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SUMMARY

Single-cell gene expression technologies are powerful tools to study cell types in the human brain, 

but efforts have largely focused on cortical brain regions. We therefore created a single-nucleus 

RNA-sequencing resource of 70,615 high-quality nuclei to generate a molecular taxonomy of 

cell types across five human brain regions that serve as key nodes of the human brain reward 

circuitry: nucleus accumbens, amygdala, subgenual anterior cingulate cortex, hippocampus, and 

dorsolateral prefrontal cortex. We first identified novel subpopulations of interneurons and 

medium spiny neurons (MSNs) in the nucleus accumbens and further characterized robust 

GABAergic inhibitory cell populations in the amygdala. Joint analyses across the 107 reported 

cell classes revealed cell-type substructure and unique patterns of transcriptomic dynamics. We 

identified discrete subpopulations of D1- and D2-expressing MSNs in the nucleus accumbens to 

which we mapped cell-type-specific enrichment for genetic risk associated with both psychiatric 

disease and addiction.

In brief

For this NeuroResource, >100 cell classes from five brain regions in the human reward circuitry 

are characterized by single-nucleus RNA sequencing, with interactive apps made available. The 

molecular relationships across this circuitry are described, and genetic risk for various psychiatric 

and substance use phenotypes is quantified across all cell classes.

Graphical Abstract
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INTRODUCTION

Recent advances in single-cell and single-nucleus RNA-sequencing (scRNA-seq/snRNA­

seq) technologies have facilitated the molecular characterization of diverse cell types 

in the postmortem human brain during development (Darmanis et al., 2015; Li et al., 

2018a; Zhong et al., 2018, 2020) and have been used to assess cell-type-specific gene 

expression differences in the context of several brain disorders, including Alzheimer’s 

disease (AD), autism spectrum disorder (ASD), multiple sclerosis, and major depressive 

disorder (MDD) (Mathys et al., 2019; Nagy et al., 2020; Schirmer et al., 2019; Velmeshev 

et al., 2019). Identification of cell-type-specific gene expression signatures has contributed 

to understanding the relationship between molecular identity and cell function as it relates 

to brain health, neurological disease, and genetic risk for neuropsychiatric disorders, such 

as schizophrenia (SCZ; Skene et al., 2018). While substantial advancements have been 

made in understanding cell-type heterogeneity both within and across individual regions 

of the human brain, the majority of snRNA-seq reports are limited to a small number of 

brain areas. These primarily include the hippocampus (HPC) (Franjic et al., 2020; Habib 

et al., 2017) and several heavily studied subregions of the cortex (Lake et al., 2016), 

including the dorsolateral prefrontal cortex (DLPFC) (Li et al., 2018a; Nagy et al., 2020), 

medial temporal cortex (Darmanis et al., 2015; Hodge et al., 2019), entorhinal cortex 

(Grubman et al., 2019), and anterior cingulate cortex (Velmeshev et al., 2019). Molecular 

profiling of less studied cortical subregions, including the subgenual anterior cingulate 

cortex (sACC) and striatal and limbic brain regions (including the nucleus accumbens [NAc] 

and the amygdala [AMY]), is lacking in the human brain. The sACC, NAc, and AMY 

are interconnected within well-established circuit loops that mediate important behavioral 

and neurobiological functions, including signaling for reward and motivation, as well as 

processing emotional valence, particularly for fearful and threatening stimuli (Haber and 

Knutson, 2010; Janak and Tye, 2015; Russo and Nestler, 2013). Importantly, the cellular 

composition of individual neuronal subtypes in these regions substantially differs from 

previously well-profiled cortical and hippocampal regions (Saunders et al., 2018; Zeisel et 

al., 2018).

For example, the NAc contains dopaminoceptive populations of GABAergic medium spiny 

neurons (MSNs)—the principal projecting cell type that makes up to 95% of neurons 

in rodents—that harbor unique physiological and cellular properties (Gerfen et al., 1990; 

Kawaguchi, 1997; Kronman et al., 2019; Russo and Nestler, 2013). Early functional 

characterization of MSNs revealed two distinct classes of MSNs based on the expression 

of D1 versus the D2 dopamine receptors (D1-MSNs and D2-MSNs, respectively) (Lobo, 

2009; Lobo et al., 2006). However, recent sc-/snRNA-seq studies in the rodent striatum, 

and in the NAc specifically, revealed more complex transcriptional diversity within broader 

D1- and D2-MSN subclasses than was previously appreciated (Gokce et al., 2016; Saunders 

et al., 2018; Stanley et al., 2020; Zeisel et al., 2018). Moreover, subpopulations of MSNs 

are differentially recruited in response to cocaine exposure and mediate divergent functional 

effects on behavioral responses to drugs of abuse (Savell et al., 2020). Similarly, single-cell 

profiling studies in the rodent AMY identified specialized populations of Cck-expressing 

neurons that are preferentially activated by behavioral experience, including exposure to 
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acute stress (Wu et al., 2017). However, whether and to what extent this transcriptional 

diversity is conserved in these areas of the human NAc and AMY has not yet been fully 

explored. Given the evidence for the functional importance of specific cell types in these 

areas of the rodent brain, single-cell profiling of these regions in human may identify 

analogous cell populations, which can then be analyzed in the context of neurobiological 

dysfunction in human brain disorders.

Here, we used snRNA-seq to define the molecular taxonomy of distinct cell types in 

subcortical regions (NAc and AMY) that act as key nodes within circuits that mediate 

critical brain and behavioral functions, including reward signaling and emotional processing. 

For a subset of samples, this included NeuN enrichment to better profile neuronal diversity. 

We also validated molecular profiles for previously identified cell types in the HPC and 

DLPFC, and identified similar cell types in the sACC, an additional cortical region central 

to limbic system function that has been implicated in affective disorders. Furthermore, 

we evaluate cross-species conservation of NAc and AMY cell types between humans and 

rodents, specifically focusing on comparisons of MSN subpopulations identified as playing 

key roles in reward processing and addiction. We survey the transcriptomic architecture 

across 107 robust cell classes, identifying molecular relationships between cell populations 

and patterns of divergence within specialized MSNs. Finally, by integrating genetic studies 

for substance use and neuropsychiatric disorders, we show differential cell-type association, 

or differential expression of risk loci-associated genes, with a number of neuropsychiatric or 

substance use phenotypes, highlighting the clinical relevance of understanding cell-type- and 

region-specific expression in the human brain.

RESULTS

Identification of refined MSN subpopulations in human NAc

To evaluate the transcriptional landscape of MSNs and other cell populations in the 

human NAc, we analyzed 19,892 total nuclei from 8 donors. We performed data-driven 

clustering to generate 24 cell clusters across six broad cell types, including GABAergic 

inhibitory neurons, MSNs, oligodendrocytes, oligodendrocyte precursor cells, microglia, 

and astrocytes (Figure 1A). Of the 10 distinct neuronal clusters expressing established 

D1- and D2-MSNs markers (Figure 1B), including PPP1R1B (encoding DARPP-32), 

six of these MSN subclusters were enriched for DRD1 (D1_A–D1_F) and four were 

enriched for DRD2 (D2_A–D2_D). These MSN subclusters collectively made up between 

85% and 95% of neuronal nuclei from the neuron-enriched samples (Table S3), lending 

human evidence that, similar to the rodent, the vast majority of nuclei in this region 

of the striatum are composed of MSNs (Kawaguchi, 1997). Clusters D1_A and D2_A 

represented the largest D1-MSN (67%) and D2-MSN (87%) subclasses, respectively. 

As expected, MSN subclusters showed differential enrichment of several neuropeptides, 

including proenkephalin (PENK), tachykinin 1 (TAC1), and prodynorphin (PDYN) (Figure 

S1) (Lobo, 2009; Lobo et al., 2006; Savell et al., 2020). Surprisingly, the classical D1-MSN 

marker, TAC1, was enriched in D2_C MSNs, while it was largely absent in the smaller 

D1_B, D1_C, and D1_F MSNs (Figure 1B). Similarly, the classical D2-MSN marker PENK 
was enriched in the large population of D2_A MSNs, in addition to D2_B and D2_D, but 

Tran et al. Page 4

Neuron. Author manuscript; available in PMC 2022 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



depleted in the smaller population of D2_C MSNs (Figure S1). Differential expression of 

these neuropeptides in D1- and D2-MSN subclasses was confirmed using single-molecule 

fluorescence in situ hybridization (smFISH) with 4-plex RNAscope technology (Maynard et 

al., 2020); Figure S1).

Using differential expression analyses, we identified the most preferentially expressed genes 

in each MSN class and found tens to hundreds of unique markers for D1- and D2-MSN 

classes (at false discovery rate [FDR] <1e6; Table S5). Among D1-MSNs, three classes 

(D1_B, D1_E, and D1_F) were enriched for the relaxin family peptide receptor 1, RXFP1, 

but only the TAC1− D1_F MSNs were enriched for the GABAA receptor subunit, GABRQ, 

and the relaxin family peptide receptor 1, RXFP1 (Figures 1C and S2). Similarly, only D1_E 

MSNs expressed substantial levels of CRHR2, encoding corticotropin-releasing hormone 

receptor 2, a protein implicated in mediating the response to stress in the brain (Figure 1D). 

The TAC1− D1_C MSNs could be distinguished from all other MSN classes by the elevated 

expression of relaxin family peptide receptor 2, RXFP2, and the depletion of both RXFP1 
and GABRQ (Figure S2), although this small class of D1 MSNs was difficult to identify via 

smFISH. Consistent with the identification of a discrete D2-MSN class expressing Htr7 in 

the mouse striatum (Gokce et al., 2016; Stanley et al., 2020), we identified the enrichment 

of HTR7 in D2_C (TAC1+; PENK−) MSNs, but not other classes of D2 MSNs (Figure S3). 

Similar to D1_E MSNs, the HTR7+ D2_C cluster was the only D2-MSN class expressing 

CRHR2, although to a lesser degree. The existence of these novel D1- and D2-MSN classes 

was validated by smFISH on NAc brain sections derived from independent postmortem 

human brain donors (Figures 1D, 1E and S1–S3). Several other genes, including CASZ1, 

GPR6, and EBF1, were differentially expressed in unique D1- and/or D2-MSN classes 

(Figure S4). CASZ1 was highly enriched in the D1_B, D1_E, and D2_C classes, GPR6 in 

all D2 classes, and EBF1 in the D1_C class.

In addition to describing transcriptional diversity in D1- and D2-MSNs, we also identified 5 

clusters of GABAergic inhibitory neurons expressing the marker genes GAD1 and GAD2, 

but depleted for MSN marker genes (Figures 1B and S5). These clusters contained different 

transcriptionally defined classes, including GABAergic neurons expressing somatostatin 

(SST; Inhib_E), neuropeptide Y (NPY; Inhib_E), prepronociceptin (PNOC; Inhib_E), 

vasoactive intestinal peptide (VIP; Inhib_B), and tachykinin 3 (TAC3; Inhib_A; Figure S5; 

Table S5). While we did not observe robust expression of parvalbumin (PVALB) in any 

cluster, classes Inhib_C and Inhib_D showed high expression of KIT, encoding the protein 

c-Kit, which is frequently co-expressed in mouse Pvalb/PV+ GABAergic neurons (Enterría­

Morales et al., 2020). smFISH for PVALB and other top marker genes for Inhib_C/_D 

(PTHLH, KIT, GAD1) confirmed that these GABAergic clusters likely represent unique 

PV-expressing interneuron classes (Figure S5).

We next evaluated the conservation of NAc cell types across species by comparing our 

cluster-level transcriptional profiles with those generated in a previous snRNA-seq study of 

the NAc following cocaine experience in a rat model system, which analyzed a total of 16 

subclusters across 15,631 rat NAc nuclei (Savell et al., 2020). Correlation analyses between 

our NAc cell classes with those derived from rat NAc revealed that glial populations, 

including astrocytes, microglia, oligodendrocytes, and oligodendrocyte progenitor cells, 
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were highly conserved (Figure 1F). GABAergic inhibitory neuron populations were also 

well correlated across species as rat Sst-expressing and likely Pvalb-expressing clusters 

overlapped with human Inhib_E and Inhib_C/_D classes, respectively (Pearson’s r = 

0.63, 0.63, and 0.62, respectively). We also observed substantial correlation between 

rat and human D1- and D2-MSNs, especially between rat Drd1-expressing MSNs and 

human D1_A/_D1_D MSNs (r = 0.74, 0.74, respectively). Beyond the overlap of rat Drd2­

expressing MSNs in the human D2_A and D2_B MSN classes (r = 0.77, 0.70, respectively), 

we additionally saw positive correlations across D1- and D2-MSN subtypes, such that rat 

Drd2-expressing MSNs also showed enrichment in our human D1_A/_D MSNs. This result 

is not likely fully explained by the co-expression of DRD1 and DRD2 in the same nucleus 

because, while we we did find that 11.2% of all MSNs expressed both DRD1 and DRD2 to 

some degree, these dual-expressing nuclei were by far the most enriched in the D1_E class 

(43.4% of D1_E nuclei expressing both DRD1/DRD2) (Figures 1B and S1). In addition, 

many of the top markers for either the D1_A or D2_A classes were highly expressed in both 

MSN clusters (Figure S4), suggesting that the majority of canonically dichotomous D1- or 

D2-MSNs may be more molecularly similar than previously appreciated. This is supported 

by the observation (data not shown) that D2_A exhibited the least number of differentially 

expressed genes compared to D1_A (776 genes at FDR < 0.05; see STAR Methods) than 

with any other D1 (range: 791–2,296 genes) or D2 class (range: 1,146–2,310 genes). We 

did not observe strong enrichment for rat Drd3- and Grm8-expressing MSNs in any human 

MSN subclusters. Likewise, a few human D1-(D1_B, _C, _E_ and _F) and D2- (D2_C and 

_D) MSN classes did not appear to be convincingly represented in rat MSN subtypes (Figure 

1F; see discussion). While these data suggest overall conservation between rat and human 

NAc cell types, there appear to be transcriptional features that are unique among specialized 

subpopulations of rodent and human MSNs.

Atlas of molecularly defined cell types in AMY

The AMY, a medial structure of the temporal lobe, is noted for its role in processing 

emotional valence, particularly for both fear and reward (Janak and Tye, 2015; Wassum 

and Izquierdo, 2015). Dysfunction in amygdalar signaling is implicated in MDD, bipolar 

disorder (BIP), and posttraumatic stress disorder (PTSD) (Fenster et al., 2018; Garrett and 

Chang, 2008; Murray et al., 2011). The human AMY can be subdivided into a number of 

distinct regions based on histology, immunohistochemical classifications, connectivity, and 

neural activation patterns, as revealed by functional magnetic resonance imaging (fMRI) of 

the brain (Barger et al., 2012; Schumann and Amaral, 2005; Sorvari et al., 1995; Tyszka 

and Pauli, 2016; Zhang et al., 2018). Studies in the rodent and non-human primate AMY 

have identified different cell compositions across the AMY, which likely correspond to 

differential patterns of synaptic connections between cell types across amygdalar subregions, 

and with extraamygdalar brain regions (Chareyron et al., 2011). Hence, it is likely that 

various cell types with unique molecular signatures also exist within the human AMY, which 

can be surveyed by snRNA-seq. We analyzed 14,039 nuclei from the AMY of 5 adult 

neurotypical donors to create a molecular taxonomy of cell types in this brain region. We 

identified 19 clusters that corresponded to 4 broad glial cell types (Oligo, Astro, Micro, 

and oligodendrocyte progenitor cell [OPC]), stromal (endothelial [Endo]; and mural cells) 

or immune cell populations (macrophages and T cells), and 11 neuronal classes (Figures 2A 

Tran et al. Page 6

Neuron. Author manuscript; available in PMC 2022 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and S6). Glial cell populations were present at similar proportions between the non-NeuN­

enriched donors (mean 54.4% Oligo; 12.3% Astro; 10.7% Micro; 11.5% OPC), but we 

observed a varied distribution of neuronal classes between donors, and the stromal/immune 

cell classes, as these were rarer (see discussion; Table S3). Despite this, after correcting for 

donor batch effects, we identified hundreds of genes enriched in each broad glial, stromal, 

and neuronal classes at FDR < 1–6 (top markers shown in Table S5).

Within the 11 neuronal classes expressing the pan neuronal marker gene SNAP25, 3 

clusters were enriched for excitatory neuronal markers (SLC17A7, SLC17A6) and 8 

clusters were enriched for inhibitory GABAergic markers (GAD1, GAD2; Figure S6). 

The three excitatory classes comprised different functional classes of neurons (referred 

to as “Excit_A” to “_C”), with top markers including NRN1, NPTX1, and SLC30A3 
(encoding neuritin, neuronal pentraxin 1, and zinc transporter 3, respectively) for Excit_A, 

and SLC17A6 and VCAN (Versican, typically associated with OPCs) for Excit_B (Figure 

2B). NRN1, NPTX1, SLC30A3, and VCAN have been implicated in modulation of synaptic 

plasticity and memory (Figueiro-Silva et al., 2015; Horii-Hayashi et al., 2008; Sindreu and 

Storm, 2011; Yao et al., 2018). Top markers for class Excit_C included MCHR2 (melanin­

concentrating hormone receptor 2) and CDH22 (pituitary/brain cadherin). In addition, 

Excit_A is a large class made up of four subpopulations (see discussion).

Compared to the excitatory neuron classes, we identified a greater diversity of inhibitory 

GABAergic classes and subclasses (see STAR Methods). Those classes of note include 

cholecystokinin (CCK)-containing regular-spiking interneurons (Inhib_B, Inhib_D) evident 

by high expression of CCK (Figure 2B). Of these CCK-expressing GABAergic classes, 

Inhib_B was also enriched in VIP and CALB2 (calretinin), whereas Inhib_D showed 

enrichment for KIT. NPY was specific for the smaller of two PENK+ classes, Inhib_A 

and Inhib_H (Figure 2B), whereas SST and TAC3 were enriched in specific subclusters 

of some of these interneuron classes (data not shown). More functional characterization 

includes Inhib_B enrichment for CRH (corticotropin-release hormone/factor)-expressing 

subpopulations. CRH is a key regulator of the hypothalamic-pituitary-adrenal (HPA) axis, 

which is critical for both the acute stress response and adaptation to chronic stress. Finally, 

NPFFR2 and TLL1, additional genes associated with HPA axis regulation, were selectively 

expressed in Inhib_C (Lin et al., 2016; Tamura et al., 2005). These classes of neurons 

correspond to neuronal subclasses previously linked to anxiety in the AMY, as reviewed in 

Babaev et al. (2018), and also better clarify some expected patterns of molecular identity, 

such as that of SST and PRKCD (which characterize striatal-like GABAergic neurons of the 

centrolateral AMY) are not necessarily mutually exclusive (data not shown).

We then compared our cluster-level transcriptomic profiles to those of a previously 

published single-cell dataset derived from the mouse medial amygdala (MeA) (Chen et 

al., 2019) to evaluate the conservation of amygdalar cell types between humans and rodents 

(Figure 2C). Across the top shared homologous genes (see STAR Methods), we observed a 

substantial correlation between several mouse and human AMY cell types. For example, our 

human glutamatergic class Excit_A (SLC17A6+, SLC17A7+) most closely correlated with 

the mouse MeA glutamatergic subcluster “N.11” (Pearson correlation: r = 0.60). The marker 

genes that were most highly conserved between these subclusters included SLC30A3, 
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NPTX1, and NRN1. Another notable pair of cell classes conserved between species was 

human inhibitory neuronal class, Inhib_C, and mouse inhibitory subcluster MeA “N.8” (r = 

0.61). The top shared genes between these clusters included NPFFR2, GRM8, and FOXP2. 

Although we observed selective co-expression of NPFFR2 and TLL1 in human Inhib_C, 

we note the absence of orthologous Tll1 expression in all mouse MeA neuronal subclusters 

(Figure S6), including the corresponding cluster “N.8,” suggesting species differences in 

the molecular characteristics of neuronal subpopulations. Evidence supporting this is that 

MCHR2 (a top marker for Excit_C) is restricted to higher-order mammals, whereas rodent 

genomes only encode the related Mchr1 (Tan et al., 2002). In assessing the extent to 

which marker genes (per human AMY cell class) overlapped with this shared homology 

gene space, an average of 10.4% cell-type markers appeared to be human specific (data 

not shown). Importantly, several neuronal subpopulations in the mouse and human datasets 

lacked strong correlation across species (e.g., human Excit_B, mouse “N.3,” “N.7,” and 

“N.12”, with all r ≤ 0.30), either suggesting possible molecular divergence between species, 

or unique differences between the cell-type makeup of amygdalar subregions, such that 

all subpopulations may not be fully represented in our human AMY samples compared to 

mouse MeA samples. Our cross-species analysis demonstrates the conservation of neuronal 

subtypes between human AMY and mouse MeA, but highlights potential differences in the 

cellular distribution and transcriptomic profiles across neuronal subtypes.

Convergent and divergent cell classes with unique molecular signatures across brain 
regions

To complement the cell class populations described in the previous sections for the NAc 

and AMY, we additionally defined the catalog of cell-type clusters and cluster-specific genes 

within the other brain regions in our dataset (sACC, DLPFC, and HPC), separately (Figures 

3A and S7). We further benchmarked our transcriptomic profiles against other published 

datasets that profiled similar regions in the postmortem human brain. Overall, our HPC 

subpopulations correlated well with the broad cell classes as reported in Habib et al. (2017 

(Figure S8). We additionally observed strong overlap between our DLPFC to the reported 

PFC profiles from Velmeshev et al. (2019) (Figure S9), or similarly, sACC to the ACC set 

(Figure S10). Interestingly, our sACC subpopulations did not correlate more strongly with 

the ACC subpopulation profiles than their co-reported PFC profiles from Velmeshev et al. 

(2019), whereas our DLPFC subclusters generally correlated only slightly more strongly to 

the reported PFC than ACC subpopulations. This suggests that these cortical regions share 

a high degree of overlap in their nuclear transcriptomic profiles. The strength of correlation 

to these benchmark datasets demonstrates the robustness and utility of our pipeline, and 

the presented data significantly expand the existing repository of postmortem human brain 

snRNA-seq datasets.

To generate a global view of the transcriptomic architecture across the five brain regions, 

we compared gene expression patterns across all 107 regionally defined cell classes. Overall, 

each glial or stromal cell class (Oligos, Astros, OPCs, Micros, Endothelial cells, Mural 

cells, Macrophages, and T cells) showed broadly consistent gene expression patterns across 

all five brain regions (Figure S12), in line with previous analyses of broad non-neuronal 

cell populations using DNA methylation data (Rizzardi et al., 2019). However, in cases 
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that yielded multiple classes of glial cells, such as astrocytes, there were unique blocks 

of shared transcriptional programs between subclasses. For example, the sACC “Astro_B,” 

HPC “Astro_B,” and NAc “Astro_A” are tightly correlated and more distinct from the other 

astrocyte subclasses, whereas the “Astro_B” from the AMY seem to be most distinct, in 

that it does not cluster with any of the rest. Among the annotated “Astro” classes, these 

are characterized by the highest expression of DST, COL19A1, and MACF1 (Figure S13). 

Although most of the other astrocyte classes (aside from the sACC “Astro_B”) themselves 

are characterized by specific or higher expression of unique markers, the AMY “Astro_B” 

showed a distinctly lower transcriptional activity state (Figure S13), likely related to this 

somewhat divergent astrocyte class from the amygdala, as seen with “Micro_resting,” or 

putative resting or dormant microglia, found in the NAc (Figures 1A and S13). Finally, we 

highlight that most of these reported classes of glial cell populations comprise a greater 

diversity of subclusters (see discussion; Table S4), the characterization of which is beyond 

the scope of this article.

Within the neuronal set of region-specific annotations, totaling 69 neuronal classes across 

28,150 nuclei, most of the inhibitory or excitatory populations showed transcriptional 

patterns that clustered these broad classes together across brain regions, as expected (Figures 

3B; and S11), although this was not exclusively the case in all instances. For example, the 

AMY Inhib_A, _C, _E, and _G, in addition to HPC Inhib_B, clustered with the excitatory 

branch, although they distinctly express more canonically inhibitory-classifying markers 

(Figure S7). We also observed strong similarities between unique pairs of neuronal classes 

across regions, such as between AMY and DLPFC (“In_B_amy” and “In_A_dlpfc”; r 

= 0.86). This DLPFC inhibitory subpopulation shares many top markers with its AMY 

counterpart (Table S5), including CALB2 and VIP, in addition to selective expression 

of CRH. In addition, we saw a variety of strongly correlating DLPFC-sACC neuronal 

class pairs, such as “Ex_F_dlpfc” and “Ex_B_sacc” (r = 0.94), and “Ex_E_dlpfc” and 

“Ex_D_sacc” (r = 0.94). This suggests potentially overlapping layer-specific identities in 

these regions, as evident, for example, by “Ex_F_dlpfc” and “Ex_B_sacc” most highly 

correlating with the corresponding and reported “L5/6” cluster from (Velmeshev et al., 2019) 

(r = 0.84, 0.83, respectively; Figures S9 and S10).

Integrating these neuronal classes across regions also suggested an excitatory transcriptomic 

signature in the NAc-specific MSN.D1_A/_D classes, in addition to D2_A/_B MSNs, as 

their profiles clustered with the broad excitatory branch of neuronal classes (Figures 3B 

and S11), whereas the remaining, less abundant MSN classes (MSN.D1_B/_C/_E/_F, and 

D2_C/_D) clustered in the general inhibitory branch. Strikingly, the former MSN classes 

negatively correlate with most other MSN and GABAergic inhibitory populations within the 

NAc, suggesting potentially divergent transcriptional programs across NAc neuronal classes. 

This observation was supported by hierarchical NAc cluster relationships, where the four 

D1/D2 MSN classes carrying more excitatory signature are seen to be more related than the 

remaining six (Figure S14), and further by separation between these groupings by the top 

principal components (PCs) describing variance across all NAc nuclei (Figure S14). Further 

investigation will be needed to assess this divergent feature of MSN classes and identify 

what unique roles these dopaminoceptive neurons, with respect to their general D1/D2 

classification, play in reward and emotional valence processing. These analyses illustrate the 
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utility of integrating cell-type profiles from across datasets or related tissue types/regions, to 

better understand cell-type identity at a full transcriptome level.

Enrichment of region-specific cell subtypes in psychiatric disease and substance use

Genome-wide association studies (GWAS) have identified a plethora of genetic risk variants 

or loci (segregating variants in linkage disequilibrium [LD]) for common psychiatric 

disorders, including SCZ (Pardiñas et al., 2018; Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014), ASD (Grove et al., 2019), BIP (Stahl et al., 2019), 

MDD (Howard et al., 2019; Wray et al., 2018), PTSD (Nievergelt et al., 2019), AD (Jansen 

et al., 2019), and attention-deficit/hyperactivity disorder (ADHD; Demontis et al., 2019). 

In addition, a large GWAS was recently performed with 1.2 million individuals to identify 

the genetic risk and correlations for alcohol and tobacco use (Liu et al., 2019). Approaches 

have been developed to identify the biological context or relevance of the hundreds of risk 

loci that are often identified for a given disorder or phenotype, such as LD score regression 

(Finucane et al., 2015), which assesses the heritability of complex phenotypes across input 

categories/genomic regions and their measured LD with single-nucleotide polymorphism 

(SNP)-level variants. Multi-marker analysis of genomic annotation (MAGMA) (de Leeuw et 

al., 2015) is an alternative approach that defines gene-level localization of GWAS risk, then 

integrates this with gene set observations, affording flexibility to assess a variety of marker 

lists, such as for brain region-specific snRNA-seq subcluster profiles, in two separable 

analyses.

We used MAGMA to identify which cell subtypes in this study harbored aggregated genetic 

risk for psychiatric disorders and found robust signals across many nuclear transcriptomic 

profiles in each of the five profiled brain regions. As expected, many DLPFC and HPC 

neuronal subtypes exhibited significant effect sizes for both SCZ and BIP GWAS, spanning 

both excitatory and inhibitory classes (Figure S15), extending and strengthening previous 

findings in Bryois et al. (2020) and Skene et al. (2018). After controlling with the strict 

Bonferroni multiple test correction across all MAGMA gene set tests (threshold p < 3.89e–

5), 9 of 10 DLPFC neuronal cell classes, which were FDR significant (controlling for 

FDR < 0.05), retained significant association for both SCZ and BIP. This near-uniform 

pattern of SCZ and BIP risk association to neuronal DLPFC cell classes was similar in the 

sACC (Figure S15), although only one inhibitory cell class in the sACC retained Bonferroni 

significance. This suggests potential regional differences in inhibitory cell classes between 

the two cortical brain regions, in their manifestation of genetic risk for bipolar disorder. 

Contrary to these patterns of risk association in the cortex, the HPC showed disorder­

specific patterns of Bonferroni-significant risk (Figure S15). For example, HPC Excit_D 

significantly associated with only BIP, at this threshold (p = 2.96e–5, β = 0.17), whereas 

Excit_H associated with only SCZ (p = 4.48e–13). This rare excitatory class (Table S3) 

additionally showed the strongest effect size (β = 0.34) for SCZ among all GWAS tested 

for the cell classes of these 3 regions. Interestingly, this small, hippocampal population was 

most enriched for VCAN, SLC17A6 (VGLUT2), and both SoxC transcription factors, SOX4 
and SOX11. None of the cell class profiles in these cortical or hippocampal regions retained 

significant signal for aggregated GWAS risk in MDD, PTSD, ADHD, AD, or ASD (other 
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than in DLPFC OPCs), after Bonferroni correction, although there were some differential 

FDR-significant signals across certain cell classes for these disorders (Table S6).

It has been shown that broad mouse striatal neuronal populations (GABAergic inhibitory 

neurons, Drd1, and Drd2-expressing MSNs) additionally associated with SCZ (Skene et al., 

2018) and BIP (Bryois et al., 2020) genetic risk. We demonstrate that most of our refined 

MSN classes in the human NAc exhibited strong associations with SCZ risk with variable 

effect sizes, even at the Bonferroni correction threshold (Figure 4A), aside from D1_F 

and D2_D. Classes MSN.D1_E, MSN.D2_B, and MSN.D2_C additionally associated with 

BIP at this threshold, and interestingly, the smallest D2 class, MSN.D2_D, which showed 

associations with neither SCZ nor BIP, was FDR significant for association with ASD (p = 

0.0076, β = 0.14). NAc GABAergic inhibitory neuron classes Inhib_B and Inhib_D showed 

strong SCZ associations, but none to BIP, at the Bonferroni threshold. Within AMY, we 

observed significant associations in most of our neuronal classes to SCZ and BIP (Figure 

4C). As with all of the other regions (other than DLPFC and NAc OPCs to ASD), our 

AMY cell classes exhibited differential, albeit weaker, FDR-significant associations to the 

other psychiatric disorders assessed. In summary, the NAc analyses showed complementary 

findings of Drd1- and Drd2-expressing striatal MSN associations with SCZ and BIP. We 

also dissected these mouse association signals with more relevant human GABAergic 

inhibitory neuron and MSN subpopulations in the NAc, and further extended this analysis to 

human AMY snRNA-seq-defined cell classes.

We further tested for alcohol and tobacco use GWAS (Liu et al., 2019) genetic risk 

associations across subcluster profiles from each brain region, focusing on the subcortical 

regions centered in reward circuitry, the NAc and AMY, and their subcluster profiles 

described above. This highlighted various MSN and inhibitory classes in the NAc 

differentially associated with genetic risk for regular smoking behavior (“SmkInit”) and 

heaviness of smoking “CigDay” at the Bonferroni correction threshold (Figure 4A). In 

addition to their gene set markers collectively contributing to risk associations to these 

substance use phenotypes, we saw that many genes with strong gene-level risk scores for 

a given phenotype were themselves also markers for those and additional cell classes (e.g., 

“SmkInit” in Figure 4B; see STAR Methods). Although no AMY cell classes associated 

with any of the five substance use phenotypes at the strict Bonferroni correction threshold, 

they were still differentially associated with the non-”SmkInit” phenotypes. One of these 

classes was DRD2-expressing Inhib_E (Figure 4C), which was the strongest AMY cell class 

associated with the heaviness of drinking (“DrnkWk”, p = 0.00031, β = 0.10). As with the 

NAc, many other cell classes were characterized by selectively enriched genes harboring 

local, gene-level risk (e.g., “DrnkWk” in Figure 4D), even though the gene set analyses 

did not assign strict Bonferroni-significant cell class association. Collectively, these results 

provide complementary human findings for genetic risk associations to those previously 

described for psychiatric disease, further identifying subpopulations in the NAc and AMY 

harboring aggregated risk for substance use behaviors.
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DISCUSSION

In this study, we used snRNA-seq to profile five human brain regions within the ventral 

striatum (NAc), limbic system (AMY and HPC), and two cortical subregions (sACC and 

DLPFC) that are interconnected within the larger reward circuitry. While efforts to generate 

a diverse human cell type atlas at the single-cell level are under way (Han et al., 2020), 

the landscape of specialized molecular cell types across the complex human brain remains 

largely unexplored at this level of number of samples and regional diversity. This study is the 

first, to our knowledge, to systematically profile and compare across multiple interconnected 

cortical and subcortical human brain areas, selected for their function and association with 

risk for neuropsychiatric disorders and addiction. We placed special emphasis on analyses 

in the NAc and the AMY, given their roles in emotional processing and reward signaling 

and the lack of any current human snRNA-seq reference data in these regions. While 

this study was performed in neurotypical donors, the strong cell-type-specific associations 

to genetic risk for these disorders provide important information about disease etiology. 

This link to genetic risk is important, given that differential gene expression identified 

in case-control studies of postmortem tissue is difficult to interpret as signals may more 

likely represent consequences, rather than causes, of these disorders (Collado-Torres et 

al., 2019; Jaffe et al., 2020). More generally, understanding the transcriptomic architecture 

and cell-type composition across the normal human brain is crucial to understanding the 

etiology of disease and the molecular pathology observed in postmortem tissues to identify 

and prioritize potential novel disease targets. Our study is a significant contribution as it 

demonstrates differential enrichment of disease risk in snRNA-seq-defined cell populations 

across multiple brain regions, including the NAc and AMY, which have not yet been profiled 

at the single-cell/single-nucleus level in the human brain.

The NAc is a central hub for reward signaling, and altered function in circuits encompassing 

the NAc is implicated in a number of psychiatric disorders as well as drug addiction. 

Consistent with studies that used single-cell sequencing to profile the mouse striatum, 

including ~1,000 striatal cells in each study (Gokce et al., 2016; Stanley et al., 2020), we 

identified several discrete classes of D1- and D2-expressing MSNs in human NAc. We 

also observed co-expression of DRD1 and DRD2 in a small subset of MSNs. While these 

dual-expressing neurons did not emerge as their own cluster, they were largely found in the 

D1_E class (Figures 1B and S1). Interestingly, this cluster showed the strongest enrichment 

of genes associated with psychiatric and substance use phenotypes, indicating that this 

particular subpopulation may be especially vulnerable to dysfunction in these disorders. 

Among D1 subtypes, D1_E MSNs (along with SST+, NPY+ interneuron class Inhib_E, 

and to some degree, MSN.D2_D) show selective expression of CRHR2, a gene encoding 

corticotropin-releasing hormone receptor 2, suggesting that they may be particularly 

susceptible to the effects of CRH, which is released and mediates the physiological 

and behavioral response to stress, modulating several neurotransmitter systems, including 

dopamine release (Bonfiglio et al., 2011; Payer et al., 2017). Given that dysfunction of the 

CRH system has been associated with many psychiatric disorders, including depression, 

anxiety, and PTSD (Claes, 2004), understanding which cell types express CRH receptors 

may aid in more specific targeting of the stress axis for therapeutic developments.
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Similar to Gokce et al. (2016), we also observed promiscuous expression of “typical” D1 

and D2 neuropeptide marker genes (TAC1 and PENK, respectively) in both D1- and D2­

MSN classes, providing further evidence that these classic markers may not be as selectively 

expressed as previously understood. Future studies using spatial transcriptomic approaches 

will be important to clarify whether TAC1-expressing D1- and D2-MSN classes show 

topographical organization in the NAc core versus shell. Anatomical location may explain 

differences in TAC1 and PENK expression in specific MSN classes, as it is well established 

that specific neuropeptides are expressed in a spatial gradient across the core and shell 

(Prensa et al., 2003; Salgado and Kaplitt, 2015; Stanley et al., 2020; Voorn et al., 1989). 

To better interpret clinical implications of studies that focus on circuitry encompassing the 

NAc in animal models, further understanding of similarities and differences across species 

for cell types that contribute to NAc function are important. While many cell populations 

were conserved between rat and human NAc (Savell et al., 2020), we did observe differences 

in specific MSN classes, which may indicate unique molecular features between analogous 

MSN classes and/or the existence of divergent MSN subclasses, as exemplified by the 

lack of a specific human MSN classes with strong correlation to the rat “Grm8-MSN” 

subpopulation (Figure 1F). However, given the small positive correlations measured with 

human D2_B (r = 0.40) and various D1 classes, it is possible that this Grm8-expressing 

population encompasses a broader species equivalent of these less abundant D1/D2 classes, 

which express variable GRM8 (Figure S4). We also were unable to identify a population 

of cholinergic interneurons. While these are thought to be more abundant in the human 

neostriatum compared to the rodent, where they account for only ~0.3% of neurons 

(Graveland et al., 1985; Rymar et al., 2004; Tepper and Bolam, 2004), it is likely that 

the relatively low rate of sampling and the relative rarity of this population’s accounts for 

this lack of observation.

In addition to profiling NAc cell types, we generated a molecular taxonomy of human 

amygdala cell types. Among the more diverse set of inhibitory (8 of 11, total) neuronal 

classes in our AMY profiles, the stress modulator CRH was specifically enriched in 

Inhib_B. Top markers in the AMY Inhib_C subcluster included NPFFR2 (Neuropeptide 

FF Receptor 2) and TLL1 (Tolloid-Like 1), which are both associated with glucocorticoid 

signaling and the response to stress (Lin et al., 2016, 2017; Tamura et al., 2005). Comparing 

human AMY subcluster profiles to data from the mouse MeA (Chen et al., 2019), we found 

that Inhib_C and its corresponding population in mouse (MeA “N.8” subcluster; Figure 2C) 

were of the most strongly correlated neuronal classes (r = 0.61). While Tll1 expression was 

notably absent in mouse MeA, Npffr2 and other top MeA “N.8” marker genes were shared 

with Inhib_C (Figure S6). We emphasize the comparisons to single-nucleus/single-cell 

datasets from animal models in the present study as a quick method for comparing annotated 

profiles, whereas other more computationally heavy algorithms exist to more definitively 

answer questions about conservation and species specificity (Butler et al., 2018; Haghverdi 

et al., 2018). Nevertheless, these insights highlight the importance of deriving reference 

snRNA-seq datasets across the human brain, as molecular gene markers may not be shared 

across species between analogous neuronal subpopulations.

Integrating the transcriptomic profiles across our total of 107 reported cell classes in the 

NAc, AMY, sACC, DLPFC, and HPC showed patterns of expected similarity, particularly 
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among glial cell classes. However, this analysis also revealed some within-cell-type 

substructure that highlight unique relationships between these regionally defined classes. 

As an example, we noted a cluster of strongly correlated astrocyte classes from each of 

the five brain regions (Figure S12), and a small cluster made up of the sACC “Astro_B,” 

HPC “Astro_B,” and NAc “Astro_A.” The most unique astrocyte population, “Astro_B” 

from AMY (83 nuclei), appeared to be a metabolically low class of astrocytes, suggested 

by its low distribution of total unique molecular identifier (UMI) capture (Figure S13) 

and specific depletion of central transcription factors (TCF4, SOX6, NFIA, and NFIB) 

and various signaling/growth regulators (AKT3, APC, and PREX2; data not shown). 

These observations complement recent work focused on surveying astrocyte diversity in 

the mammalian brain (Batiuk et al., 2020) or across other glial cell types and their 

developmental origin (Chamling et al., 2021; Masuda et al., 2020). We additionally observed 

a variety of shared neuronal cell classes across regions. Most strikingly, this revealed 

that despite their broad D1/D2 classification, MSNs separate into divergent groups that 

exhibit a more excitatory versus a more inhibitory signature, and these respective groups of 

MSN classes are generally negatively correlated (Figures S11 and S14). A comprehensive 

characterization of the molecular pathways driving this divergence at the transcriptome 

level, in addition to how this influences their potential roles within the existing micro- 

and macrocircuitry, is beyond the scope of this work. However, this full integration of 

single-nucleus profiles across regions demonstrates a practical method of assessing cell-type 

relationships and elucidating patterns across the cell-type manifold, while maintaining the 

molecular resolution of transcriptomic signatures related to their tissues of origin.

We finally used the snRNA-seq data from the five profiled regions to ask whether specific 

cell classes harbored aggregate genetic risk for various neuropsychiatric disorders and/or 

features of substance use. We confirmed previous findings by identifying strong associations 

for neuronal classes in the DLPFC and HPC with both SCZ and BIP (Bryois et al., 2020; 

Skene et al., 2018) and significantly extended these findings by providing associations with 

specific sACC excitatory and inhibitory populations (Figure S15). We not only confirmed 

previously observed associations to broad striatal populations defined in the mouse but 

also showed, for the first time, that individual populations of dopaminoceptive (DRD1/2) 

neurons in the human NAc may be differentially associated with SCZ and BIP (Figure 4). 

We also found that specific classes of GABAergic inhibitory neurons in the human AMY 

were preferentially associated with SCZ that were not significantly associated with BIP. 

These observations highlight a potential role for these subcortical brain regions in mediating 

genetic risk for SCZ and BIP.

As both the NAc and AMY play critical roles in reward signaling, we also evaluated the 

enrichment of genetic risk for addiction or substance use behaviors (Liu et al., 2019). 

Intriguingly, the genetic risk for adopting regular smoking associated more broadly across 

most neuronal populations, whereas other phenotypes assessed in this addiction GWAS 

showed more preferential associations to certain classes. This suggests that the risk for 

adopting addictive-like behaviors may affect these brain regions more broadly than specific 

features of addiction (Figure 4A and 4C). With regard to the other features, the MSN.D1_E 

class significantly associated with genetic risk for heaviness of smoking (“CigDay”) 

and drinking (“DrnkWk”). As a top marker for this class was CRHR2, this may be a 
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key population in understanding these features of addiction. Many rodent studies have 

implicated CRH receptors in alcohol consumption and alcohol dependence (Heilig and 

Koob, 2007; Yong et al., 2014). In the AMY, two neuronal classes drew our attention, due to 

their association with multiple phenotypes, including “Inhib_C” and “Inhib_E.” Due to their 

marker expression of NPFFR2/TLL1 and serotonin receptors HTR4/HTR2C, respectively 

(data not shown; Table S5), these GABAergic classes may be of interest in understanding 

amygdalar circuits underlying genetic risk for substance use. From these analyses, we 

surveyed our diversity of neuronal classes profiled in the NAc and AMY for their clinical 

relevance in psychiatric disease and addiction behaviors. In addition, we have extended 

such analyses for these regions, which have formerly only been performed on cell-type 

profiles defined in murine models (Bryois et al., 2020; Skene et al., 2018) to their relevant 

human context, and with increased resolution of molecularly defined classes. Finally, we 

narrowed down those classes manifesting the greatest genetic risk, potentially highlighting 

some neuronal subclasses mediating certain substance use behaviors.

While we identified and characterized a diversity of robust neuronal classes with our 

analytical pipelines for this study, we recognize that our sample sizes may not fully capture 

all cell types or subpopulations, such as the striatal cholinergic interneurons mentioned 

above. The most direct evidence for this is that there remains some bias in the donor 

makeup of certain classes (Figure S16; Table S3), keeping NeuN enrichment for a subset 

of samples in mind. However, despite steps to mitigate the impact of the small input for 

our sample processing protocol (see STAR Methods), we expect some degree of sampling 

bias since cell-type makeup is not expected to be homogeneous within a single region. For 

example, the NAc core or shell has different functional properties and differs in regard 

to their afferent and efferent connections, and, thus, differences in cell composition across 

these two subregions is expected (Heimer et al., 1991; Li et al., 2018b; Zahm and Heimer, 

1993). Integration of spatial transcriptomic technologies with snRNA-seq data in these 

regions (Maynard et al., 2021) will help resolve expected heterogeneity across these adjacent 

subregions. Furthermore, while many groups have recently begun to identify sex-specific 

differences in specific roles or hormonal responses of neuronal subpopulations (Cao et 

al., 2018; Chen et al., 2019), we believe our study remains underpowered to potentially 

recapitulate these observations. It is noted that the capture of certain non-neuronal cell 

classes was observed in only select brain regions, namely endothelial cells, as these were 

only identified in the AMY. However, we identified mural cells (comprising pericytes and 

vascular smooth muscle cells) in the AMY, DLPFC, and HPC. With these sample sizes still 

limited and an emphasis on NeuN enrichment in a subset of our data, we believe that these 

smaller, stromal populations were inherently not captured by our protocols in some regions. 

Nevertheless, we highlight that most of the cell classes we report are made up of their own 

set of subclusters (Table S4; see method details and data and code availability).

Another caveat to these snRNA-seq data is the lack of gene expression information from 

the cytosolic compartment, such as the neuropil. This is an important caveat, given that 

synaptic signaling is implicated in neuropsychiatric disorders, and gene products localized 

to the synapse are enriched for SCZ genetic risk (Skene et al., 2018). In addition, mRNA 

from some expected marker genes (e.g., PVALB) may be preferentially localized to the 

cytosol, as demonstrated with smFISH for the GAD1+ interneuron “Inhib_C/_D” classes 
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in the NAc (Figure S5). However, this seems to be cell population and/or area specific, in 

regard to the transcriptional and nuclear-export dynamics of the respective cell population, 

as PVALB was highly expressed in some DLPFC subpopulations (data not shown; see 

data and code availability). These observations and those by others thus emphasize that 

snRNA-seq will not capture the full transcriptomic profile of cell populations, including 

activation-induced or disease-associated molecular changes restricted to the cytosol (Thrupp 

et al., 2020). However, as we previously demonstrated (Maynard et al., 2021), snRNA-seq­

defined cell populations can be registered to spatial transcriptomic data, which does retain 

such information, for further characterization of transcriptomic profiles.

In summary, we used snRNA-seq to profile five human brain regions with roles in the 

reward circuitry. We defined transcriptomic profiles for 107 regionally defined cell-type 

classes and characterized the architecture of molecular relationships across these brain 

regions. We finally identified associations with genetic risk for neuropsychiatric disorders 

and substance use phenotypes in unique neuronal subpopulations in the NAc and AMY. This 

study provides a significant step toward constructing a single-nucleus transcriptomic atlas of 

the human brain and illustrates the utility of this type of data in understanding the diversity 

of cell populations, as well as their roles in biology and disease.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources not provided below (see 

data and code availability) should be directed to the lead contact, Keri Martinowich 

(keri.martinowich@libd.org).

Materials availability—This study did not generate new reagents or materials.

Data and code availability—Raw single-nucleus RNA-seq read data is publicly available 

from the Globus endpoint ‘jhpce#tran2021’, linked from https://research.libd.org/globus. 

Data files containing de-identified and processed SingleCellExperiment objects are hosted 

on Amazon S3, and the links are available on the README.md of the GitHub repository for 

this project (https://github.com/LieberInstitute/10xPilot_snRNAseq-human). RNAscope data 

generated in this study will be shared by the lead contact upon request.

All code for processing and analyzing the data has been archived at the time of submission 

at Zenodo: https://doi.org/10.5281/zenodo.5149046.

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Post-mortem human tissue—Post-mortem human brain tissue from eight neurotypical 

donors of European ancestry from age 40 to 69 (Table S1) was obtained by autopsy from 

the Office of the Chief Medical Examiner for the State of Maryland under State of Maryland 

Department of Health and Mental Hygiene Protocol 12–24. Clinical characterization, 
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diagnoses, and macro- and micro-scopic neuropathological examinations were performed 

on all samples using a standardized paradigm, and subjects with evidence of macro- 

or micro-scopic neuropathology were excluded. Details of tissue acquisition, handling, 

processing, dissection, clinical characterization, diagnoses, neuropathological examinations, 

RNA extraction and quality control measures have been described previously (Lipska et al., 

2006). Dorsolateral prefrontal cortex (DLPFC, n = 3) and hippocampus (HPC, n = 3) tissue 

was microdissected using a hand-held dental drill as previously described (Collado-Torres 

et al., 2019). The subgenual anterior cingulate cortex (sACC, n = 5) was dissected under 

visual guidance from the medial aspect of the forebrain at the level of the rostrum of the 

corpus callosum. Dissections were performed ventral to the corpus callosum, and dorsal to 

the orbital frontal cortex (BA11). Medially it was bounded by the interhemispheric fissure, 

while laterally it was bounded by the corona radiata/centrum semiovale. For the amygdala 

(AMY, n = 5), a block containing the structure was dissected under visual guidance at the 

level of its maximal size, taken from a 1 cm thick slab of one hemisphere, and sectioned 

in the coronal plane. The amygdala block was chosen by visual inspection at a level that 

contained the maximal number of subnuclei. Landmarks for selection of the amygdala block 

included presence of the internal and external segments of the globus pallidus, the anterior 

commissure, and optic tract. The block containing the nucleus accumbens was taken from 

a 1 cm thick slab of one hemisphere, and sectioned in the coronal plane. The nucleus 

accumbens (NAc, n = 8) block was chosen at a level where the putamen and caudate are 

joined by the accumbens at the ventral aspect of the striatum, with clear striations separating 

the putamen from the caudate. Additional landmarks include the presence of the anterior 

aspect of the temporal lobe and the claustrum.

Given the low number of female donors (n = 2) and inclusion in only three (NAc, AMY, and 

sACC) of the regions in the present study, in addition to the variable enrichment (DAPI/PI, 

alone, or with NeuN enrichment) scheme across samples (see Table S2), our study is 

underpowered to assess effects or influences due to sex, such as cell class proportion or 

regulation/effect on gene expression.

METHOD DETAILS

snRNaseq data generation—We performed single-nucleus RNA-seq (snRNA-seq) on 

24 samples from 3–8 individual donors, per region (n = 3 DLPFC, n = 3 HPC, n = 5 AMY, 

n = 5 sACC, n = 8 NAc), using 10x Genomics Chromium Single Cell Gene Expression V3 

technology (Zheng et al., 2017). Nuclei were isolated using a “Frankenstein” nuclei isolation 

protocol developed by Martelotto et al. for frozen tissues (Habib et al., 2016, 2017; Hu et 

al., 2017; Lacar et al., 2016; Lake et al., 2016). Briefly, ~40mg of frozen, ground tissue 

was homogenized in chilled Nuclei EZ Lysis Buffer (MilliporeSigma #NUC101) using a 

glass dounce with ~15 strokes per pestle. Homogenate was filtered using a 70 μm-strainer 

mesh and centrifuged at 500 × g for 5 minutes at 4°C in a benchtop centrifuge. Nuclei 

were resuspended in the EZ lysis buffer, centrifuged again, and equilibrated to nuclei wash/

resuspension buffer (1x PBS, 1% BSA, 0.2U/μL RNase Inhibitor). Nuclei were washed 

and centrifuged in this nuclei wash/resuspension buffer three times, before labeling with 

DAPI (10 μg/mL) or propidium iodide (PI) (depending on processing batch). For 3 NAc, 2 

sACC, and 2 AMY samples from individual donors, nuclei were additionally labeled with 
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Alexa Fluor 488-conjugated anti-NeuN (MilliporeSigma cat. #MAB377X), at 1:1000 in the 

same wash/resuspension buffer, for 30 minutes on ice, to facilitate enrichment of neurons 

during fluorescent activated cell sorting (FACS). Samples were then filtered through a 35 

μm-cell strainer and sorted on a BD FACS Aria II Flow Cytometer (Becton Dickinson) 

at the Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center (SKCCC) 

Flow Cytometry Core, or Bio-Rad S3e Cell Sorter (depending on processing batch) into 10X 

Genomics reverse transcription reagents. Gating criteria hierarchically selected for whole, 

singlet nuclei (by forward/side scatter), G0/G1 nuclei (by DAPI or PI fluorescence), and 

NeuN-positive cells for the respective NeuN-enriched samples. A “null” sort of nuclei into 

the wash buffer was additionally performed from the same preparation, for quantification 

of nuclei concentration and to ensure that sorted nuclei were intact and free of debris. 

For each sample, approximately 8,500 single nuclei were sorted directly into 25.1 μL of 

reverse transcription reagents from the 10x Genomics Single Cell 3′ Reagents kit (without 

enzyme). The 10x Chromium process was performed and libraries prepared, according 

to manufacturer’s instructions (10x Genomics), and finally sequenced on the Next-seq 

(Illumina) at the Johns Hopkins University Transcriptomics and Deep Sequencing Core.

RNAscope single molecule fluorescent in situ hybridization (smFISH)—Fresh 

frozen NAc from two independent donors was sectioned at 10 μm and stored at −80°C. 

In situ hybridization assays were performed with RNAscope technology utilizing the 

RNAscope Fluorescent Multiplex Kit V2 and 4-plex Ancillary Kit (Cat # 323100, 323120 

ACD, Hayward, California) according to the manufacturer’s instructions. Briefly, tissue 

sections were fixed with a 10% neutral buffered formalin solution (Cat # HT501128 Sigma­

Aldrich, St. Louis, Missouri) for 30 minutes at room temperature (RT), series dehydrated 

in ethanol, pretreated with hydrogen peroxide for 10 minutes at RT, and treated with 

protease IV for 30 minutes. Sections were incubated with 5 different probe combinations 

to assess MSN and inhibitory neuron subtypes: 1) “Square”: DRD1, TAC1, RXFP2, 
GABRQ (Cat 524991-C4, 310711-C3, 452201, 483171-C2, ACD, Hayward, California); 

2) “Circle”: DRD1, TAC1, CRHR2, RXFP1 (Cat 524991-C4, 310711-C3, 469621, 422821­

C2); 3) “Triangle”: DRD1, DRD2, TAC1, PENK (Cat 524991-C4, 553991, 310711-C2, 

548301-C3); 4) “Star”: DRD1, DRD2, CRHR2, HTR7 (Cat 524991-C4, 553991-C3, 

469621, 413041-C2). 5) “Swirl”: PVALB, GAD1, PTHLH, KIT (Cat 422181-C4, 404031­

C3, PTHLH, 606401-C2). Following probe labeling, sections were stored over-night in 

4x SSC (saline-sodium citrate) buffer. After amplification steps (AMP1–3), probes were 

fluorescently labeled with Opal Dyes (Perkin Elmer, Waltham, MA; 1:500) and stained with 

DAPI (4′,6-diamidino-2-phenylindole) to label the nucleus. Lambda stacks were acquired in 

z-series using a Zeiss LSM780 confocal microscope equipped with a 63x × 1.4NA objective, 

a GaAsP spectral detector, and 405, 488, 555, and 647 lasers as previously described 

(Maynard et al., 2020). All lambda stacks were acquired with the same imaging settings 

and laser power intensities. For each subject, high magnification 63x images were randomly 

acquired in the NAc (n = 2 subjects, n = 2 sections per subject, n = 12 images per section).

QUANTIFICATION AND STATISTICAL ANALYSIS

snRNaseq raw data processing—We processed the sequencing data with 

the 10x Genomics’ Cell Ranger v3.0 pipeline, aligning to the human reference 
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genome GRCh38, with a reconfigured GTF such that intronic alignments were 

additionally counted given the nuclear context, to generate UMI/feature-barcode 

matrices (https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/

latest/advanced/references#premrna). Per the output metrics of Cell Ranger, each sample 

was sequenced to a median depth of 284.3M reads (IQR: 253.7M-419.0M). We started 

with raw feature-barcode matrices from this output for analysis with the Bioconductor 

suite of R packages for single-cell RNA-seq analysis (Amezquita et al., 2020) using 

Bioconductor (Huber et al., 2015) version 3.12. For quality control (QC) and nuclei 

calling, we first used a Monte Carlo simulation-based approach to assess and exclude 

empty droplets or those with random ambient transcriptional noise, such as from debris 

(Griffiths et al., 2018; Lun et al., 2019). This was then followed by mitochondrial rate 

adaptive thresholding, which, though expected to be near-zero in this nuclear context, 

we applied a 3x median absolute deviation (MAD) threshold, to allow for flexibility in 

output/purity of nuclear enrichment by FACS using scater’s isOutlier (Lun et al., 2016). 

Finally, within each sample, we computed doublet scores implemented with R package 

scDblFinder’s computeDoubletDensity function (Dahlin et al., 2018), to assess putative 

doublet-driven clustering (see below). This QC pipeline yielded 11,202 high-quality nuclei 

from the DLPFC, 10,268 nuclei from HPC, 15,669 nuclei from AMY, 15,669 nuclei 

from sACC, and 20,571 nuclei from NAc. Collectively, these exhibited a median unique 

molecular identifier (UMI) count of 9,450(interquartile range, IQR: 5,513–23,078 UMIs) per 

nucleus, and a median detected gene count of 3,225 (IQR: 2,292–5,739) genes captured per 

nucleus. These feature-barcode gene counts were then rescaled across all nuclear libraries, 

using batchelor’s multiBatchNorm (Haghverdi et al., 2018). Finally, these rescaled counts 

were log2-transformed for identification of highly-variable genes (HVGs) with scran’s 

modelGeneVar (Lun et al., 2016), taking all genes with a greater variance than the fitted 

trend.

Dimensionality reduction and clustering—Principal components analysis (PCA) was 

then performed on the HVGs to reduce the high dimensionality of nuclear transcriptomic 

data for each region, implementing batchelor’s fastMNN PC coordinate correction to 

remove batch effects at the donor (highest variance-contributing)-level (Amezquita et al., 

2020; Haghverdi et al., 2018). The optimal principal component (PC) space was defined 

with iterative graph-based clustering to determine the d PCs where resulting n clusters 

stabilize, with the constraint that n clusters < / = (d + 1) PCs (Lun et al., 2016), resulting 

in a chosen d between 59–99 PCs. In this PC-reduced space, graph-based clustering was 

performed to identify what we classified as preliminary clusters; specifically, k-nearest 

neighbors with k = 20 neighbors and the Walk-trap method from R package igraph (Csardi 

and Nepusz, 2006) for community detection. We then took all feature counts for these 

assignments and pseudo-bulked counts (Crowell et al., 2019; Kang et al., 2018; Lun and 

Marioni, 2017) across these preliminary nuclear clusters, rescaling for combined library 

size and log-transformed normalized counts, using scater’s librarySizeFactors (Lun et al., 

2016). With the pseudo-bulked count profiles, we then performed hierarchical clustering 

to identify preliminary cluster relationships, and finally merged with the cutreeDynamic 

function of R package dynamicTreeCut (Langfelder et al., 2016), or keeping split 

clusters at the preliminary resolution, if generally well-represented across donors, as this 
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suggested biologically valid subpopulations (for example, neuronal subtypes) as opposed 

to more likely batch-driven preliminary clusters. However, in some cases, cluster marker 

identification (see below) suggested sample bias in true, biological subpopulations (see 

discussion). The final clusters merged at the appropriate tree height were then annotated for 

broad cell type identity with well-established cell type markers (Mathys et al., 2019), and 

with a letter suffix where multiple broad cell class populations were defined (‘Excit_A’, 
‘Excit_B’, etc.). We also used Bioconductor package scater’s (McCarthy et al., 2017) 

implementation of non-linear dimensionality reduction techniques, t-SNE (van der Maaten 

and Hinton, 2008) and UMAP (McInnes et al., 2018), with default parameters and within the 

aforementioned optimal PC space, simply for visualization of the high-dimensional structure 

in the data, which generally complemented the clustering results. Additionally, in the HPC, 

AMY, sACC, and NAc analyses, we flagged clusters that were driven by low transcript 

capture or doublets (suggested by ‘dual’ cell-type marker expression, but confirmed with 

high doublet scores), and these were removed prior to down-stream analyses and from the 

t-SNE display, resulting in a final n nuclei analyzed per region of: 11,202 from the DLPFC, 

10,139 nuclei from HPC, 14,039 nuclei from AMY, 15,343 nuclei from sACC, and 19,892 

nuclei from NAc (an average of 96.8% nuclei kept post-QC, above). These final numbers of 

nuclei analyzed per regionally-defined cell class (and subcluster) and by donor can be found 

in Tables S3 and S4.

Cluster marker identification—For marker identification with our final clusters defined 

in each brain region, we utilized scran’s findMarkers (Lun et al., 2016) function for two sets 

of statistics:

1. Pairwise t tests, to identify differences between each cluster, or

2. Implementing the function findMarkers to perform a cluster-versus-all-other­

nuclei t test iteration

In both cases, we re-computed non-scale-matched log2-transformed counts (from 

logNormCounts), including a donor covariate to properly model linearly (in the design 

= parameter) on this unwanted batch effect (as multiBatchNorm, which is preferred as 

the input to fastMNN, above, removes much of the sequencing depth differences being 

modeled). The latter approach, 2), we consider a lessstringent marker test for enriched 

genes in a given cluster, but which would not necessarily differentiate between said cluster 

and all others. In addition to these statistics, for each cell class, we computed a Boolean 

parameter for non-0 median expression of each gene, to differentiate between noise-driven 

statistics. We used the results from both tests to interpret cell type identity beyond the broad 

classes (excitatory versus inhibitory neuron), and to identify markers to probe via smFISH 

(below). The top 40 markers from each test result (including the respective non-0-median 

expression filter applied) are provided for each regionally-defined cell class in Table S5 

(regions separated by worksheet), where the ‘_pw’ suffix corresponds to the pairwise tests 

(set 1), and ‘_1vAll’ to the enriched expression test (set 2).

Importantly, 2) can be used to return a statistic, Cohen’s D, or the standardized log-fold 

change, which we used to back-compute a single t-statistic for each cluster per gene, using:
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t = std.logFC * sqrt(n), where n = the total n nuclei (per region/dataset)

* Back-computing a single t-statistic cannot be generated with the result of 1) due to 

pairwise testing.

Comparing cell class conservation between datasets or across species—The 

t-statistics, described above, can then be used to compare such ‘transcriptomic profiles’ to 

those we computed for publicly-available postmortem human datasets, using the provided 

cell type annotations (or across our 5 regions), and compute the Pearson correlation 

coefficient (r), as was done in the spatial registration approaches in spatialLIBD (Maynard et 

al., 2021), across all shared expressed genes.

To perform cross-species conservation analyses, we generated these t-statistics (from 

marker test 2., above) per gene, per reported cell annotation, subsetting on 

shared homologous genes between our human data and rat or mouse, using the 

‘DB Class Key’ identifier provided by http://www.informatics.jax.org/downloads/reports/

HOM_AllOrganism.rpt, before computing the pairwise correlations. In the case of “many­

to-many” orthalog scenarios, we took the highest-expressing paralog as the surrogate for 

each homologous pair, though these were small sets of genes in both rat and mouse 

cases. Correlation Pearson’s r for both the human-versus-rat NAc and human AMY versus 

mouse MeA sections were performed in the gene space defined by the combined top-100 

markers per cell class/subcluster (whether markers for the human cell classes or the reported 

subpopulations in each respective rodent model), where species homology information was 

known. In the NAc comparison, this was across 582 homologous marker genes, and for the 

AMY, 480 homologous genes.

GWAS association analyses with MAGMA—The latest version (v1.08) of Multi­

marker Analysis of GenoMic Annotation (MAGMA; de Leeuw et al., 2015) was used to 

test for genetic risk association of our 107 regionally-defined cell classes with schizophrenia 

(SCZ: Pardiñas et al., 2018; Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014), autism spectrum disorder (ASD: Grove et al., 2019), bipolar disorder 

(BIP: Stahl et al., 2019), major depressive disorder (MDD: Wray et al., 2018), posttraumatic 

stress disorder (PTSD: Nievergelt et al., 2019); Alzheimer’s disease (AD: Jansen et al., 

2019); attention deficit/hyperactivity disorder (ADHD: Demontis et al., 2019); and for 

alcohol and tobacco use phenotypes (Liu et al., 2019). For the marker gene sets, we 

used any genes defined as enriched per subpopulation (using marker test set 2, from 

above), at the Benjamini & Hochberg false discovery rate (FDR) < 1e-6 (Benjamini 

and Hochberg, 1995) and a restriction that the median expression of putative marker 

gene per cell class be > 0. SNPs were first annotated to genes, using window sizes 

from −10kb to +35kb of each gene, with the 1000 Genomes EUR reference panel, 

and gene-level analyses were performed, using provided summary statistics from each 

of the above listed GWAS (via https://www.med.unc.edu/pgc/download-results/ or https://

genome.psych.umn.edu/index.php/GSCAN for results from Liu et al. (2019) and the snp­

wise = mean model, to test whether there was enrichment of genetic risk for disease/

phenotype in each gene. Following this, we performed the default competitive gene set 

analysis with the 107 regionally-defined marker sets, testing for association of gene-level 
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risk and whether genes were enriched/specific to each subpopulation. From the empirical 

p-value of the gene set analysis, we performed multiple test correction with both false­

discovery rate (FDR) and the stricter Bonferroni procedure (threshold p < 3.89e-5) across 

all 1284 (107 regionally-defined subpopulations and 12 GWAS phenotypes tested) tests. All 

genetic association test results are provided in Table S6.

RNAscope data analysis—Following image acquisition, lambda stacks in z-series 

were linearly unmixed in Zen software (weighted; no autoscale) using reference emission 

spectral profiles previously created in Zen (Maynard et al., 2020) and saved as Carl 

Zeiss Image “.czi” files. Images were segmented and quantitatively analyzed in MATLAB 

using dotdotdot software (Maynard et al., 2020) and statistical analyses were performed 

in R v4.0.4: For each of the five experiments (see below for elaboration), we combined 

DAPI-defined region of interest (ROI)-level data from all respective images, and used data­

driven cutoffs based on distributional overlap to determine binary expression levels (i.e., 

expressed or unexpressed) for each gene/channel, for cell class [group] prediction. In each 

experiment, each GAD1+ (or DRD1+ or DRD1+/DRD2+, pending on the experiment) ROI 

was classified into a Euclidean distance-predicted neuronal cell class (or group of classes, 

as accordingly, due to 4-plex limitations), based on the lowest distance. Probe counts were 

then quantified as the number of dots per 10,000 ROI pixels, post-lipofuscin masking, then 

log2-transformed (annotated as ‘rnascope_[GENE]’ in Figures 1D, S1, S2, S3, and S5).

Experiment-specific information

- Circle: 1033 ROIs were quantified across 48 images taken from 4 tissue sections across 

from 2 donors (two sections/donor). 251 ROIs were classified as DRD1+ with > 3 dots post 

lipofuscin masking, and among these ROIs, RXFP1 and CRHR2 binarized expression, for 

prediction only, was classified as > 3 dots and TAC1 expression was classified as > 6 dots. 

Corresponds to experiment shown in Figure 1D.

- Square: 1126 ROIs were quantified across 48 images taken from 4 tissue sections across 

from 2 donors (two sections/donor). 341 ROIs were classified as DRD1+ with > 3 dots 

post lipofuscin masking, and among these ROIs, RXFP2, GABRQ, and TAC1 binarized 

expression, for prediction 2nly, were each classified as > 6 dots. Corresponds to experiment 

shown in Figure S2.

- Triangle: 1039 ROIs were quantified across 47 images taken from 4 tissue sections across 

from 2 donors (two sections/donor). 271 ROIs were classified as either DRD1+ or DRD2+ 

with > 3 dots post lipofuscin masking in either gene, and among these ROIs, TAC1 and 

PENK binarized expression, for prediction only, were classified as > 6 dots. Corresponds to 

experiment shown in Figure S1.

- Star: 1003 ROIs were quantified across 44 images taken from 4 tissue sections across 

from 2 donors (two sections/donor). 482 ROIs were classified as either DRD1+ or DRD2+ 

with > 3 dots (post lipofuscin masking) in either gene, and among these ROIs, HTR7 and 

CRHR21 binarized expression, for prediction only, were classified as > 6 dots. Corresponds 

to experiment shown in Figure S3.
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- Swirl: 989 ROIs were quantified across 44 images taken from 4 tissue sections across 

from 2 donors (two sections/donor). 212 ROIs were classified as GAD1+ inhibitory neurons 

with > 6 dots post lipofuscin masking, and among these ROIs, PVALB, KIT and PTHLH 
binarized expression, for prediction only, were classified as > 6 dots. Corresponds to 

experiment shown in Figure S5.

ADDITIONAL RESOURCES

For each of the five brain regions in this study, we created an interactive website with 

the data using iSEE (Rue-Albrecht et al., 2018) and deployed at the LIBD shinyapps.io 

account at URLs such as https://libd.shinyapps.io/tran2021_NAc/ (and accordingly, /

tran2021_sACC, /tran2021_DLPFC, /tran2021_AMY, and /tran2021_HPC).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• snRNA sequencing (70,615 nuclei) of 5 human brain regions with roles in 

reward

• Characterization of the transcriptomic architecture across 107 cell classes

• Genetic risk association for substance use phenotypes in specific cell 

populations

• Interactive app for each brain region to explore genes of interest in cell classes
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Figure 1. Distinct classes of D1- and D2-expressing MSNs in human NAc
(A) t-distributed stochastic neighbor embedding (tSNE) plot of 19,789 nuclei (n = 8 donors) 

across 21 clusters, including 6 clusters of D1 MSNs and 4 clusters of D2 MSNs.

(B) Heatmap depicting log2 expression of canonical marker genes used to annotate each 

cluster.

(C) Violin plots for 4 genes differentially expressed (log2-normalized counts) in specific 

D1 classes (or class groups: CRHR2, DRD1, RXFP1, and TAC1) that were selected for 

validation using single-molecule fluorescence in situ hybridization (smFISH).

(D) Log2 expression of respective transcript counts per smFISH region of interest (ROI) 

(ROI size normalized) post lipofuscin masking (autofluorescence). Each DRD1+ ROI was 

classified into a Euclidean distance-predicted MSN class (or group of classes) and its/their 

respective expression.

(E) Multiplex smFISH in human NAc depicting a D1_C (left) and D1_E (right) MSN, side 

by side. Maximum intensity confocal projections showing the expression of DAPI (nuclei), 

CRHR2, DRD1, TAC1, and lipofuscin autofluorescence. Merged image without lipofuscin 

autofluorescence. Scale bar, 10 μm.

(F) Heatmap of Pearson correlation values evaluating the relationship between our human­

derived NAc cell classes (rows) and reported rat NAc populations from Savell et al. (2020). 

Correlation was performed on the combined top 100 markers/cell populations in which 

annotated homology exists (here, 582 genes; see STAR Methods).
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Figure 2. Atlas of molecularly defined cell types in human AMY
(A) tSNE plot of 14,039 nuclei across 19 clusters, including 3 clusters of excitatory neurons 

and 8 clusters of GABAergic inhibitory neurons.

(B) Expression violin plots for the top genes for each of the neuronal classes (log2­

normalized counts).

(C) Heatmap of Pearson correlation values evaluating the relationship between our human­

derived AMY cell classes (rows) versus the cell populations reported in Chen et al. (2019), 

derived from mouse medial amygdala (MeA). Correlation was performed on the combined 

top 100 markers/cell populations in which annotated homology exists (here, 480 genes; see 

STAR Methods).
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Figure 3. Across-regions analyses reveal whole-brain transcriptomic architecture and neuronal 
subtype similarities across regions
(A) tSNE array of a total of 70,615 nuclei, paneled by each brain region and their regionally 

defined cell classes (a total of 107 cell classes).

(B) Pairwise correlation of t-statistics, comparing the top cell class marker genes of the 

107 classes (total of 3,715 genes). Here, only the 69 neuronal classes are shown. Regions 

are colored and labeled in lowercase as the suffix (e.g., as “_hpc” for HPC); “Excit_” 

is abbreviated as “Ex_” and “Inhib_” as “In_.” Scale values are of Pearson correlation 

coefficient (r), which are printed in each cell in the version shown in Figure S11.
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Figure 4. Genetic associations of NAc and AMY cell populations with psychiatric disease and 
addiction phenotypes
(A) MAGMA associations of 12 GWAS for each of 24 cell classes profiled in human NAc.

(B) MAGMA-computed, gene-level Z scores, compared to their reported significant 

PASCAL scores, for “SmkInit” from Liu et al. (2019). Genes are colored if they were 

statistically significant for pairwise marker tests, for the corresponding NAc cell class, and 

additionally labeled if that cell class was Bonferroni significant in MAGMA association with 

the phenotype.

(C) MAGMA associations for each of 16 cell classes profiled in human AMY.

(D) Same as (B) but for “DrnkWk” and colored/labeled by AMY pairwise cell class markers 

(no MAGMA-gene set analysis result restriction).

For the MAGMA heatmaps: displayed numbers are the effect size (b) for significant 

associations (controlled for false discovery rate [FDR] < 0.05), on a Z (standard normal) 

distribution. Bolded numbers are those that additionally satisfy a strict Bonferroni correction 

threshold of p < 3.89e–5. Heatmap is colored by empirical log10(p value) for each 

association test.

AD, Alzheimer’s disease; ADHD, attention-deficit/hyperactivity disorder; ASD, autism 

spectrum disorder; BIP, bipolar disorder; MDD, major depressive disorder; PTSD, 

posttraumatic stress disorder; SCZ, schizophrenia. The suffix for these (e.g., “.PGC2”) 

reference the specific study (see STAR Methods). For the Liu et al. (2019) phenotypes: 

“addxn.,” addiction; “AgeSmk,” age of initiation of regular smoking; “CigDay,” number 

of cigarettes per day; “DrnkWk,” number of drinks per week; “SmkInit,” whether regular 
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smoking was ever reported (binary variable); “SmkCes,” if so, had an individual stopped 

smoking (binary variable).
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KEY RESOURCES TABLE

(Tran, Maynard, et al. 2021 submission)

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-NeuN (clone A60), Alexa Fluor 
488-conjugated

MilliporeSigma #MAB377X

Biological samples

Human postmortem brain tissue (NAc, AMY, sACC, 
DLPFC, HPC)

Lieber Institute for Brain 
Development; see Tables S1 
and S2

N/A

Chemicals, peptides, and recombinant proteins

Recombinant RNasin ribonuclease inhibitor Promega N2515

4’,6-diamidino-2-phenylindole, dihydrochloride (DAPI) Invitrogen D1306

Propidium iodide solution (PI), 1mg/mL Invitrogen P3566

Bovine serum albumin (BSA) VWR 102643-516

10% neutral buffered formalin Sigma-Aldrich HT501128

Critical commercial assays

Nuclei EZ Prep (lysis buffer) Sigma-Aldrich NUC101-1KT

Chromium Single Cell 3’ GEM, Library & Gel Bead Kit, 
v3

10x Genomics PN-1000075

Chromium Single Cell B Chip Kit 10x Genomics PN-1000073

RNAscope Multiplex Fluorescent Kit, v2 ACD 323100

RNAscope 4-Plex Ancillary Kit ACD 323120

Deposited data

Raw sequencing read data (FASTQ) for all n=24 samples 
reported in this paper

This paper https://research.libd.org/globus/
jhpce_tran2021/index.html

Processed data as ‘SingleCellExperiment’ R objects, for 
each region (NAc, AMY, sACC, DLPFC, HPC)

This paper Linked 
from: https://github.com/LieberInstitute/
10xPilot_snRNAseq-human#readme

Summary statistics from various Psychiatric Genomics 
Consortium GWAS

(Various author lists) https://www.med.unc.edu/pgc/download­
results/

Summary statistics for substance use phenotypes GWAS Liu, et al. 2019 https://genome.psych.umn.edu/index.php/
GSCAN

Software and algorithms

Cell Ranger, v3.0 10x Genomics https://support.10xgenomics.com/single­
cell-gene-expression/software/pipelines/3.0/
installation

R, v4.0.4 R Core Team https://www.r-project.org/

Orchestrating single-cell analysis with Bioconductor (v3.12 
methods/R packages)

Amezquita, et al. 2019 https://doi.org/10.1038/s41592-019-0654-x

MAGMA, v1.08 De Leeuw, et al. 2015 https://ctg.cncr.nl/software/magma

Other

Code for analyses in the present study This paper https://doi.org/10.5281/zenodo.5149046
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