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A B S T R A C T   

This study investigates the impact of the COVID-19 pandemic on the stock market crash risk in 
China. For this purpose, we first estimated the conditional skewness of the return distribution 
from a GARCH with skewness (GARCH-S) model as the proxy for the equity market crash risk of 
the Shanghai Stock Exchange. We then constructed a fear index for COVID-19 using data from the 
Baidu Index. Based on the findings, conditional skewness reacts negatively to daily growth in total 
confirmed cases, indicating that the pandemic increases stock market crash risk. Moreover, the 
fear sentiment exacerbates such risk, especially with regard to the impact of COVID-19. In other 
words, when the fear sentiment is high, the stock market crash risk is more strongly affected by 
the pandemic. Our evidence is robust for the number of daily deaths and global cases.   

1. Introduction 

Due to the onset of the COVID-19 pandemic, there has been a significant decline in stock market prices, which has placed un
precedented pressure on global financial markets. In this regard, existing studies have examined the impact of COVID-19 on either 
stock market returns or volatility, with some conclusions supported by empirical evidence (Baker et al., 2020; Al-Awadhi et al., 2020; 
Phan and Narayan, 2020; Ashraf, 2020; Kartal et al., 2020; Zhang et al., 2020a; Sharif et al., 2020). In addition, because of the 
co-movement in global stock markets (Dai et al., 2019; Wen et al., 2019a, 2019b, 2019c, Dai et al., 2020), global equities have 
plummeted, followed by a spike in market volatility. In a related study, Baker et al. (2020) concluded that the level of market volatility 
(as of March 2020) could be equivalent to or even surpass previous crises, such as Black Monday (October 1987), the Global Financial 
Crisis (December 2008), the Great Crash (1929), and the Great Depression (the early 1930s). Schell et al. (2020) also emphasized that 
this time period is indeed different, implying that only COVID-19 exhibits negative returns from the Public Health Risk Emergency of 
International Concern (PHEIC) announcements. Thus, motivated by the literature, the present study focuses on another pivotal 
downside risk during the pandemic: the stock market crash risk and investor sentiment in China. Notwithstanding the literature on 
infectious disease outbreaks and stock market performance, this study not only quantifies the stock market crash risk in the country but 
also investigates the role of investor sentiment via the Baidu Index and the number of COVID-19 infected cases and deaths. In doing so, 
this study sheds light on how COVID-19 proxies and investor behaviors may predict equity market crash risk at the onset of a future 
pandemic. 

* Corresponding author. 
E-mail address: pfdai@ecust.edu.cn (P.-F. Dai).  

Contents lists available at ScienceDirect 

Research in International Business and Finance 

journal homepage: www.elsevier.com/locate/ribaf 

https://doi.org/10.1016/j.ribaf.2021.101419 
Received 7 September 2020; Received in revised form 23 March 2021; Accepted 28 March 2021   

mailto:pfdai@ecust.edu.cn
www.sciencedirect.com/science/journal/02755319
https://www.elsevier.com/locate/ribaf
https://doi.org/10.1016/j.ribaf.2021.101419
https://doi.org/10.1016/j.ribaf.2021.101419
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ribaf.2021.101419&domain=pdf
https://doi.org/10.1016/j.ribaf.2021.101419


Research in International Business and Finance 57 (2021) 101419

2

After the COVID-19 outbreak, the stock market suffered a severe shock, and stock market crash risk became significantly greater 
than normal. In fact, during the first three months of 2020 (59 trading days), there were 6 days with a single-day crash of 2% or more. 
In comparison, over the past three years (730 trading days), there were only 21 days with such a decline. Based on this situation, some 
scholars have begun to focus on stock market crashes during pandemics. For example, Mazur et al. (2020) discussed COVID-19 and 
stock market crashes and defined them in terms of extreme returns and volatility. 

Crash risk, measured here by conditional skewness, captures negative asymmetry risk and extreme downside risk in the stock 
market (Chen et al., 2001). Previous studies have also analyzed stock market crash risk from different perspectives. For instance, Chen 
et al., 2001 performed an empirical investigation to forecast crash risk (skewness), both at the firm and whole-market levels, while Kim 
et al., 2011a; 2011b focused on crash risk at the firm level. 

As for the present study, it investigates the impact of COVID-19 on the crash risk of the Chinese stock market. For this purpose, we 
first employed the GARCH-S model to estimate the daily time-varying skewness of stock returns and then used it as a measure of stock 
market crash risk. In the subsequent empirical analysis, we not only analyzed the impact of the severity of the pandemic (measured by 
the number of daily confirmed cases) on crash risk but also examined the interaction between the severity of the pandemic and investor 
sentiment. 

This study contributes to the literature in several ways. First, we examined the risk of stock market crashes during a pandemic, with 
specific focus on asymmetric negative and extreme risks. Second, using the Baidu Index, we created a fear sentiment index toward the 
COVID-19 pandemic to determine whether the panic related to it correlated with stock market crashes. Finally, we investigated the role 
of fear sentiment with regard to the impact of COVID-19 on stock market crash risk. More importantly, our findings carry several policy 
implications, including alleviating investor panic to mitigate equity market crash risk and offering a preventive measure related to the 
number of COVID-19 infected cases and deaths. Our findings may also provide policymakers with a deeper understanding of how to 
respond to and cope with investor pessimism about equity markets in a timely and comprehensive manner, especially during financial 
downturns. 

The remainder of this study is as follows. Section 2 reviews the current literature, while Section 3 describes the data and meth
odology. Then, Section 4 summarizes the empirical results regarding the impact of COVID-19 on the stock market crash risk in China. 
Finally, Section 5 presents the conclusions. 

2. Literature review 

In this study, it is essential to construct a sound theoretical framework on how the COVID-19 pandemic has adversely affected 
financial markets. Goodell (2020) showed that markets are likely to react similarly to the pandemic as to other disasters, such as 
natural disasters (Gao et al., 2020) or terrorism (Wang and Young, 2020). There is also a common trait that investors’ risk preferences 
or moods toward certain events might vary considerably, leading to an increase in fear-induced sentiment (He et al., 2019; He, 2020; 
Liu et al., 2020a, 2020b; Zhang et al., 2020b; Dai et al., 2021). While previous disasters have occurred in specific regions of the world 
with partial disruptions, the COVID-19 pandemic has disrupted travel as well as economic transactions on a global scale. Hence, the 
effects of the pandemic on the overall economy will not only significantly influence domestic demand but will also limit supply, 
negatively impact firms’ future cash flows, and foster public pessimism about the future. 

The COVID-19 pandemic is considered the most significant global health crisis since the influenza pandemic of 1918. Thus, there 
are many unknown perspectives to examine, with financial crashes being one of the greatest concerns. Mazur et al. (2020) claimed that 
the financial market crash of March 2020 was triggered by government reactions. Interestingly, negative effects were more pro
nounced in specific industries such as the crude oil, real estate, entertainment, and hospitality sectors. Their study also confirmed the 
findings of Mishkin and White (2002), who found that the equity market crash could result in a drop of 20%–25% in the United States 
(U.S.) equity index, compared to previous crises (e.g., World War I, World War II, etc.) due to the sequence of panic selling. Thus, our 
motivation is to examine the determinants, including investor sentiment. 

Previous research has also shown that the pandemic’s status may predict equity market crash risk. For instance, Giglio et al. (2020); 
Wen et al., 2019b, a, and Zhang et al., 2020c showed that short-run investor expectations may correlate with stock market crash risk. It 
should be noted that previous studies (Giglio et al., 2019, 2020) also confirmed that the probability of an equity market crash before a 
crisis is lower because investors tend to be more optimistic about stock market returns. Notwithstanding these findings, a further 
investigation of COVID-19 is promising, as we take no stance on whether the likelihood of a market crash would significantly change in 
the two sub-periods, i.e., before and after the pandemic. Given the foregoing discussion and argument, we posited the following 
hypothesis: 

H1. The equity market crash risk in China during the COVID-19 pandemic is higher than in the preceding period. 

In order to examine H1, we divided our samples into the two aforementioned sub-periods and employed statistical testing. Previous 
literature (e.g., Giglio et al., 2019, 2020; Gabaix, 2012; Wachter, 2013) also forms a sound framework for the construction of our 
second hypothesis, which is posited as follows: 

H2. There is no relationship between investor sentiment and stock market crashes regarding the onset of the COVID-19 pandemic. 

Although there is mounting literature examining how investors have overreacted (or underreacted) to the COVID-19 pandemic (e. 
g., Aslam et al., 2020; Schell et al., 2020; Yarovaya et al., 2020), what drives the stock market crash risk in China has yet to be 
addressed. It is marginally relevant to consider that the combination of economic uncertainty and behavioral factors positively 
contribute to financial asset crash risk (e.g., Bitcoin (Kalyvas et al., 2020) and the Chinese stock market (Jin et al., 2019; Luo and 
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Zhang, 2020; Ju, 2019; Wongchoti et al., 2020)). Notably, how the aforementioned factors drive the stock market during disaster 
periods remains unclear. Thus, we used two proxies (i.e., the fear index for COVID-19 from the Baidu Index and actual pandemic 
figures) to predict changes in the stock market crash risk index, constructed via the GARCH-S model. Proxy substitution also served as 
our alternative approach to determining whether the findings were robust. 

Finally, we addressed the gap in the literature via two research questions: 1) What is the equity market crash risk before and after 
the COVID-19 pandemic? and 2) What drives the stock market crash risk in China, i.e., do investors’ fears and/or current COVID-19 
statistics matter to the stock market crash risk in China? Addressing these questions will not only benefit practitioners by increasing 
caution over extreme market shocks but also increase the academic understanding of the empirical evidence. Based on the afore
mentioned arguments, our research questions are closely related to the literature on financial market reactions to the COVID-19 
pandemic. However, few studies have examined the effect of investor sentiment, especially fear sentiment, on systematic risk in 
emerging economies during the onset of COVID-19. Moreover, the majority of the research has only addressed the advanced markets 
(e.g., the U.S. or European markets), with few studies focusing on the phenomenon in emerging economies. Therefore, the present 
study may shed light on how the level of the stock market crash risk in China changes during a pandemic. 

3. Data and methodology 

3.1. COVID-19 variables 

In this study, the proxy used to measure the severity of the COVID-19 pandemic was the logarithmic growth rate of daily confirmed 
cases (rCases). We also constructed an alternative variable using the logarithmic growth rate of daily deaths (rDths) to run the 
robustness check. All of the data were retrieved from the China Stock Market & Accounting Research (CSMAR) database. 

Following Da et al., 2011, we also created a COVID-19-induced fear sentiment index (fearSent) based on the Baidu database. In this 
case, if the search volume of COVID-19-related keywords was high, then it indicated that people were in fear (or even panic) about the 
pandemic (Salisu and Akanni, 2020). Specifically, we defined the fear index as the log of search volume plus 1. Moreover, we set a 
dummy variable, D_fear, for the fear index. In this regard, if the search volume was greater than the median of the 2020 sample, then 
the value of this dummy was1 or otherwise, zero. Fig. 1 displays the trends of daily confirmed cases and fear sentiment. 

3.2. Measuring stock market crash risk 

In this study, the market returns were collected from the value-weighted market returns of Shanghai A shares, which are frequently 
used in the literature (e.g., Ashraf, 2020; Al-Awadhi et al., 2020). To measure the stock market crash risk, we followed Chen, Hong, and 
Stein (2001), who associated such risk with the conditional skewness of the market returns. These authors calculated 
six-month-horizon skewness from the daily returns. However, we used the GARCH-S (GARCH with skewness) model to estimate daily 
skewness. Note the following equation: 

rt = μ + εt; εt ∼
(
0, σ2

ε
)

εt = h1/2
t ηt; ηt ∼ (0, 1); εt|It− 1 ∼ (0, ht)

ht = α0 + α1ε2
t− 1 + α2ht− 1

st = β0 + β1η2
t− 1 + β2st− 1

(1)  

Fig. 1. The trends of daily confirmed cases and fear sentiment.  
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where rt is the value-weighted market returns of Shanghai A shares; εt is the residual; ηt is the standardized residual; It− 1 is the in
formation set at period t; ht is the conditional heteroscedasticity with a classical GARCH (1,1) structure; and st is the conditional 
skewness process, which we specified as both autoregressive and dependent on lagged return shocks. In order to estimate the GARCH-S 
model, following Leon et al. (2005), we used a Gram–Charlier series expansion, truncated at the third moment. Note that due to the 
high nonlinearity of the likelihood function, we used the starting values of the parameters, estimated from the simple GARCH (1,1) 
model. 

The market data was also obtained from the CSMAR database, with the sample period spanning from January 1, 2017 to March 31, 
2020. Table 1 provides a summary of the descriptive statistics for the market returns regarding the entire sample and the subsamples, 
including any unconditional skewness. Note that the skewness of the entire sample was − 0.71, while during the COVID-19 epidemic 
(January 2020–March 2020), this value was − 1.47, compared to − 0.30 in the 2017–2019 sample period. 

From the statistical evidence, we did not reject the mean difference between the two subsamples in Table 1 (t-stat = 1.25, ρ =
0.211), i.e., pre− COVID-19 pandemic (0.0002) and post− COVID-19 pandemic (− 0.0016). This implies that there was no difference in 

Table 1 
The descriptive statistics for the market returns of the sample and subsamples.  

Subsample Obs. Mean Min. Max. Std. Dev. Skewness 

Entire sample 789 0.00009 − 0.075 0.055 0.011 − 0.712 
Jan. 2017–Dec. 2019 731 0.0002 − 0.053 0.055 0.010 − 0.302 
Jan. 2020–Mar. 2020 58 − 0.0016 − 0.075 0.031 0.017 − 1.469 

Notes: We divided our sample into two subsamples: pre- and post− COVID-19 pandemic. 

Table 2 
Estimation results of the GARCH-S model.  

Parameter Value Parameter Value 

μ 0.00005*** 
(10.47) 

β0 0.00001 
(0.98) 

α0 0.00001*** 
(39.94) 

β1 0.036*** 
(15.37) 

α1 0.117*** 
(101.64) 

β2 0.148*** 
(58.07) 

α2 0.889*** 
(891.12) 

AIC − 4.556 

Log-likelihood 1802.220 SIC − 4.514 

Notes: ***, **, and * represent statistical significance at the 1%, 5%, and 10 % levels, respectively. The t-statistics are pre
sented in parentheses. 

Fig. 2. Conditional skewness.  
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the market returns when the COVID-19 pandemic emerged. However, with regard to the skewness index (representing market crash 
risk), we observed a significant difference in the mean between the two periods. More precisely, the level of the market crash in 2020 
was significantly higher than that in the previous period (t-stat = 2.50, ρ = 0.01). Thus, H1 was not rejected, implying higher extreme 
volatility in the Chinese equity market during the COVID-19 pandemic. 

Table 2 presents the estimation results of the GARCH-S model. As expected, there was the presence of significant conditional 
skewness. Specifically, the coefficient of lagged skewness was positive and significant (0.148 with t-statistic 58.079), indicating that 
skewness is persistent. In addition, the coefficient of the shock to skewness was positive and significant (0.036 with t-statistic 15.373), 
which is similar to the variance case. Overall, the majority of the coefficients were significant, implying the appropriateness of using 
the GARCH-S model to estimate the skewness of the market returns. 

Fig. 2 presents the trajectory of conditional skewness, from which we can visually observe that skewness is time-varying and 
clustering. In particular, a significant number of cases showed negative skewness, indicating that the crash risk at these points was 
high. In fact, the largest negative value of skewness (− 0.76) occurred during the COVID-19 outbreak, i.e., on February 4, 2020. 

3.3. Model specifications 

This study employed a simple time series model to examine the relationship between the COVID-19 outbreak and stock market 
crash risk. In this case, our dependent variable was crash risk, i.e., the conditional skewness calculated from the estimation results of 
the GARCH-S model. Due to the persistence of skewness, we added the lagged skewness terms in the benchmark regression model, 
which is specified as 

Skewt = c + α · Skewt− 1 + β · rCasest− 1 + εt (2)  

where Skewt is the conditional skewness derived from the GARCH-S model, and rCasesis the logarithmic growth rate of daily confirmed 
cases. In addition, c is a constant term, α and β are the coefficients of the one-period lagged term and the logarithmic growth rate of 
infected cases, respectively, and ε is the error term in the estimation. We denoted Equation (2) with lagged skewness, as in Model 1. 

We also considered whether the COVID-19-induced fear sentiment index (fearSent) affects crash risk. Thus, we estimated the 
following model (Model 2): 

Skewt = c + α · Skewt− 1 + λ · fearSentt + εt (3)  

Skewt = c + α · Skewt− 1 + β · rCasest− 1 + λ · fearSentt + εt (4)  

where the terms in Equations (3) and (4) have analogous meanings to those presented above. In Equation (3), we substituted rCase with 
fearSent to examine how investor sentiment could predict stock market crash risk. Moreover, we used the dummy variable, d_fear, as 
the fear sentiment proxy variable to re-estimate Model 2. To further investigate the interaction effect between daily confirmed cases 
and fear sentiment, we added the interaction term in Model 2. In this regard, we set θ as the coefficient of the interaction term, while 
the other components were the same as those in Equation (4). Then, we obtained the model specification (Model 3) as follows: 

Skewt = c + α · Skewt− 1 + β · rCaset− 1 + λ · fearSentt + θ · rCaset− 1 · fearSentt + εt (5) 

Next, we employed the Granger causality test to detect any causal relationship between stock market crash risk and fear sentiment. 
The model for the Granger causality test is specified as follows: 

Skewt = c1 +
∑p

i=1
αiSkewt− i +

∑p

j
βjfearSentt− j + ε1t (6)  

faerSentt = c2 +
∑p

i=1
λiSkewt− i +

∑p

j=1
δjfearSentt− j + ε2t (7)  

where p is the largest lag order, which is determined through the vector autoregression model and the Bayesian information criterion. 
The null hypothesis for Granger causality is summarized as “fearSent does not cause the Granger causality to Skew” (fearSent→Skew). 

For our robustness test, we selected the growth rate of daily death cases, as the substitute for the growth rate of confirmed cases, in 
order to predict equity market crash risk. We marked the corresponding model as Model 4, which is composed of Equations (8), (9), 
and (10): 

Skewt = c + α · Skewt− 1 + β · r(Deaths)t + εt (8)  

Skewt = c + α · Skewt− 1 + β · r(Deaths)t + λ · fearSentt− 1 + εt (9)  

Skewt = c + α · Skewt− 1 + β · r(Deaths)t + λ · fearSentt− 1
θ · r(Deaths) · fearSentt− 1 + εt

(10) 

Finally, because of the integration of the financial markets, we further conducted estimations to predict equity market crash risk 
with the number of COVID-19 infected cases and deaths. Our justification for this was that the Chinese investors not only reacted to 
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local information but also to global news, which might have influenced their behaviors toward market crash risk. For this goal, we 
modified Equations (2), (4), and (5) into Equations (11), (12), and (13), respectively, to form Model 5: 

Skewt = c + α · Skewt− 1 + β · r(GlobalCases)t + εt (11)  

Skewt = c + α · Skewt− 1 + β · r(GlobalCases)t + λ · fearSentt− 1 + εt (12)  

Skewt = c + α · Skewt− 1 + β · r(GlobalCases)t + λ · fearSentt− 1
θ · r(GlobalCases) · fearSentt− 1 + εt

(13)  

4. Results 

4.1. COVID-19 and stock market crash risk 

The estimation results of Model 1 are reported in Table 3. In column (1), note that the coefficient of rCasest is negative and sig
nificant. This is consistent with our expectation that the COVID-19 outbreak has a negative impact on stock market crash risk. This 
result also reflects the reality. With the rapid spread of the pandemic, the values of listed companies were generally affected, and the 
stock market entered a clear economic downturn, accompanied by large declines or even crashes. Surprisingly, there was no predictive 
power for the other lagged terms, including rCases(t− 2) and rCases(t− 3) for changes in market crash risk. Hence, this finding emphasizes 
the role of information, particularly the number of cases, from the previous trading day on market shocks. In terms of explanatory 
power, the R-squared in these markets was approximately 7%, indicating that the lagged variables of the logarithmic growth rate of 
daily confirmed cases can be explained by the changes in market skewness, thus representing stock market crash risk. 

Our findings also confirm the findings in the literature that stock markets are more likely to be sensitive to information regarding 
increase in the number of confirmed cases (Albulescu, 2021; Ashraf, 2020). Thus, apart from the U.S. market, new infection cases 
reported at the Chinese level amplified the stock market crash risk in the country. 

4.2. Does fear sentiment matter? 

Let us now consider the role of COVID-19-induced fear sentiment. The motivation behind this is that panic about the pandemic may 

Table 3 
The effects of COVID-19 on stock market crash risk.  

Variables (1) (2) (3) 

Intercept − 0.001 
(− 0.45) 

− 0.001 
(− 0.45) 

− 0.001 
(− 0.45) 

Skew(t− 1) 0.190*** 
(5.53) 

0.188*** 
(5.37) 

0.188*** 
(5.35) 

rCases(t− 1) − 0.083*** 
(− 5.26) 

− 0.082*** 
(− 5.17) 

− 0.082*** 
(− 5.12) 

rCases(t− 2)  − 0.005 
(− 0.34) 

− 0.005 
(− 0.34) 

rCases(t− 3)   − 0.001 
(− 0.05) 

N 787 786 785 
R2 0.073 0.073 0.073 

Notes: This table summarizes the estimated results for Model 1. ***, **, and * represent statistical significance at the 1%, 
5%, and 10 % levels, respectively. The t-statistics are presented in parentheses. 

Table 4 
The effects of COVID-19-induced fear sentiment on stock market crash risk.  

Variables Eq. (3) Eq. (4) Eq. (3− 1) Eq. (4− 1) 

Intercept 0.045** 
(2.48) 

0.038** 
(2.13) 

− 0.0002 
(− 0.05) 

0.0001 
(0.01) 

Skew(t− 1) 0.188 
(5.60) 

0.181*** 
(5.25) 

0.188*** 
(5.62) 

0.181*** 
(5.25) 

rCases(t− 1)  − 0.080*** 
(− 5.09)  

− 0.081*** 
(− 5.15) 

Fear Sentiment − 0.005*** 
(− 2.61) 

− 0.004** 
(− 2.24) 

− 0.042*** 
(− 2.61) 

− 0.038** 
(− 2.38) 

N 788 787 788 787 
R2 0.051 0.079 0.051 0.080 

Notes: The proxies for Fear Sentiment are fearSent in the first two columns and D_fearSent in the last two columns. ***, **, and * represent statistical 
significance at the 1%, 5%, and 10 % levels, respectively. The t-statistics are presented in parentheses. 
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remain at a high level, even though the number of confirmed cases is not very large. For example, as early as January 20, 2020, 
academician Zhong Nanshan publicly confirmed human-to-human transmission of COVID-19 on television. Then, on January 23, the 
central government of China announced the lockdown of Wuhan. Although the number of confirmed cases publicly disclosed at that 
time was still at a relatively low level, people immediately went into a panic. In this case, the fear sentiment may have influenced the 
stock market before the impact from confirmed cases. 

According to the results of Model 2, presented in Table 4, we used fearSent in the first two columns. In addition, we used a dummy 
variable, D_fearSent, to re-estimate Model 2, the results of which are shown in the last two columns. Note that all the coefficients 
regarding fear sentiment were negative and significant, indicating that COVID-19-induced fear sentiment can cause significant stock 
market crashes. 

While Duan et al. (2020) conducted a textual analysis of 6.3 million messages on social media to conclude that the Chinese stock 
market most likely overreacted with growth sentiment, our findings are consistent with the aforementioned study by Da et al. (2011), 
who used the Baidu search engine. Interestingly, Burggraf et al. (2020) applied the same method to indicate that the Bitcoin market 
significantly changes when investor sentiment fluctuates. However, one of the novel points of the present study is determining where 
the fear sentiment stands across the pandemic. In this regard, we found that the Chinese stock market crash worsens when fear 
sentiment is incorporated. Our results are robust when controlling for other variables such as lagged term of skewness (the previous 
term for market crash risk) and the number of infected cases. 

In sum, this study rejects H2, which indicates that there is a relationship between investor sentiment and the stock market crash risk 
in China during the COVID-19 outbreak. Although the literature confirms this linkage under normal market conditions, our study sheds 
new light on this relationship at the onset of the pandemic. 

4.3. The interaction effect between COVID-19 and fear sentiment 

The aforementioned results show that both daily confirmed cases and fear sentiment can increase the risk of stock market crashes. 
This subsection further explores the inner links between these impacts and the underlying mechanisms how COVID-19 indicators could 
interact with fear attitudes. 

Table 5 presents the results regarding the interaction effect between daily COVID-19 cases and fear sentiment. The coefficients of 
the interaction terms were significant and negative, indicating that fear sentiment further amplifies the negative impact of confirmed 
cases on stock market crash risk. In other words, fear exacerbates the negative impact of COVID-19. This highlights the importance of 
investors maintaining optimism during a pandemic instead of panicking about the crisis. 

It is important to consider the interaction term in our regression, for two main reasons. First, investor fear exhibits a dynamic 
pattern with the fatality ratio. This means that when the number of infected cases increases, investor sentiment might be affected by 
fear. Second, fear could mitigate risky behaviors at the onset of a pandemic, which might lead to a decrease in infected cases. Thus, 
examining the interaction variable constructed from the aforementioned components could offer some insight, especially on how this 
factor increases (or decreases) equity market crash risk. 

Overall, three main conclusions can be drawn from the regression in Table 5. First, the interaction variable increases the likelihood 
of market crash risk at the 1% significance level. This can be explained by the fact that both factors amplify the negative impact on 
equity market shocks. Second, our results remained robust after substituting the fear emotion with a continuous or binary variable. 
This not only emphasizes a dynamic pattern but also confirms the existing role of investors’ emotions in systematic risk. Third, after 
comparing the results in Tables 3 and 4, the explanatory level, captured by R2, is substantially improved. This implies that the 
interaction variable may positively contribute to the explanatory feature of the changes in equity market crash risk. 

However, one notable point is that as our findings mainly stemmed from the correlations between the variables, we were cautious 

Table 5 
The interaction effect between COVID-19 and fear sentiment.  

Variables Eq. (5) Eq. (5− 1) 

Intercept 0.036** 
(2.05) 

− 0.0002 
(− 0.07) 

Skew(t− 1) 0.176*** 
(5.13) 

0.174*** 
(5.10) 

rCases(t− 1) 0.381** 
(2.27) 

− 0.0002 
(− 0.01) 

fearSent − 0.004** 
(− 2.17) 

− 0.035** 
(− 2.25) 

rCase(t− 1) × fearSent  − 0.032*** 
(− 2.76)  

rCase(t− 1) × D_fearSent   − 0.124*** 
(− 3.77) 

R2 0.088 0.096 

Notes: This table summarizes the estimated results for Model 3, including Equations (5) and 
(5− 1). Equation (5− 1) holds the dummy variable, D_fearSent. ***, **, and * represent statistical 
significance at the 1%, 5%, and 10 % levels, respectively. The t-statistics are presented in pa
rentheses. The total number of observations during this research period was 787. 
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about confirming a causal relationship before obtaining any statistical evidence. Therefore, we performed a Granger causality test to 
determine whether the fear emotion could increase market crash risk. Of course, the opposite direction was also examined. 

4.4. The Granger causality test 

Table 6 presents the results of the Granger causality test. In order to examine the hypothesis of each causality, we conducted an F- 
test. Note from Table 6 that fearSent is the Granger cause of Skew, which implies that fear sentiment causes stock market crash risk. 
Conversely, stock market crash risk does not Granger cause the fear sentiment. 

Interestingly, we only observed a unidirectional Granger causality between fear sentiment and market crash risk. More precisely, 
fear sentiment was the factor that caused the changes in market crash risk, whereas there was no evidence in the opposite direction. 
Thus, we conclude that investors’ attitudes toward uncertainties in terms of fear, macroeconomics, and microeconomics will stimulate 
stock market crash risk. Our findings also confirm the literature on fear and stock market dynamics (e.g., Bitcoin market (Chen et al., 
2020), financial markets (Sharif et al., 2020), and energy markets (Salisu et al., 2020)). By examining the causal relationship, poli
cymakers should focus on how to alleviate investor panic and maintain market stability. 

Table 6 
The results of the Granger causality test.  

Direction of causality F-test P-value 

fearSent → Skew 7.1559*** 0.0076 
Skew → fearSent 1.0780 0.2995 

Notes: ***, **, and * represent statistical significance at the 1%, 5%, and 10 % levels, 
respectively. The null hypothesis for Granger causality is summarized as “fearSent does not 
cause the Granger causality to Skew” (fearSent→Skew), and the remaining hypothesis is that 
“Skew does not cause the Granger causality to fearSent” (Skew → fearSent). 

Table 7 
The robustness results from the number of daily deaths.  

Variables Eq. (8) Eq. (9) Eq. (9− 1) Eq. (10) Eq. (10− 1) 

Intercept − 0.001 
(− 0.55) 

0.04** 
(2.29) 

− 0.0005 
(− 0.19) 

0.0357** 
(1.97) 

− 0.0001 
(− 0.05) 

Skew(t− 1) 0.1873*** 
(5.43) 

0.177*** 0.181*** 
(5.23) 

0.172*** 
(5.00) 

0.172*** 
(5.01) 

rDeaths(t− 1) − 0.115*** 
(− 5.06) 

− 0.112*** 
(− 4.97) 

− 0.108*** 
(− 4.70) 

0.520** 
(2.00) 

0.021 
(0.53) 

Fear Sentiment  − 0.005** 
(− 2.42) 

− 0.029* 
(− 1.83) 

− 0.004** 
(− 2.08) 

− 0.023 
(− 1.44) 

rDeaths(t− 1) × Fear Sentiment     − 0.044** 
(− 2.44) 

− 0.193*** 
(− 3.98) 

R2 0.071 0.078 0.075 0.085 0.093 

Notes: Table 7 summarizes the estimated results for Model 4, including Equations (8), (9), and (10). Different from Equations (9) and (10), Equations 
(9− 1) and (10− 1) hold the dummy variable, D_fearSent. ***, **, and * represent statistical significance at the 1%, 5%, and 10 % levels, respectively. 
The t-statistics are presented in parentheses. The total number of observations during this research period was 787. 

Table 8 
The robustness results from the number of daily global cases.  

Variables Eq. (11) Eq. (12) Eq. (12− 1) Eq. (13) Eq. (13− 1) 

Intercept − 0.001197 
(− 0.40) 

0.033680* 
(1.83) 

0.000024 
(0.01) 

0.020837 
(1.12) 

− 0.000165 
(− 0.05) 

Skew(t− 1) 0.194272*** 
(5.60) 

0.186969*** 
(5.37) 

0.186446*** 
(5.36) 

0.172685*** 
(4.98) 

0.172305*** 
(4.97) 

rGlobalCases(t− 1) − 0.039522*** 
(− 3.93) 

− 0.035903*** 
(− 3.51) 

− 0.036809*** 
(− 3.64) 

0.162300*** 
(3.20) 

− 0.007415 
(− 0.59) 

Fear Sentiment  − 0.004065* 
(− 1.92) 

− 0.034670** 
(− 2.14) 

− 0.002498 
(− 1.17) 

− 0.023728 
(− 1.46) 

r GlobalCases(t− 1) × Fear Sentiment     − 0.016869*** 
(− 3.99) 

− 0.082836*** 
(− 3.94) 

R2 0.059543 0.063934 0.065008 0.082579 0.083217 

Notes: Table 8 summarizes the estimated results for Model 5, including Equations (11), (12), and (13). Different from Equations (12) and (13), 
Equations (12− 1) and (13− 1) hold the dummy variable, D_fearSent. ***, **, and * represent statistical significance at the 1%, 5%, and 10 % levels, 
respectively. The t-statistics are presented in parentheses. The total number of observations during this research period was 787. 
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4.5. Robustness checks 

As stated earlier, an alternative proxy for measuring the severity of the COVID-19 pandemic was the growth rate of daily deaths 
(rDeaths). In this regard, we employed Model 4 to conduct our empirical analysis, the results of which are shown in Table 7. Overall, the 
results were consistent with our previous findings. We also substituted the number of global cases for the number of cases in China for 
another robustness check, as the people in China not only focused on the progress of COVID-19 at the country level but also at the 
global level. Table 8 presents the empirical results of Model 5. Furthermore, we utilized global death cases to replace global confirmed 
cases in Model 5. As for Model 6, it comprises Equations (14), (15), and (16): 

Skewt = c + α · Skewt− 1 + β · r(GlobalDeaths)t + εt (14)  

Skewt = c + α · Skewt− 1 + β · r(GlobalDeaths)t + λ · fearSentt− 1 + εt (15)  

Skewt = c + α · Skewt− 1 + β · r(GlobalDeaths)t + λ · fearSentt− 1
θ · r(GlobalDeaths) · fearSentt− 1 + εt

(16) 

Table 9 presents the empirical results of Model 6. Overall, the results shown in Tables 8 and 9 illustrate that our conclusions 
remained robust. Therefore, we may draw policy implications from the findings. 

5. Conclusion 

This study examined the relationship between the COVID-19 pandemic and the stock market crash risk in China. Based on the 
findings, COVID-19 increases stock market crash risk. This not only indicates that the pandemic will bring about a decline in stock 
market returns but that it will also aggravate the negative symmetry of stock market returns and will increase the possibility of extreme 
downturns in stock prices. We also found that even when the number of confirmed cases is not significantly large, people’s fears about 
the virus will increase stock market crash risk. Finally, we found that fear sentiment not only directly increases crash risk but may also 
boost the negative impact of COVID-19 on stock market crash risk. 

Overall, this study is a reminder that preventing panic during a pandemic is helpful for reducing stock market crash risk. Thus, we 
draw two main policy implications. First, closer observation by lawmakers of the financial markets with regard to the dynamics of fear 
and the number of cases is necessary. In this regard, regulators should determine how to immediately and effectively support the 
market when fear is overwhelming. By doing so, market crash risk can be managed in extreme cases. Second, investors are not only 
likely to be sensitive to local information (i.e., Chinese domestic infected cases or deaths) but also to global news. Therefore, clear and 
timely communication regarding the COVID-19 pandemic could bring about effective prediction in the market. More importantly, both 
investors and regulators should be more cautious about stock market crash risk when the number of cases (or deaths) significantly 
increases. Then, hedging or safe haven strategies could be implemented, as suggested by previous research (Conlon et al., 2020; Conlon 
and McGee, 2020). 
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Table 9 
The robustness results from the number of daily global deaths.  

Variables Eq. (14) Eq. (15) Eq. (15− 1) Eq. (16) Eq. (16− 1) 

Intercept − 0.001254 
(− 0.42) 

0.035187* 
(1.91) 

0.000004 
(0.00) 

0.035596* 
(1.93) 

0.000248 
(0.08) 

Skew(t− 1) 0.186324*** 
(5.34) 

0.179297*** 
(5.13) 

0.178773*** 
(5.11) 

0.177722*** 
(5.07) 

0.180314*** 
(5.16) 

rGlobalDeaths(t− 1) − 0.049846*** 
(− 3.85) 

− 0.045567*** 
(− 3.48) 

− 0.046631*** 
(− 3.59) 

0.137102 
(0.55) 

− 0.100354** 
(− 1.97) 

Fear Sentiment  − 0.004246** 
(− 2.01) 

− 0.035512** 
(− 2.19) 

− 0.004297** 
(− 2.03) 

− 0.036279** 
(− 2.24) 

r GlobalDeaths(t− 1) × Fear Sentiment     − 0.012501 
(− 0.74) 

0.057492 
(1.09) 

R2 0.058829 0.063659 0.064581 0.064306 0.066005 

Notes: Table 9 summarizes the estimated results for Model 6, including Equations (14), (15), and (16). Different from Equations (15) and (16), 
Equations (15− 1) and (16− 1) hold the dummy variable, D_fearSent. ***, **, and * represent statistical significance at the 1%, 5%, and 10 % levels, 
respectively. The t-statistics are presented in parentheses. The total number of observations during this research period was 787. 
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