth” PET images were used for validation purposes alone as the network training 

is unsupervised and does not require knowledge of the true image.

The geometric model of the Siemens ECAT HR+ scanner was used to generate sinogram 

data. Noisy data were generated using Poisson deviates of the projected sinograms, a noise 

model widely accepted in the PET imaging community (Dutta, Ahn & Li 2013). The 

Poisson deviates were generated with mean counts of 12.5M, 25M, 50M, and 100M to test 

performance at different noise levels. The data were then reconstructed using the ordered 

subset expectation-maximization (OSEM) algorithm (12 iterations, 16 subsets). Our noisy 

image set consisted of OSEM-reconstructed images with no post-filtering. The N2V network 

uses these noisy images as both the input and target during the training phase. T1-weighted 

MR images derived from the BrainWeb database and downsampled to the PET resolution 

scale were used as additional anatomical inputs for the anatomically guided version of N2V.

2.4. Clinical Data

Clinical neuroimaging datasets used for this paper were obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI, http://adni.loni.usc.edu/) database, a public 

repository containing images and clinical data from 2000+ human datasets. We selected 
18F-FDG PET scans and corresponding anatomical T1-weighted MR scans for clinical 
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validation of our method. For consistency, all datasets were based on the ADNI2 protocol. 

The subject details and demographics are as follows: n = 17, 10 female, age 77.41 ± 7.98 

years. 18F-FDG PET data were acquired following a 5 ± 10% mCi bolus injection using a 

Siemens BioGraph TruePoint scanner. The scan started 30 minutes post-injection. The full 

scan duration was 30 minutes (6 × 5-minute frames). The OSEM algorithm (4 iterations, 14 

subsets) was used for reconstruction. Our noisy image set consisted of OSEM-reconstructed 

images with no post-filtering. The clinical PET images had a voxel size of 1 mm × 1 mm 

× 2 mm with grid dimensions of 336 × 336 × 109. The image corresponding to the 3rd 

time-frame is used as the noisy input (and training target). There is no noiseless ground-truth 

image available for this clinical dataset. The mean image across the 6 time-frames was used 

as the reference low-noise image for validation after checking to ensure similarity of contrast 

levels across the 6 time-frames.

2.5. Network Training, Fine-Tuning, and Validation

The N2V network was implemented on the TensorFlow platform, and all computations 

were performed using an NVIDIA GTX 1080Ti graphics card. For individual validation 

samples, we tested two strategies. The first of these involved directly training the N2V 

network for individual noisy validation images. The second strategy, which is based on 

transfer learning, involved group-level pretraining of the network followed by fine-tuning 

for individual validation samples, all using noisy data alone. Validation was performed on 5 

BrainWeb digital phantoms and clinical data from 10 human subjects. Separate cohorts were 

used for the pretraining step and the fine-tuning/validation step to ensure that the validation 

results are more easily generalizable to future applications involving data not encountered by 

the model during the pretraining step.

2D image patches of size 64 × 64 were generated from the 3D image volumes for network 

training/fine-tuning. The network was trained for 100 epochs. The L2 loss function was 

minimized using the Adam optimizer. The learning rate was set to 0.0003, and the batch size 

was set to 10.

2.6. Network Pretraining

The original N2V method trains the network using identical, noisy input and target image 

patches. While this obviates the need for a separate “labeled” training dataset consisting 

of noisy and clean image pairs, it also adds a more substantial computational burden 

for each test/validation case. To facilitate N2V network training for individual validation 

samples, we introduce a group-level network pretraining strategy for N2V in this work. This 

pretraining step is based on the same idea of using identical noisy images as the input and 

the training target. But this step is performed on a separate subset of the data reserved for 

pretraining. Subsequently, the pretrained network is individually fine-tuned for each noisy 

image from the validation dataset used as both the input and the target. Both the pretraining 

and fine-tuning steps are unsupervised as they require noisy data samples and assume no 

knowledge of the ground truth.

For the BrainWeb simulations, out of the 20 digital phantoms available through the database, 

we used 15 noisy PET phantom images for pretraining the network model. For the human 
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imaging studies, we used hybrid data, consisting of 15 noisy BrainWeb PET phantom 

images and 7 noisy human PET images for pretraining. Pretraining was based on 2D image 

patches generated from the 3D image volumes. Patches were created dynamically across 

different training epochs by randomly cropping and rotating the 3D image into 64 × 64 2D 

subimages.

2.7. Compared Techniques

To evaluate the proposed N2V framework, we compared the denoising performance of 

the Gaussian, NLM-MR, BM4D, N2N, and N2V techniques as described below. While 

Gaussian filtering is considered the clinical standard, NLM-MR and BM4D are recognized 

as reliable benchmarks for denoising in the image processing community and have therefore 

been included in this study. N2N, on the other hand, can be thought of as a gold-standard 

reference.

• Gaussian denoising: The first reference method used is conventional Gaussian 

filtering based on a 2D Gaussian-weighted kernel that enables averaging over 

the local neighborhood of a given voxel. Gaussian denoising is chosen as a 

reference because of its popularity and clinical prevalence for the task of post­

reconstruction image smoothing. The Gaussian full at half maximum was varied 

over the range 2–3.75 mm to find the parameter setting that maximizes a given 

performance evaluation metric (peak signal-to-noise ratio).

• NLM-MR denoising: The second reference method is NLM with MR-based 

anatomical guidance. The NLM filter has been shown to outperform a broad 

range of denoising approaches, including methods that rely on local kernels as 

well as transform-domain methods such as wavelets. The NLM similarity metric 

is based on 2D spatial patches. The NLM search window size was set to 11 × 11. 

The patch width was varied over the range 3–7 pixels, and the filtering parameter 

(i.e., the standard deviation of the Gaussian weighting kernel) was varied over 

the range 0.25–0.6 to find the parameter setting that maximizes the evaluation 

metric.

• BM4D denoising: The third reference method is the BM4D filter, which is based 

on an enhanced sparse representation in a transform domain. The percentage of 

noise standard deviation for the BM4D filter was varied over the range 15–30% 

to find the parameter setting that maximizes the evaluation metric.

• N2N denoising: The fourth reference method is the N2N approach. For our 

N2N implementation, we adopted the same U-Net architecture as N2V minus 

the blind-spot scheme and used two noise realizations as inputs. This method is 

expected to exhibit stronger performance than N2V and is, therefore, more of a 

gold-standard reference.

• N2V denoising: The first N2V variant tested here is similar to the original N2V 

implementation (Krull et al. 2019). In this variant, the network training is done 

from scratch for individual noisy test images. There is no group-level pretraining. 

The noisy PET image is the sole input.
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• N2V-MR denoising: The second N2V variant tested here is one where the 

network training is done from scratch for individual noisy test images, i.e., 

without group-level pretraining, and where anatomical image patches are 

provided as additional inputs. This method is subsequently referred to as N2V­

MR.

• N2V-PT denoising: The third N2V variant tested here is one where the network 

is pretrained at the group level using noisy images and fine-tuned for individual 

images and where the noisy PET image is the sole input. This method is 

subsequently referred to as N2V-PT.

• N2V-PT-MR denoising: The last N2V variant tested here is one where the 

network is pretrained at the group level using noisy images and fine-tuned 

for individual images, and anatomical image patches are provided as additional 

inputs. This method is subsequently referred to as N2V-PT-MR.

2.8. Evaluation Metric

The primary evaluation metric used in this paper is the peak signal-to-noise ratio (PSNR). 

The PSNR is the ratio of the maximum signal power to noise power and is defined as:

PSNR(x, x) = 20 log10
max (x)

RMSE(x, x) . (2)

Here the true and estimated images are denoted x and x respectively, and the root-mean­

square error (RMSE) is defined as:

RMSE(x, x) = 1
N ∑

k
xk − xk

2, (3)

where k is the the voxel index. A second evaluation metric reported here is the structural 

similarity index (SSIM). The SSIM (Wang et al. 2004) is a well-accepted measure of 

perceived image quality and is defined as:

SSIM(x, x) = 2μxμx + c1 2σxx + c2
μx2 + μx

2 + c1 σx2 + σx
2 + c2

. (4)

Here c1 and c2 are parameters stabilizing the division operation. We use the notations μx and 

σx respectively for the mean and standard deviation of x, μx and σx respectively for the mean 

and standard deviation of x, and σxx for the covariance of x and x.

3. Results

3.1. Simulation Results

Figure 3 shows a comparison of the PSNR obtained by applying the different denoising 

methods to the simulation data. The PSNR was computed using the noiseless phantom 

images as the reference. To ensure fair comparison, we report the best value of the PSNR 

yielded by each method. For all noise levels, N2N has the strongest performance. This is 
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expected since, unlike other methods, N2N uses two noise realizations. The N2V variants 

that use anatomical information, pretraining, or a combination of the two lead to higher 

mean PSNR than vanilla N2V consistently for all noise levels. Among the non-deep-learning 

approaches, BM4D exhibits higher PSNRs than both NLM-MR and Gaussian filtering. 

For the lowest noise case (100M counts), N2V-PT-MR (21.41 dB), N2V-PT (21.37 dB), 

N2V-MR (21.37 dB), and BM4D (21.22 dB) exhibit comparable mean PSNR performance. 

For this case, the mean PSNR for vanilla N2V is somewhat lower (20.92 dB) while that 

for NLM-MR and Gaussian is considerably lower (20.32 and 20.30 dB respectively). The 

margins of improvement of the N2V variants over other methods consistently increase as 

the noise level increases. For the highest noise case (12.5M counts), all N2V variants yield 

substantially higher mean PSNRs (N2V-PT-MR: 18.38 dB, N2V-PT: 18.24 dB, N2V-MR: 

18.21 dB, N2V: 17.94 dB) than conventional filters (BM4D: 17.72 dB, NLM-MR: 17.64 dB, 

Gaussian: 17.58 dB). In summary, while N2V with pretraining and/or anatomical guidance 

outperforms other methods that use a single noisy PET image for all noise levels, this family 

of methods is the most promising for higher noise settings. Figure 4 shows a comparison of 

the SSIM obtained by applying the different denoising methods to the simulation data. N2V­

PT-MR and N2V-MR, the two anatomically guided variants of N2V, exhibit the strongest 

SSIM performance relative to all other methods, including N2N. This is explained by the 

fact that the simulated digital phantom has a high level of consistency with the MR image.

Figure 5 shows sample 2D slice plots from a BrainWeb phantom belonging to the validation 

subset. The visualized examples have PSNR values close to the mean PSNR and correspond 

to the datapoints indicated as circles with a white fill in Figure 3. Transverse slices from 

the MR and the true (noiseless) PET are shown in the top row. The noisy and denoised 

images corresponding to 100M, 50M, 25M, and 12.5M simulated photon counts are 

displayed in the subsequent rows of the figure. Denoising results have been shown for the 

Gaussian, NLM-MR, BM4D, N2N, N2V, N2V-MR, N2V-PT, and N2V-PT-MR techniques. 

To facilitate qualitative comparison via close visual inspection of image characteristics, a 

part of the image (indicated by a blue box on the full-sized MR image) has been magnified 

and displayed in Figure 6. As expected, the Gaussian filter causes a significant amount 

of blurring at all noise levels. In comparison, NLM-MR leads to a sharper gray-white 

boundaries but shows some pixellated texture as the noise level increases. BM4D leads to 

low background (white matter) noise and high gray-to-white matter contrast at lower noise 

levels, but its performance sharply declines for high noise levels, and severe degradation of 

gray matter features and poor gray-to-white contrast are observed in the 12.5M counts case. 

N2N, which leads to consistently higher PSNR than all other methods also leads to better 

gray-to-white contrast than other methods for all noise levels. All N2V variants also show 

good gray-to-white matter contrast at all noise levels. Pretraining is particularly effective 

at restoring visual image quality and generates smoother and less pixellated textures in 

N2V-PT and N2V-PT-MR. Anatomical information (in N2V-MR and N2V-PT-MR) aids 

gray-white delineation and prominently reduces white matter variability. MR guidance has 

a noticeable impact on both high- and low-intenity regions of the image when there is no 

pretraining. For the pretrained cases, MR guidance has less impact on the high-intensity 

gray matter ROI but is instrumental at reducing the variability in the low-intensity white 

matter ROI. Figure 6 also shows the differences between the true and denoised PET images. 
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From the difference images, it can be seen that N2V-MR, N2V-PT, and N2V-PT-MR lead to 

smaller negative differences (indicative of less underestimation of the activity) in the gray 

matter ROI than the N2V, NLM-MR, BM4D, and Gaussian techniques at both higher and 

lower noise levels.

3.2. Clinical Results

Figure 7 shows a comparison of the PSNR obtained by applying the different denoising 

methods to the clinical data. For a PSNR computation, a low-noise image generated by 

averaging images corresponding to 6 time-frames was used as the gold-standard reference. 

To ensure fair comparison, we report the best value of the PSNR yielded by each method. 

As expected, N2N leads to the highest mean PSNR among all the methods. We should 

note here that the N2N result for the clinical data is based on two time-frames (the 3rd 

and the 4th) being used as the two noise realizations required by N2N. Among the non-deep­

learning-based approaches, BM4D (32.06 dB) and NLM-MR (31.75 dB) led to higher mean 

PSNR than Gaussian filtering (30.68 dB). The N2V variants yielded higher PSNR than all 

denoising methods other than N2N. Among the N2V variants, the mean PSNR order was 

as follows: N2V-PT-MR (32.42 dB) > N2V-PT (32.25 dB) > N2V-MR (32.11 dB) > N2V 

(31.92 dB). Figure 8 shows a comparison of the SSIM obtained by applying the different 

denoising methods to the simulation data. N2N led to the highest SSIM overall. All N2V 

variants yielded higher SSIM values than the non-deep-learning-based denoisers.

Figure 9 shows sample 2D slice plots from the brain PET of a human subject from the 

validation subset. The visualized examples have PSNR values close to the mean PSNR and 

correspond to the datapoints indicated as circles with a white fill in Figure 7. Transverse 

slices from the MR, the noisy PET, and the low-noise PET (mean image across 6 time­

frames) are shown in the top row. Denoised image slices obtained using the Gaussian, 

NLM-MR, BM4D, N2N, N2V, N2V-MR, N2V-PT, and N2V-PT-MR techniques are shown 

in the bottom row. All variants of N2V lead to low background noise in the white matter and 

CSF regions while largely preserving the higher intensity values of the gray matter areas. 

BM4D and NLM-MR seem to produce sharper features in the gray matter (purple arrows), 

but comparison with the low-noise image and N2N suggests that these are more likely to 

be noise patterns than signal patterns. To facilitate qualitative comparison via close visual 

inspection of image characteristics, a part of the image (indicated by a blue box on the 

full-sized MR image) has been magnified and displayed in Figure 10. Figure 10 also shows 

the differences between the low-noise and denoised PET images. While gray matter activity 

levels are best preserved by N2N, the pretrained N2V variants, particularly N2V-PT-MR, are 

also able to restore a wider high-intensity area in the gray matter (green arrows) suggestive 

of less underestimation.

4. Discussion

While PET has great clinical value as a molecular imaging modality, radiation dose from 

the radiotracer injection and extended scan times pose practical and logistical challenges 

for PET. Tracer dose and scan time reduction both lead to elevated noise in PET images. 

The high levels of noise lower the quantitative accuracy of PET. The PET image denoising 
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problem is, therefore, one of high clinical significance. While a wide variety of neural 

network architectures have been developed for image denoising, the vast majority of these 

rely on paired low-count and high-count images for network training. Despite the high best­

case accuracies of supervised methods, their clinical translational promise is diminished by 

the need for paired training data. In comparison, the N2V denoising technique investigated 

in this paper is unsupervised and, therefore, has the potential for wide adoptability.

We demonstrated here via realistic BrainWeb digital phantom simulations and ADNI brain 

PET data analyses that N2V denoising with pretraining and/or anatomical guidance leads 

to superior performance over conventional approaches like NLM-MR, BM4D, and Gaussian 

filtering. The margins are the highest in high-noise scenarios. While we included N2N as a 

reference approach, we consider it as a gold standard as it requires two noise realizations. 

While N2N leads to consistently higher PSNR than N2V, one should note that multiple 

noise realizations are not available for every clinical dataset. In comparison, unsupervised 

denoising methods like N2V which rely on a single noisy image have great practical utility 

in the clinic.

We should note here that we did not compare our method against other methods that require 

knowledge of ground-truth images for training (i.e., techniques that are supervised). These 

methods, while expected to exhibit superior performance than N2V in best-case scenarios, 

have practical limitations. Besides the stringent requirement of paired training data, these 

methods are also limited by their inability to generalize well when the training and test 

data have different resolution or noise characteristics. An advantage of N2V over supervised 

alternatives is its customizability to individual patient images since training is performed for 

each individual test sample. This step, however, adds some amount of computational burden, 

which we recognize as a limitation.

A key factor that poses a fundamental limit to the performance of an unsupervised method 

like N2V is its sole reliance on corrupt images for training the denoising model. When the 

training data is of inferior quality, it could be challenging to learn finer details of texture 

from the images. This challenge is offset to some extent by our pretraining strategy, which 

adds robustness to the approach overall. A particular vulnerability of N2V arises in some 

cases where a single voxel has a very different value from its neighbors. Since the blind-spot 

masking step assigns zero weight to the central voxel, there could be erroneous estimation of 

activity in such distinctive voxels. Additionally, at higher noise levels, N2V is prone to over- 

or underestimating activity as the model is trained without knowledge of the ground truth.

A limitation of this work is the relatively modest data size – 20 phantoms for the simulation 

study and 17 human subjects for the clinical study. Future investigations in much larger 

datasets would be needed for more thorough benchmarking of the N2V approach. In the 

clinical data analysis, we relied on a hybrid (simulation + clinical) dataset. Hybrid datasets 

consisting of both simulation and experiment data have been used for neural network 

training in many applications to improve model fitting in data-limited settings (Gong et 

al. 2019, Song et al. 2020a, Lu et al. 2021). A detailed comparison of hybrid, simulation, 

and clinical datasets for pretraining remains pending and will be the topic of a future 

investigation involving a larger dataset.
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5. Conclusion

We have designed, implemented, and validated a family of denoising techniques adapted 

from the Noise2Void methodology, underlying which is the concept of the blind-spot 

network. The significance of this approach for PET image denoising lies in the fact 

that it is unsupervised, relies on a single noisy image, and is therefore well-suited for 

clinical settings. We showed that the N2V denoising performance can be improved by 

means of transfer learning via a pretraining step that relies only on a population of noisy 

images followed by fine-tuning using a single noisy image (the validation sample). We 

also demonstrated that the incorporation of anatomical information through an additional 

input channel can further improve denoising performance. This current study focused on 

neuroimaging datasets alone. In the future, we will extend this work to investigate the wider 

clinical applicability of Noise2Void. To this end, we will validate this method on a larger 

clinical dataset, apply it to whole-body PET data, and also apply it to data from non-FDG 

radiotracers.
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Figure 1. The blind spot concept.
Unlike a conventional network, a blind-spot network has a masked receptive field that 

excludes the central pixel and can learn to suppress noise by focusing on the neighboring 

pixels. Thus, it can generate a prediction distinct from the input even when the input and 

target images are identical and noisy.
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Figure 2. Network architecture.
A U-Net network with a blind-spot mask applied to the input is used here for N2V 

denoising. Each convolutional layer is followed by a ReLU activation function, except for 

the last layer.
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Figure 3. PSNR comparison for the simulation data.
Violin plots showing the PSNR distributions for the PET images obtained using Gaussian, 

NLM-MR, BM4D, N2N, N2V, N2V-MR, N2V-PT, and N2V-PT-MR denoising. The results 

are shown for four different noise levels: 100M counts, 50M counts, 25M counts, and 12.5M 

counts.
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Figure 4. SSIM comparison for the simulation data.
Violin plots showing the SSIM distributions for the PET images obtained using Gaussian, 

NLM-MR, BM4D, N2N, N2V, N2V-MR, N2V-PT, and N2V-PT-MR denoising. The results 

are shown for four different noise levels: 100M counts, 50M counts, 25M counts, and 12.5M 

counts.
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Figure 5. Example image slices for the simulation data.
Transverse image slices from the MR and the true (noiseless) PET are shown on the top. The 

noisy PET images and denoised PET images based on Gaussian, NLM-MR, BM4D, N2N, 

N2V, N2V-MR, N2V-PT, and N2V-PT-MR are shown for four different noise levels: 100M, 

50M, 25M, and 12.5M counts. The cases visualized here have PSNR values close to the 

mean PSNR and correspond to the datapoints indicated as circles with a white fill in Figure 

3.
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Figure 6. Magnified image slices and difference image slices for the simulation data.
Transverse image slices from the full MR image, the magnified MR subimage, and the 

magnified true (noiseless) PET subimage are shown on the top row. The blue box on the full 

MR image indicates the region magnified for closer inspection. The noisy and denoised PET 

subimages are shown using a “hot” colormap for Gaussian, NLM-MR, BM4D, N2N, N2V, 

N2V-MR, N2V-PT, and N2V-PT-MR methods and for four different noise levels: 100M, 

50M, 25M, and 12.5M counts. The corresponding difference subimages (i.e., noisy - true 

or denoised - true) are displayed to underneath each image slice using a red-white-blue 

colormap.

Song et al. Page 19

Phys Med Biol. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. PSNR comparison for the clinical data.
Violin plots showing the PSNR distributions for the PET images obtained using Gaussian, 

NLM-MR, BM4D, N2N, N2V, N2V-MR, N2V-PT, and N2V-PT-MR denoising.
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Figure 8. SSIM comparison for the clinical data.
Violin plots showing the SSIM distributions for the PET images obtained using Gaussian, 

NLM-MR, BM4D, N2N, N2V, N2V-MR, N2V-PT, and N2V-PT-MR denoising.
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Figure 9. Example image slices for the clinical data.
Transverse image slices from the MR, the noisy PET, and low-noise PET are shown in the 

top row. Transverse image slices from the denoised PET images based on the Gaussian, 

NLM-MR, BM4D, N2N, N2V, N2V-MR, N2V-PT, and N2V-PT-MR techniques are shown 

in the bottom row. The cases visualized here have PSNR values close to the mean PSNR and 

correspond to the datapoints indicated as circles with a white fill in Figure 7.
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Figure 10. Magnified image slices and difference image slices for the clinical data.
Transverse image slices from the full MR image, the magnified MR subimage, the 

magnified low-noise PET subimage, the magnified noisy PET subimage, and the magnified 

noisy PET difference subimage are shown in the top row. The blue box on the full MR 

image indicates the region magnified for closer inspection. Transverse image slices from 

the denoised PET images based on the Gaussian, NLM-MR, BM4D, N2N, N2V, N2V-MR, 

N2V-PT, and N2V-PT-MR techniques are shown using a “hot” colormap in the middle row. 

The corresponding difference subimages (i.e., denoised - true) are displayed underneath each 

image slice using a red-white-blue colormap.
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