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Accurate recognition of colorectal cancer with
semi-supervised deep learning on pathological
images
Gang Yu 1, Kai Sun 1, Chao Xu 2, Xing-Hua Shi 3, Chong Wu 4, Ting Xie 1, Run-Qi Meng 5,

Xiang-He Meng 6, Kuan-Song Wang 7✉, Hong-Mei Xiao 6✉ & Hong-Wen Deng 6,8✉

Machine-assisted pathological recognition has been focused on supervised learning (SL) that

suffers from a significant annotation bottleneck. We propose a semi-supervised learning

(SSL) method based on the mean teacher architecture using 13,111 whole slide images of

colorectal cancer from 8803 subjects from 13 independent centers. SSL (~3150 labeled,

~40,950 unlabeled; ~6300 labeled, ~37,800 unlabeled patches) performs significantly better

than the SL. No significant difference is found between SSL (~6300 labeled, ~37,800 unla-

beled) and SL (~44,100 labeled) at patch-level diagnoses (area under the curve (AUC):

0.980 ± 0.014 vs. 0.987 ± 0.008, P value = 0.134) and patient-level diagnoses (AUC:

0.974 ± 0.013 vs. 0.980 ± 0.010, P value = 0.117), which is close to human pathologists

(average AUC: 0.969). The evaluation on 15,000 lung and 294,912 lymph node images also

confirm SSL can achieve similar performance as that of SL with massive annotations. SSL

dramatically reduces the annotations, which has great potential to effectively build expert-

level pathological artificial intelligence platforms in practice.
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Colorectal cancer (CRC) is the second most common cause
of cancer death in Europe and America1,2. Pathological
diagnosis is one of the most authoritative methods for

diagnosing CRC3,4, which requires a pathologist to visually
examine digital full-scale whole slide images (WSI). The chal-
lenges stem from the complexity of WSI including large image
sizes (>10,000 × 10,000 pixels), complex shapes, textures, and
histological changes in nuclear staining4. Furthermore, there is a
shortage of pathologists worldwide in stark contrast with the
rapid accumulation of WSI data, and the daily workload of
pathologists is intensive which could lead to unintended mis-
diagnose due to fatigue5. Hence, it is crucial to develop diag-
nosing strategies that are effective yet of low cost by leveraging
recent artificial intelligence (AI) development.

Deep learning provides an exciting opportunity to support and
accelerate pathological analysis6, including lung7,8, breast9, lymph
node10, and skin cancers11,12. Progress has been made in applying
deep learning to CRC including classification13, tumor cell
detection14,15, and outcome prediction16–18. We have developed a
recognition system for CRC using supervised learning (SL), which
achieved one of the highest diagnosis accuracies in cancer diag-
nosis with AI19. However, our earlier method was built upon
learning from 62,919 labeled patches from 842 subjects, which
were carefully selected and extensively labeled by pathologists.

While SL with massive labeled data can achieve high diagnostic
accuracy, the reality is that we often have only a small amount of
labeled data and a much larger amount of unlabeled data in
medical domains. Although unsupervised learning does not
require any labeled data, its performance is still limited
currently20,21. There are some other approaches for learning on
the small amount of labeled data. For example, in transfer
learning, the network is firstly trained in a big data set of source
domain, and then trained in labeled medical images. However,
the number of labeled images needed is still quite large22,23. The
generative adversarial networks (GAN) can generate a large
amount of data by learning the style from a limited data set24,25.
These approaches may improve accuracy, but they only used
limited labeled data sets, and large amounts of unlabeled data do
appear in medical domains and clinical settings. Moreover, it
would be difficult for GAN to simulate all possible features of the
disease based on limited samples.

The semi-supervised learning (SSL), a method that leverages
both labeled and unlabeled data is supposed to provide a low-cost
alternative in terms of the requirement of the laborious and
sometimes impractical sample labeling26,27. Although SSL can
improve the accuracy of natural images, its performance on
medical images is unclear. Recently, some studies were proposed
to determine whether SSL based on a small amount of labeled
data and a large amount of unlabeled data can improve medical
image analysis28–30, such as object detection31, data
augmentation32, image segmentation33,34. However, only a very
limited few studies have investigated if SSL can be applied to
achieve satisfactory accuracy in pathological images35, where on a
small data set of 115 WSIs, an SSL method of CRC recognition
can achieve the best accuracy of 0.938 only at 7180 patches of 50
WSIs from one data center, suggesting the potential of SSL for
pathological diagnosis on patch-level.

However, to the best of our knowledge, the CRC recognition
system of SSL has not been extensively validated on patient-level
data set from multiple centers to assess the general utility of SSL.
How to translate the patch-level prediction to WSI and patient-
level diagnosis is not trivial. Because we and other groups have
not been able to develop perfect patch-level models, the errors at
patch-level may be easily magnified on WSI level diagnosis. For
example, even though the imperfect patch-level model may yield
reasonable prediction on positive (cancerous) WSIs, it also may

yield high false-positive errors on the negative (non-caner) WSIs,
because the false-positive errors at patch level will accumulate due
to the testing of multiple patches in WSI. However, the patient-
level diagnosis is required in the clinical applications of any AI
system for cancer diagnosis.

To fill this gap, we used 13,111 WSIs collected from
8803 subjects from 13 independent centers to develop a CRC
semi-supervised model. We evaluated SSL by comparing its
performance with that of prevailing SL and also with that of
professional pathologists. To confirm that SSL can achieve
excellent performance on pathological images and further
demonstrate our main point that a reliable medical AI can be
built with a small amount of labeled data plus other available
unlabeled data, we evaluated it on two other types of cancer (lung
cancer and lymphoma). The main contributions of this study are
summarized as follows:

(1) We evaluated different CRC recognition methods based on
SSL and SL at the patch-level and patient-level respectively. This
large-scale evaluation showed that accurate CRC recognition is
feasible with a high degree of reliability even when the amount of
labeled data is limited.

(2) We found that when ~6300 labeled patches (assuming a
large number of unlabeled patches (e.g., ~37,800) available, which
was often the case in practice) were used for SSL, there was no
significant difference between SSL and SL (developed based on
~44,100 labeled patches) and pathologists. This finding holds for
CRC recognition at both the patch level and the patient level.

(3) The extended experiment of lung cancer and lymphoma
further confirmed the conclusion that when a small amount of
labeled data plus a large amount of unlabeled data were used, SSL
may perform similarly or even better than SL. Our study thus
indicated that SSL would dramatically reduce the amount of
labeled data required in practice, to greatly facilitate the devel-
opment and application of AI in medical sciences.

Results
The evaluations were performed on patch-level and patient-level
diagnosis. For simplicity, we used SSL, SL to represent semi-
supervised and supervised learning methods.

SSL vs. SL CRC recognition at patch level. The 62,919 patches
from 842 WSIs in Dataset-PATT were used for patch-level
training and testing (Table 1 and Fig. 1). The 30% of 842 WSIs
(~18,819 patches) were used for the testing, and the remaining
70% of the WSIs (~44,100 patches) were used for the training
(Table 2). Model-5%-SSL and Model-10%-SSL were trained on
5% (~3150) and 10% (~6300) labeled patches, respectively, where
the remaining 65% (~40,950) and 60% (~37,800) patches were
used, but their labels were ignored (as unlabeled patches). Model-
5%-SL and Model-10%-SL were trained on the same labeled
patches (5%, ~3150 and 10%, ~6300) only with Model-5%-SSL
and Model-10%-SSL respectively, but the remained patches
(~40,950, ~37,800) were not used. Model-70%-SL was trained on
the ~44,100 labeled training patches.

The area under the curve (AUC) distribution on Dataset-PATT
and Dataset-PAT were shown in Fig. 2. Model-5%-SSL was
superior to Model-5%-SL (average AUC and standard deviation
in Dataset-PATT: 0.906 ± 0.064 vs. 0.789 ± 0.016, P value=0.017;
Dataset-PAT: 0.948 ± 0.041 vs. 0.898 ± 0.029, P values = 0.017;
Both Dataset-PATT and Dataset-PAT: 0.927 ± 0.058 vs.
0.843 ± 0.059, P value = 0.002, Wilcoxon-signed rank test).
Model-10%-SSL was also significantly better than Model-10%-SL
(AUC in Dataset-PATT: 0.990 ± 0.009 vs. 0.944 ± 0.032, P value=
0.012; Dataset-PAT: 0.970 ± 0.012 vs. 0.908 ± 0.024, P values =
0.012; both: 0.980 ± 0.014 vs. 0.926 ± 0.034, P value = 0.0004).
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Dataset-PATT/842 WSIs

30% of 62,919

Testing set

62,919 Patches

70% of 62,919

Training set

5% labeled 65% unlabeled

10% labeled 60% unlabeled

10% labeled

5% labeled

Model-5%-SSL

Model-10%-SSL

Model-5%-SL

Model-10%-SL

Model-70%-SL

SSL

SL

Model-10%-SSL

Model-10%-SL

Model-70%-SL

Dataset-PT/12,183 WSIs

Dataset-HAC/1,634 WSIs
Heatmap/patches of cancer

Cluster of 4

positive

patches?

One positive

WSI/subject?

Cancerous patient

Normal subject

Split patches

Dataset-PATT

30% of 62,919

Dataset-PAT

100,000 Patches

Model-5%-SSL

Model-10%-SSL

Model-5%-SL

Model-10%-SL

Model-70%-SL

Cancer

Non-cancer

Heatmap/pixels of cancer

Fig. 1 The flow chart of the colorectal cancer study. a Semi-supervised learning (SSL) and supervised learning (SL) are performed on different labeled and
unlabeled patches from 70% whole slide images (WSIs) of Dataset-PATT. Model-5%/10%-SSL and Model-5%/10%/70%-SL are obtained. b The patch-
level test is performed on the patches from 30% WSIs of Dataset-PATT and whole data set of Dataset-PAT, and the above five models predict whether
there is cancer or not in the patches. c The patient-level test and human-AI competition are performed on Dataset-PT and Dataset-HAC, respectively. Each
WSI is divided into many patches, and three models infer whether these patches are cancerous or normal individually. The clustering-based method is then
used on the WSI. If there is a cluster of four positive patches on a WSI, the WSI is positive. A subject with one or more positive WSIs is cancerous, or the
subject is normal.

Table 2 Training and testing set for CRC patch-level models.

Model Class Dataset-PATT Dataset-PAT

Training set Testing set

Labeled Unlabeleda

Model-5%-SSL Cancer 1645 21,390 9828 14,317
Non-cancer 1505 19,560 8991 85,683
Total 3150/5%b 40,950/65%c 18,819/30%d 100,000

Model-10%-SSL Cancer 3290 19,745 9828 14,317
Non-cancer 3010 18,055 8991 85,683
Total 6300/10% 37,800/60%e 18,819/30% 100,000

Model-5%-SL Cancer 1645 – 9828 14,317
Non-cancer 1505 – 8991 85,683
Total 3150/5% – 18,819/30% 100,000

Model-10%-SL Cancer 3290 – 9828 14,317
Non-cancer 3010 – 8991 85,683
Total 6300/10% – 18,819/30% 100,000

Model-70%-SL Cancer 23,035 – 9828 14,317
Non-cancer 21,065 – 8991 85,683
Total 44,100/70%f – 18,819/30% 100,000

aThe labels of the patches are ignored.
b–fBecause the number of patches from each WSI is not the same, the number of patches estimated based on the proportion of extraction is approximate.
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These results indicated that when ~3150 (5%) or 6300 (10%)
patches were labeled, the SSL was always better than SL.

The performance of Model-10%-SSL had no significant
difference with that of Model-70%-SL (AUC in Dataset-PATT:
0.990 ± 0.009 vs. 0.994 ± 0.004, P value = 0.327; Dataset-PAT:
0.970 ± 0.012 vs. 0.979 ± 0.005, P values = 0.263; both:
0.980 ± 0.014 vs. 0.987 ± 0.008, P value = 0.134). This observation
indicated that there was no significant difference between the SSL
(6300 labeled, 37,800 unlabeled) and the SL (44,100 labeled).
Visual inspection (Supplementary Fig. 2) confirmed that that
Model-10%-SL could not really find the locations of cancer in the
patches, while the locations of cancer by Model-10%-SSL and
Model-70%-SL were highly matched.

Patient-level CRC recognition. To test whether the above con-
clusion at patch-level still holds at patient-level, we evaluated
three of five models using Dataset-PT. The patient-level diagnosis
was based on the recognition of every patch provided by patch-
level models, and then cluster-based WSI inference and positive
sensitivity for patient inference (Fig. 1c). The results were shown
in Fig. 3.

Model-10%-SSL had a significant improvement over Model-
10%-SL (AUC: 0.974 ± 0.013 vs. 0.819 ± 0.104, P value = 0.002)
on patient-level prediction in the multi-centers scenario. The
AUC of Model-10%-SSL was slightly lower than, but comparable
to, that of Model-70%-SL (AUC: 0.974 ± 0.013 vs. 0.980 ± 0.010, P

value = 0.117). Among the 7 data sets (XH-Dataset-PT, XH-
Dataset-HAC, PCH, TXH, FUS, SWH, TCGA-FFPE, 11,290
WSIs), the AUC difference of Model-10%-SSL and Model-70%-
SL was smaller than 0.016. In particular, on the largest data set,
XH-dataset-PT (10,003 WSIs), the AUCs of Model-10%-SSL and
Model-70%-SL were close with 0.984 vs. 0.992. On the data sets of
HPH, SYU, CGH, and AMU (501 WSIs), the AUCs of Model-
10%-SSL were even higher than that of Model-70%-SL.

In the data from GPH, and ACL (392 WSIs), the performance
of Model-10%-SSL was lower than that of Model-70%-SL (AUC
DIFF ≥−0.040). It was worth noting that Model-10%-SSL
generally achieved good sensitivity, which proved practically
useful for the diagnosis of CRC. Visual inspection in Supple-
mentary Fig. 3 showed the cancer patches identified by Model-
10%-SSL and Model-70%-SL were the true cancer locations
on WSIs.

Human-AI CRC competition. We recruited six pathologists with
1–18 years of independent experience (Supplementary Table 1).
They independently reviewed 1634 WSIs/1576 subjects from 10
data centers (Supplementary Table 3, Dataset-HAC, Fig. 4) with
no time limit and diagnosed cancer solely based on WSIs (i.e., no
other clinical data were used). We ranked pathologists, Model-
10%-SSL and Model-70%-SL. The average AUC of model-10%-
SSL was 0.972, ranked at the 5th, which was close to the average
AUC of pathologists (0.969).

*** * * * **

Model-5%-SL            Model-5%-SSL            Model-10%-SL            Model-10%-SSL            Model-70%-SL

Fig. 2 Area under the curve (AUC) distribution of five models at patch level. The boxes indicate the upper and lower quartile values, and the whiskers
indicate the minima and maxima values. The horizontal bar in the box indicates the median, while the cross indicates the mean. The circles represent data
points, and the scatter dots indicate outliers. * indicates significant difference, and ** indicates no significant difference. a The evaluation of five models on
the testing set of Dataset-PATT. Eight versions of each model (number of experiments per model= 8) are tested at their testing sets (number of samples/
patches per testing set= ~18,819) independent from their training sets, respectively. The Wilcoxon-signed rank test is then used to evaluate the significant
difference of AUCs (sample size/group= 8) between two models. Two-sided P values are reported, and no adjustment is made. The average AUC and
standard deviation of Model-5%-SSL and Model-5%-SL: 0.906 ± 0.064 vs. 0.789 ± 0.016, P value= 0.017; Model-10%-SSL and Model-10%-SL:
0.990 ± 0.009 vs. 0.944 ± 0.032, P value= 0.012; Model-10%-SSL and Model-70%-SL: 0.990 ± 0.009 vs. 0.994 ± 0.004, P value= 0.327. b The
evaluation of 8 versions of five models on the Dataset-PAT (number of samples/patches per testing set= 100,000). Wilcoxon-signed rank test (sample
size/group= 8), and two-sided P values are reported. Model-5%-SSL and Model-5%-SL: 0.948 ± 0.041 vs. 0.898 ± 0.029, P values= 0.017; Model-10%-
SSL and Model-10%-SL: 0.970 ± 0.012 vs. 0.908 ± 0.024, P value= 0.012; Model-10%-SSL and Model-70%-SL: 0.970 ± 0.012 vs. 0.979 ± 0.005, P
values= 0.263. The AUC values of each model on Dataset-PATT and Dataset-PAT are combined and the Wilcoxon-signed rank test is performed on the
combined results (sample size/group= 16), and two-sided P values are reported. Model-5%-SSL and Model-5%-SL: 0.927 ± 0.058 vs. 0.843 ± 0.059, P
value= 0.002; Model-10%-SSL and Model-10%-SL: 0.980 ± 0.014 vs. 0.926 ± 0.034, P value= 0.0004; Model-10%-SSL and Model-70%-SL:
0.980 ± 0.014 vs. 0.987 ± 0.008, P value= 0.134.
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Extended SSL vs. SL experiment of lung and lymph node
cancer. In order to demonstrate the utility of SSL on other
pathological images, the experiments of SSL and SL on lung and
lymph node were performed. 15,000 lung images of three
classes: adenocarcinoma, squamous cell carcinoma, and benign
tissue were obtained from LC25000 dataset (Lung)36, and the

294,912 lymph node images including tumor and benign tissue
were obtained from PatchCamelyon dataset (Pcam)37. Simi-
larly, SSL was trained on a small number of labeled images and
a large number of unlabeled images (for which labels are known
but ignored during training), and compared with SL (Tables 3
and 4).
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Fig. 3 The results of patient-level CRC recognition. Patient-level comparison of a Model-10%-SSL, b Model-10%-SL, and c Model-70%-SL on 12
independent data sets from Dataset-PT. Left: Radar maps illustrate the sensitivity, specificity, and area under the curve (AUC) of three models on 12
centers. Right: Boxplots show the distribution of sensitivity, specificity, accuracy, and AUC of the three models in these centers. The boxes indicate the
upper and lower quartile values, and the whiskers indicate the minima and maxima values. The horizontal bar in the box indicates the median, while the
cross indicates the mean. The circles represent data points, and the scatter dots indicate outliers. The average AUC and standard deviation (sample size =
12) are calculated for each model, and the Wilcoxon-signed rank test (sample size/group = 12) is then used to evaluate the significant difference of AUCs
between two models. Two-sided P values are reported, and no adjustment is made. Model-10%-SSL vs. Model-10%-SL: AUC: 0.974 ± 0.013 vs.
0.819 ± 0.104, P value = 0.002; Model-10%-SSL vs. Model-70%-SL: 0.974 ± 0.013 vs. 0.980 ± 0.010, P value = 0.117. The data points are listed in
Supplementary Data 1.
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Because the number of classes in lung images was three and the
number of images in each class was balanced (5000 per class), the
accuracy was used for the evaluation. Lung-5%-SSL (5% labeled
and 75% unlabeled) and Lung-20%-SSL (20% labeled, 60%
unlabeled) were better than Lung-5%-SL (5% labeled) and Lung-
20%-SL (20% labeled) (average accuracy and standard deviation:
0.960 ± 0.006 vs. 0.918 ± 0.023, P value = 0.012; 0.989 ± 0.003 vs.
0.961 ± 0.022, P value = 0.011, Fig. 5), respectively. There was no
difference between Lung-20%-SSL and Lung-80%-SL (80%
labeled) (accuracy: 0.989 ± 0.003 vs. 0.993 ± 0.002, P value =
0.093). Pcam-1%-SSL (1% labeled, 99% unlabeled) and Pcam-5%-
SSL (5% labeled, 95% unlabeled) were better than Pcam-1%-SL
(1% labeled) and Pcam-5%-SL (5% labeled) (average AUC and
standard deviation: 0.947 ± 0.008 vs. 0.912 ± 0.008, P value =
0.012; 0.960 ± 0.002 vs. 0.943 ± 0.009, P value = 0.011, Fig. 6),
respectively. Pcam-5%-SSL can be compared to Pcam-100%-SL
(100% labeled) (AUC: 0.960 ± 0.002 vs. 0.961 ± 0.004, P value =
0.888). This extended experiment confirmed the conclusion that
when a small number of labeled pathological images were
available together with a large number of unlabeled image data,
SSL can be compared to SL with massive labels.

Comparison with related research. We compared our methods
with seven existing CRC detection methods13,17,35,38–41, and

five other cancers (lung, ductal carcinoma, breast, prostate,
basal cell carcinoma) detection methods7,42–45 (Supplementary
Table 2). The 6 of 7 CRC detection methods had an AUC
ranging from 0.904 to 0.99 based on SL. Besides, Shaw et al.35

used cancer and normal patches in 86 CRC WSIs to develop an
SSL detection method, and used the test set of 7180 patches in
50 WSIs with colorectal adenocarcinoma, all from one data
center, with the best accuracy of 0.938 confirming the potential
of SSL on patch-level. In this study, we showed the advantages
of the SSL method with 162,919 patches and 13,111 WSIs at
both patch and patient levels from multiple independent cen-
ters, attesting to the robustness and general utility of the SSL
model we developed, where the Model-10%-SSL was compar-
able to the recent SL model19. Besides, Lung-20%-SSL was also
comparable to the SL of Coudray et al. for lung cancer
detection7.

Discussion
Accurately diagnosing CRC requires years of training, leading to a
global shortage of pathologists2. Almost all existing computer-
assisted diagnosis models currently rely on massive labeled data
with SL, but manual labeling is usually time-consuming and
costly. This leads to an increasing interest in building an accurate
diagnosis system with far less labeled data.

Fig. 4 The Human-AI CRC competition results. Area under the curve (AUC) comparison of Model-10%-SSL(SSL), Model-70%-SL(SL) and six
pathologists (a–f) using Dataset-HAC, which consists XH-dataset-HAC, PCH, TXH, HPH, ACL, FUS, GPH, SWH, AMU and SYU. Blue lines indicate the
AUCs achieved by Model-10%-SSL. The F pathologist did not attend the competition of SYU, AMU, and SWH data set.
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Although studies have shown that SSL achieved good results in
tasks like natural image processing, SSL has not been widely
evaluated for analyzing pathological images. In this study, we
applied SSL to CRC diagnosis, and evaluated its performance
using an extensive collection of WSIs across 13 medical centers.
On this large data set, we conducted a range of comparison of
CRC recognition performance among SSL, SL, and six human
pathologists, at both patch level and patient level.

We demonstrated that SSL outperformed SL at patch-level
recognition when only a small amount of labeled and large
amounts of unlabeled data were available. In our previous
study19, we used 62,919 labeled patches from 842 WSIs, which
achieved accurate patch-level recognition. When SSL was used as
demonstrated in this study, only about a tenth (6300) of those
many labeled patches plus 37,800 unlabeled patches were used to
achieve similar AUC.

We also conducted extensive testing of three models for
patient-level prediction on 12 centers (Dataset-PT). Just like the
patch level, at the patient level, the SSL outperformed the SL
when a small number of labeled patches were available, and close
to SL when using a large number of labeled patches. The AUC of
Model-10%-SL at XH-Dataset-PT was 0.964, perhaps because
both the testing data and training data were from XH.

However, using the data from 12 centers, the average AUC of
Model-10%-SL was dramatically reduced to 0.819 from 0.964.
This result showed that when training data and testing data were
not the same source, the generalization performance of Model-
10%-SL was significantly reduced. Moreover, many cancerous
patches predicted by Model-10%-SL were deviated from true
cancer locations in a WSI (Supplementary Fig. 3).

When a large number of unlabeled patches were added for SSL,
the generalization performance across centers can be maintained,

Table 3 Training and testing set for lung models.

Model Class Dataset-lung

Training set Testing set

Labeled Unlabeled

Lung-5%-SSL Adenocarcinoma 250 3750 1000
Squamous cell carcinoma 250 3750 1000
Benign 250 3750 1000
Total 750/5% 11,250/75% 3000/20%

Lung-20%-SSL Adenocarcinoma 1000 3000 1000
Squamous cell carcinoma 1000 3000 1000
Benign 1000 3000 1000
Total 3000/20% 9000/60% 3000/20%

Lung-5%-SL Adenocarcinoma 250 – 1000
Squamous cell carcinoma 250 – 1000
Benign 250 – 1000
Total 750/5% – 3000/20%

Lung-20%-SL Adenocarcinoma 1000 – 1000
Squamous cell carcinoma 1000 – 1000
Benign 1000 – 1000
Total 3000/20% – 3000/20%

Lung-80%-SL Adenocarcinoma 4000 – 1000
Squamous cell carcinoma 4000 – 1000
Benign 4000 – 1000
Total 12,000/80% – 3000/20%

Table 4 Training and testing set for lymph node models.

Model Class Dataset-Pcam

Training set Testing set

Labeled Unlabeled

Pcam-1%-SSL Tumor 1311 129,761 16,384
Non-tumor 1311 129,761 16,384
Total 2622/1%a 259,522/99%b 32,768

Pcam-5%-SSL Tumor 6554 124,518 16,384
Non-tumor 6554 124,518 16,384
Total 13,108/5%c 249,036/95%d 32,768

Pcam-1%-SL Tumor 1311 – 16,384
Non-tumor 1311 – 16,384
Total 2622/1% – 32,768

Pcam-5%-SL Tumor 6554 – 16,384
Non-tumor 6554 – 16,384
Total 13,108/5% – 32,768

Pcam-100%-SL Tumor 131,072 – 16,384
Non-tumor 131,072 – 16,384
Total 262,144/100%e 32,768

a–e1%, 99%, 5%, 95%, 100% of training set.
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where there was no significant difference when comparing with
the accurate SL model using massive labeled patches19. These
results showed that when labeled patches were seriously insuffi-
cient, using unlabeled data can greatly improve the generalization
ability across different data sets. The patient-level results indi-
cated that with SSL, we may not need as much labeled data as in
SL. Since it is well known that unlabeled medical data are rela-
tively easy to obtain, it is of great importance and with an urgent
need to develop SSL methods.

We compared the diagnosis of six pathologists with SSL. We
found that SSL reached an average AUC of pathologists, which
was approximately equivalent to a pathologist with five years of
clinical experience. The Human-AI competition in this regard
thus showed that it was feasible to build an expert-level method
for clinical practice based on SSL.

Based on the extended experiments of cancers of lung and
lymph node, we further confirmed the conclusion on CRC that

when a small amount of labeled data was used, SSL plus a large
amount of unlabeled data performed better than SL (with the
same number of labeled images). SSL performance can be com-
pared to SL with massive annotations, which confirms the con-
clusion that SSL may reduce the need for the amount of
annotation data on pathological images.

In practice, the exact amount of the data that needs to be labeled
is generally unknown. Nonetheless, as shown in our experiments, it
is an alternative low-cost approach to conduct SSL. Hence, it is an
effective strategy to wisely utilize all data so that a small amount of
data is first labeled to build a baseline model based on SSL. If the
results are not satisfactory for this baseline model, the amount of
labeled data should be increased. This strategy is feasible since as
expected, SSL requires a much smaller amount of labeled data to
achieve the same performance compared with SL.

Our work confirmed that unlabeled data could improve the
accuracy on insufficient labeled pathological images. We

* * **

Fig. 5 Accuracy distribution of five models on the testing set of LC25000
dataset (number of samples/patches per testing set = 3000; number of
experiments per model = 8). The boxes indicate the upper and lower
quartile values, and the whiskers indicate the minima and maxima values.
The horizontal bar in the box indicates the median, while the cross indicates
the mean. The circles represent data points, and the scatter dots indicate
outliers. * indicates significant difference, and ** indicates no significant
difference. The Wilcoxon-signed rank test (sample size/group = 8) is then
used to evaluate the significant difference in the accuracy between two
models. Two-sided P values are reported, and no adjustment is made. The
average AUC and standard deviation (sample size = 8) are calculated for
each model. Lung-5%-SSL vs. Lung-5%-SL: 0.960 ± 0.006 vs.
0.918 ± 0.023, P value = 0.012; Lung-20%-SSL vs. Lung-20%-SL:
0.989 ± 0.003 vs. 0.961 ± 0.022, P value = 0.011; Lung-20%-SSL vs. Lung-
80%-SL: 0.989 ± 0.003 vs. 0.993 ± 0.002, P value = 0.093.

* * **

Fig. 6 Area under the curve (AUC) distribution of five models on the
testing set of PatchCamelyon data set (number of samples/patches per
testing set = 32,768; number of experiments per model = 8). The boxes
indicate the upper and lower quartile values, and the whiskers indicate the
minima and maxima values. The horizontal bar in the box indicates the
median, while the cross indicates the mean. The circles represent data
points, and the scatter dots indicate outliers. * indicates significant
difference, and ** indicates no significant difference. The Wilcoxon-signed
rank test (sample size/group = 8) is then used to evaluate the significant
difference of AUCs between the two models. Two-sided P values are
reported, and no adjustment is made. The average AUC and standard
deviation (sample size = 8) are calculated for each model. Pcam-1%-SSL
vs. Pcam-1%-SL: 0.947 ± 0.008 vs. 0.912 ± 0.008, P value = 0.012; Pcam-
5%-SSL vs. Pcam-5%-SL: 0.960 ± 0.002 vs. 0.943 ± 0.009, P value =
0.011; Pcam-5%-SSL vs. Pcam-100%-SL: 0.960 ± 0.002 vs. 0.961 ± 0.004,
P value = 0.888.
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demonstrated that SSL with a small amount of labeled data of
three cancers achieved comparable prediction accuracy as that of
SL with massive labeled data and that of experienced pathologists.
SSL may have excellent potentials to overcome the bottleneck of
insufficient labeled data as in many medical domains. This study
thus supported the potential applications of SSL to develop
medical AI systems. In addition, we have noticed some other
recent works46,47, which have made a new strategy on the sparse
and incomplete annotations to reduce the annotation effort for
cell detection. This strategy is also applicable to annotations in
our WSIs, and the unlabeled data is useful for SSL. In future work,
how to make annotations and use unlabeled data more effectively
should be further studied to improve the efficiency of medical AI
development.

Methods
Ethics. This study was approved by the Institutional Review Board of Xiangya
School of Medicine, Central South University. Due to the retrospective nature of
the study, informed consent was waived for the de-identified medical record data
used in this study.

Data sets. Our CRC dataset was composed of 13,111 WSIs collected from
13 sources, including 10 hospitals, a professional adicon clinical laboratory (ACL)
and two public databases (Table 1). The CRC WSIs were then divided into four
data sets for different aims (Dataset-PATT, Dataset-PAT, Dataset-PT, Dataset-
HAC, Supplementary Table 3). All WSIs were made from formalin-fixed and
paraffin-embedded (FFPE) method.

Dataset-PATT was used for patch-level training and testing, Dataset-PAT for
independent patch-level test. All the images from other hospitals as well as ACL
(Dataset-PT) were used for patient-level testing. Dataset-HAC was used for
human-AI competition.

Dataset-PATT included 62,919 patches (cancer 30,056, non-cancer 32,863)
from 842 subjects (cancer 614, non-cancer 228, Table 1) from Xiangya Hospital
(XH). The Dataset-PAT (NCT-CRC-HE-100K) from NCT biobank and the UMM
pathology archive (NCT-UMM, National Center for Tumor diseases, University
Medical Center Mannheim, Heidelberg University, Germany) was used for further
patch-level validation, where there were 100,000 patches from 86 slides of CRC
tissue. All the patches can be downloaded at https://zenodo.org/record/
1214456#.XV2cJeg3lhF, whose labels were from the NCT-UMM website.

The Dataset-PT consisted of 12,183 WSIs from 10 hospitals, ACL and the
cancer genome atlas (TCGA-FFPE, https://portal.gdc.cancer.gov/), which were
used for extensive patient-level prediction. The WSIs from 9 of 13 centers and 213
WSIs from XH-Dataset-HAC were included to Dataset-HAC for human-AI
competition after checking their labels carefully. Because XH was the biggest data
source, the WSIs from XH were distributed independently and exclusively in
Dataset-PATT, XH-Dataset-PT, and XH-Dataset-HAC.

Digitization and annotation of pathological slides. In the 10 hospitals and ACL,
the technicians randomly selected slides from the archive library. The slides from
2010 to 2019 were scanned with a KF-PRO-005 scanner (KFBIO company, Ningbo
City, China) at ×20 magnification. The number of selected patients collected on the
same day was limited to less than 50 to make sure the selected WSIs for this study
were not unduly influenced by samples collected on any one single day.

All diagnosis of images from TCGA, NCT-UMM were available online, and
their labels were used directly. The WSIs from the 10 hospitals and ACL in
Dataset-PT were independently reviewed by two senior and seasoned pathologists.
When their diagnoses were consistent, the WSI was then included. Dataset-HAC
was used for human-AI competition, and the review criteria were more rigorous.
The label in Dataset-HAC was more strictly checked by three senior highly
experienced pathologists who independently reviewed the pathological images
without knowing the previous clinical diagnosis. If a consensus was reached, the
WSI was included; otherwise, two other independent pathologists would join the
review. After a discussion among the five pathologists, the WSI was included for
the Human-AI competition only if they reached an agreement.

Annotation of patches in Dataset-PATT. The presented approach was based on
the patch-level prediction. There was high phenotypic diversity within tumor and
among tumors, the representation of cancer tissue in patches seriously affects the
training. Therefore, the patches in Dataset-PATT were carefully selected to include
all common tumor histological subtypes, ensuring the selected patches were widely
representative for practical diagnosis.

The technician randomly selected 842 slides from pathological archive library of
Xiangya hospital and then scanned them using a KF-PRO-005 scanner (KFBIO
company, Ningbo City, China) at ×20 magnification. Because the shape of the CRC
tissue was more diverse than that of non-cancerous tissue, more cancer positive
WSIs (614) and less cancer negative WSIs (228) were selected. For the 614 positive

WSIs, the numbers of positive WSIs of various CRC subtypes were basically
consistent with the subtype morbidity in the population.

Two pathologists used image browser software provided by KFRIO company
(Ningbo City, China) from one WSI to export some non-overlapping regions of
interest (ROI) according to the size of WSI. In order to maintain the diversity of
cancer cell distribution, the 4–10 positive ROIs were extracted from each positive
WSI. In order to ensure that the number of positive ROIs and negative ROIs was
balanced, the 10–25 ROIs were extracted from each negative WSI. One ROI had a
size of about 1024 × 768 pixels, and was split into about 6 non-overlapping patches
with 300 × 300 pixels in order to be adaptable to meet the input size of most neural
networks. The two pathologists then manually reviewed the patches, each of which
was weakly labeled with either cancer or cancer-free. When two pathologists
reached a consensus on the annotation of patches, which were kept in the Dataset-
PATT.

In total, 62,919 patches were obtained. The 30,056 labeled tumor patches from
614 patients and 32,863 normal patches from 228 healthy subjects were included in
Dataset-PATT, that is, an average of 49 patches per cancerous WSI and 144
patches per healthy WSI were included. Meanwhile, the numbers of patches
containing various proportions of cancer cells were approximately equal.

Patch-level SSL and SL models. The Dataset-PATT was randomly divided into
training set and testing set according to the proportions shown in Table 2, and the
patches from the same subject/WSI would not be in different sets, to ensure
independence of the different data sets. Meanwhile, the patches from 70% of
842 subjects/WSIs were used as the training set, while the remaining patches from
30% subjects/WSIs were used as the testing set.

When the number of WSIs (70% of 842 WSIs) in the training set is known,
there are two ways to reduce the labeling effort on the patches from these WSIs.
The first method is that the patches from some WSIs are labeled, while the patches
from other WSIs are unlabeled. However, there are some differences between WSIs
such as staining, disease subtypes. SSL theoretically assumes that data points, both
labeled and unlabeled, are smooth48. In other words, the labels of unlabeled patches
are potentially determined by neighboring labeled patches in the feature space. If
the labeled patches and the unlabeled patches come from different WSIs, the
distance of labeled and unlabeled patch will unavoidably include the differences of
colors and tissue structures among WSIs included in the training sets, thereby the
smoothness assumption among data points is violated.

By contrast, because the labeled patches and unlabeled patches from the same
WSI are similar and will not be affected by differences between WSIs. The
smoothness assumption of SSL can be better met. Therefore, in order to extract n%
(5%, 10%, or 70%) of total patches (62,919) as the labeled patches for training, we
used another method that the n%/70% of all the patches from each WSI in the
training set were randomly selected and labeled, and the remaining patches of the
WSI were not labeled (labels were masked).

Five patch-level models (two SSL, three SL) were trained using labels of
different portions of these patches (Table 2). In the training of Model-5%-SSL and
Model-10%-SSL, we used SSL and kept labels for small proportions (i.e., 5% and
10%) of the total patches (62,919) and masked label information for the remaining
patches (65% and 60%). In the training of Model-5%-SL, Model-10%-SL, and
Model-70%-SL, we used SL with 5%, 10%, 70% of the total 62,919 patches.

Algorithm pipeline. Because WSI was very large (>10,000 × 10,000 pixels), the
patches in a WSI were firstly extracted, and the patch-level models were trained to
derive cancerous probability at patch-level. Finally, all the patch-level results on a
WSI were combined to infer the cancerous probability of the WSI/patient. The flow
chart is shown in Fig. 1.

Patch-level SSL and SL. The patch-level models included SL and SSL versions. For
SL, the patches from the WSIs were input to the convolutional neural network
(CNN). Our previous work tested some known CNNs, such as VGG49, ResNet50,
Inception51, and found that Inception V3 achieved the most consistent results on
the CRC datasets19. Therefore, we used Inception V3 as the baseline model of SL.
The patch size we labeled was 300 × 300, so we used the bilinear interpolation
method52 to scale the patch size to 299 × 299, which was the default input size of
Inception V3. The top output layer was removed, and the output category was
modified to two (cancer or non-cancer).

The SSL version was implemented based on the mean teacher method26, where
two Inception V3 were trained, one as a student and the other as teacher, which
was one of SSL method (Supplementary Fig. 1). The student network used SL and
required inputted patches, which included a small number of patches with labels
and a large number of unlabeled patches. For the labeled patches, the cross-entropy
of the predicted and real label was calculated as the classification cost. For
unlabeled patches, the teacher network provided the pseudo labels, and the mean
square error of the predicted labels and pseudo labels was calculated as the
consistency cost. The sum of consistency cost and classification cost, as the total
cost, was used for the student network training. In this study, the two networks
were performed on the same architecture with SL, i.e., Inception V3.
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Network training at patch level. The Inception V3 was initialized with the pre-
trained model on ImageNet database53, and then trained on the pathological
images. During training, the weights in all layers of inception V3 were updated. We
used the same preprocessing in protocols we used earlier19. All background patches
without any cell tissue were removed. After data augmentation (image zoom, flip,
color change), the grayscale of each pixel was normalized to [−1,1].

For each model, we adopted a general strategy where one-tenth of the labeled
training set was taken out as the validation set for hyperparameters selection. The
optimal hyperparameters with the highest accuracy in the validation set were
selected for training the models. The parameters were listed in Supplementary
Table 4.

In the SSL, because of the imbalance between the labeled and unlabeled data, we
maintained the same proportion of labeled and unlabeled patches in each mini-
batch of 128 patches. The optimizer was Adam. The training period was 500
epochs, and each epoch included 100 steps. If the accuracy on the validation set
cannot be improved for 80 consecutive epochs, the early stopping54 was applied. In
order to prevent the training from ending prematurely, 50 epochs for pre-training
were executed before the early stopping. L2 decay was used and the decay
coefficient was set to 0.0001. The teacher network was initialized with the student
network. The student network would update the weights in each step, but the
teacher network used exponential moving average to update the weights after one
epoch ended. The smoothing coefficient was set to 0.95.

In SL, the learning rate was 0.001, and the exponentially decay was used with a
decay rate of 0.99. The number of epochs was 500, the steps per epoch were 100.
The early stopping with patience 50 was also applied. The coefficient of L2 decay
was 0.0001, and the batch size was 64.

Clustered-based WSI inference. Because the accuracy of patch-level models
cannot be 100%, there were serious false positives in WSI predictions if any patch
in the WSI was identified as positive (cancer) and used as a criterion for predicting
the WSI cancerous status. Intuitively, because the tissues in WSI were continuous,
the area with cancer should be distributed continuously and included several
continuous positive patches. This intuition had been used to effectively control the
false-positive of functional magnetic resonance images55. We designed a simple
clustering-based inference method. If some continuous patches were identified as
having cancer by the patch-level model, the cancer may indeed exist on WSI. For
statistical analysis on patient-level prediction, please refer to Supplementary A. The
cluster size of four patches was expected to best control the false-positive rate as
shown in our early study19, that is, the condition of continuously identifying four
patches with cancer on WSI was used as the basis for determining the existence of
cancer in WSI.

Patient-level diagnosis. Clinically, multiple WSIs may be obtained for one
patient. The inference on the patient level was based on positive sensitivity, that is,
if all WSIs from the same patient were identified as negative (no cancer), then the
patient was negative, otherwise the patient was positive. At the patient-level
diagnosis, Model-10%-SSL, Model-10%-SL, and the accurate SL model (Model-
70%-SL) developed in our previous study19 were compared.

Methodology of lung and lymph node. Two public data sets were used for the
extended evaluation of SSL. The Dataset-Lung was from the LC2500036, which
consisted of 15,000 lung images (patches) including adenocarcinoma, squamous
cell carcinoma, and benign tissue, and the number of each class was 5000 patches.
The 20% images were used for testing, while the remaining 80% for training. A
small number of labels (5%, 20% of 15,000 patches) together with a large number of
unlabeled patches (75%, 60%, the labels were ignored) were used for SSL, while the
5%, 20%, and 80% labeled images were used for SL (Table 3).

The Dataset-Pcam was from PatchCamelyon dataset37 including up to 300,000
patches of lymph node tissues, which had been split into training, validation, and
testing sets. Meanwhile, the number of patches in training set was 262,144 patches,
and the 1% and 5% of the patches was randomly extracted to simulate a small
number of labeled data, while the remaining patches to simulate massive unlabeled
data (the labels were ignored). The 36,728 patches in testing set were used for
testing (Table 4), but 32,768 patches of validation set were not used.

Like CRC experiments, the base SL model was also Inception V3, and the mean
teacher method was used for SSL. The 10% patches of the labeled training set were
randomly selected for the validation set, which was used for the hyperparameter
selection. This selection started from the hyperparameters of the CRC models, and
tried the parameters nearby. The parameters were listed in Supplementary Tables 5
and 6.

The processing pipeline of the images from the lung and lymph node was like
the CRC. Meanwhile, the patches were scaled to 299 × 299 based on the image
interpolation. For SL of lung, the batch size was 64, the number of epochs was 500,
the steps of each epoch were 100. The initial learning rate was 0.001, and the
exponential decay was used with the decay rate was 0.99. The loss was the cross
entropy with the L2 norm constraint, and the coefficient of L2 decay was equal to
0.0001. The early stopping was also used, where the patient was 50 epochs. For SSL
of lung, the batch size was 32, the number of epochs, the steps, loss were the same
with SL, but the learning rate was 0.0001, and remained the same. After the pre-

training of 150 epochs, the early stopping was also used with the patience of 100
epochs. The smoothing coefficient of exponential moving average of the teacher
network was set to 0.9.

Because the number of training patches in Dataset-Pcam was very large and the
experiment time was very long, we continued to use the hyperparameters in lung
experiments and tried to optimize them. For SL, the batch size, epochs, initial
learning rate, decay rate, weights of L2 decay were the same with SL of lung, but the
steps were changed to 300. We found the AUC and accuracy of Pcam-100%-SL can
be compared to the benchmark provided by37, so the hyperparameters were
applicable. For SSL, the steps were 200. After the training of 80 epochs, the early
stopping with patience 100 was used. The remaining hyperparameter were the
same with SSL for lung models.

Statistics and reproducibility. To reduce the impact of random data set division
and formally compare the performance of different methods, we applied the cross-
validation and several statistical tests as following56. Taking CRC as an example,
70% of WSIs was randomly selected for the training set, and 30% of WSIs for
testing set. Because the deep learning was time-consuming, the process of CRC
dataset division was repeated eight times as well as lung cancer and lymphoma, and
eight independent pairs of training set and testing set of every cancer were
obtained. We repeated the training of the models such as Model-n%-SSL/SL, Lung-
n%-SSL/SL or Pcam-n%-SSL/SL on the training set in the eight obtained data set
pairs, and produced eight versions of each model, which were used for prediction
on their testing set in the same data set pair respectively. The mean and standard
deviation of the evaluation index (AUC or accuracy) were then calculated. The
Wilcoxon-signed rank test was used to evaluate the significant difference between
the two models based on their AUC or accuracy (sample size/group = 8). For
patient-level evaluation, the Model-10%-SSL/SL, Model-70%-SL predicted the
subjects from the twelve centers respectively, and the AUC of every model on each
center was obtained. The Wilcoxon-signed rank test was also used to evaluate the
significant difference of any two models based on their AUC on the centers (sample
size/group = 12). Two-sided P values were reported for all statistical tests, and no
adjustment was made.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The pathological images generated in this study have been deposited in the figshare
database under accession code [https://doi.org/10.6084/m9.figshare.15072546.v1]57,
where the images of Dataset-PATT, Dataset-Lung, and Dataset-Pcam can be used for
patch-level retrain and retest. The independent patch-level testing set (Dataset-PAT) and
500 whole slide images in Dataset-PT have been provided with the source code for the
patch-level and patient-level demo under accession code [https://zenodo.org/record/
5524324#.YU09Ny-KFLY]. The remaining WSIs in Dataset-PT and Dataset-HAC can be
obtained by contacting the corresponding author by Email [Kuan-Song Wang
<375527162@qq.com>]. All data access in this study can only be requested by the
researchers and for scientific research purposes. The data access requests will be
processed in 10 business days. Source data are provided with this paper.

Code availability
The source code generated in this study has been deposited in the zenodo database under
accession code [https://zenodo.org/record/5524324#.YU09Ny-KFLY], including training
and testing code of three cancers, and a demo58. The code is licensed under GNU
(GNU’s Not Unix) General Public License, and implemented by Python59 and
Tensorflow60.
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