Table 4.
Results of classification for the data of OCD.
| Classifier | Accuracy (%) | Sensitivity (%) | Specificity (%) | AUC |
|---|---|---|---|---|
| SVM | 93.01 ± 5.40 | 89.71 ± 9.22 | 95.08 ± 7.70 | 0.94 ± 0.06 |
| LR-L1 | 89.81 ± 6.11 | 88.46 ± 10.23 | 91.47 ± 9.25 | 0.92 ± 0.07 |
| LR-L2 | 90.58 ± 5.89 | 89.71 ± 9.22 | 91.29 ± 7.48 | 0.94 ± 0.06 |
| GCN | 91.41 ± 5.37 | 89.71 ± 9.22 | 92.72 ± 7.64 | 0.95 ± 0.06 |
| MLP | 90.64 ± 6.83 | 89.71 ± 9.22 | 91.29 ± 7.48 | 0.94 ± 0.06 |
| XGBoost | 85.77 ± 8.85 | 87.78 ± 11.19 | 84.84 ± 17.02 | 0.90 ± 0.12 |
| GBDT | 88.97 ± 7.23 | 86.71 ± 12.72 | 93.12 ± 9.49 | 0.94 ± 0.05 |
OCD, obsessive-compulsive disorder; SVM, support vector machine; LR-L1, sparse L1 for logistic regression; LR-L2, non-sparse L2 regularization for logistic regression; GCN, graph convolution network; MLP, multilayer perceptron; XGBoost, extreme gradient boosting; GBDT, gradient boosting decision tree; AUC, area under the receiver-operating characteristic curve.