Skip to main content
. 2021 Oct 20;15:676491. doi: 10.3389/fninf.2021.676491

Table 4.

Results of classification for the data of OCD.

Classifier Accuracy (%) Sensitivity (%) Specificity (%) AUC
SVM 93.01 ± 5.40 89.71 ± 9.22 95.08 ± 7.70 0.94 ± 0.06
LR-L1 89.81 ± 6.11 88.46 ± 10.23 91.47 ± 9.25 0.92 ± 0.07
LR-L2 90.58 ± 5.89 89.71 ± 9.22 91.29 ± 7.48 0.94 ± 0.06
GCN 91.41 ± 5.37 89.71 ± 9.22 92.72 ± 7.64 0.95 ± 0.06
MLP 90.64 ± 6.83 89.71 ± 9.22 91.29 ± 7.48 0.94 ± 0.06
XGBoost 85.77 ± 8.85 87.78 ± 11.19 84.84 ± 17.02 0.90 ± 0.12
GBDT 88.97 ± 7.23 86.71 ± 12.72 93.12 ± 9.49 0.94 ± 0.05

OCD, obsessive-compulsive disorder; SVM, support vector machine; LR-L1, sparse L1 for logistic regression; LR-L2, non-sparse L2 regularization for logistic regression; GCN, graph convolution network; MLP, multilayer perceptron; XGBoost, extreme gradient boosting; GBDT, gradient boosting decision tree; AUC, area under the receiver-operating characteristic curve.