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Introduction
The oral cavity holds the second largest microbial community in the human body, after the gut, with over 
1000 species of  commensal bacteria residing therein (1). Dysbiosis or disrupted homeostasis caused by an 
imbalance in the microflora in the oral cavity has been linked to many other systemic inflammatory or infec-
tious diseases (2). There is mounting evidence that links oral bacterial species to systemic diseases including 
pneumonia (1, 3, 4). Bacteria in the oral cavity may promote respiratory infections either directly via aspira-
tion or indirectly by enzyme production that may hinder pathogen clearance, promote lung colonization, or 
alter respiratory epithelial immune responses (5).

SARS-CoV-2 is responsible for the current COVID-19 pandemic. This pandemic began in early 2020 and 
has caused over half  a million deaths in the United States alone (6). Building upon the body of  evidence that 
the microbiome plays a role in the regulation of  innate and adaptive immunity to viral infections (7, 8), stud-
ies done early in the pandemic have demonstrated a connection between an altered gut microbiome and the 
severity of  COVID-19 (9, 10). Additionally, among patients with COVID-19 there has been a large number of  
coinfection cases with organisms that originate from the oral cavity (11). Recently, decreased oral microbiome 
diversity and increased dysbiotic species abundances have been identified as predictive of  COVID-19 (12). 
This has raised the possibility of  using the oral microbiome to diagnose SARS-CoV-2 infection; however, 
studies linking the observed dysbiotic oral microbiota to disease outcomes have been lacking. Also lacking is 
evidence that this COVID-related microbiome, which occurs early in the disease process, is predictive of  key 
outcomes such as symptom duration.

Most hospitalized patients have persistent, long-lasting symptoms that can take weeks to resolve (13) and 
negatively affect health-related quality of  life (14). Symptoms persisting greater than 4 weeks after an acute 
infection are called ongoing symptomatic COVID-19, as characterized by The British National Institute for 

In the COVID-19 pandemic, caused by SARS-CoV-2, many individuals experience prolonged symptoms, 
termed long-lasting COVID-19 symptoms (long COVID). Long COVID is thought to be linked to immune 
dysregulation due to harmful inflammation, with the exact causes being unknown. Given the role of 
the microbiome in mediating inflammation, we aimed to examine the relationship between the oral 
microbiome and the duration of long COVID symptoms. Tongue swabs were collected from patients 
presenting with COVID-19 symptoms. Confirmed infections were followed until resolution of all 
symptoms. Bacterial composition was determined by metagenomic sequencing. We used random 
forest modeling to identify microbiota and clinical covariates that are associated with long COVID 
symptoms. Of the patients followed, 63% developed ongoing symptomatic COVID-19 and 37% went on 
to long COVID. Patients with prolonged symptoms had significantly higher abundances of microbiota 
that induced inflammation, such as members of the genera Prevotella and Veillonella, which, of note, 
are species that produce LPS. The oral microbiome of patients with long COVID was similar to that of 
patients with chronic fatigue syndrome. Altogether, our findings suggest an association with the oral 
microbiome and long COVID, revealing the possibility that dysfunction of the oral microbiome may have 
contributed to this draining disease.
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Health and Care Excellence (15). Symptoms lasting even longer, 8–12 weeks or greater (16), and symptoms 
characterized by fatigue, headache, dyspnea, and anosmia (17, 18) are termed long-lasting COVID-19 symp-
toms (long COVID). Long COVID does not currently have a strict definition (19). At the 10-week mark after 
SARS-CoV-2 infection, more than 50% of patients with long COVID suffer profound fatigue (20). Increas-
ing age, body mass index, and female gender are known to associate with long COVID (16). It is currently 
unknown why most people recover fully within 2 to 3 weeks and others experience symptoms for weeks or 
months longer (21). There is evidence, however, of  persistently perturbed inflammatory pathways long after 
the acute SARS-CoV-2 infection has subsided (22).

Given the emerging associations between the human microbiome and SARS-CoV-2 infection and the 
unknown driver for patients with COVID-19 suffering from long-lasting symptoms, we sought to explore if  oral 
microbiome dysbiosis associates with ongoing symptoms among patients with COVID-19 after hospitalization. 
Accordingly, we enrolled a cohort of patients with COVID-19 who tested positive for SARS-CoV-2 infection by 
PCR from an emergency department in the United States, collected oral swabs early in the disease course, and 
followed them for 4-week and 10-week symptom resolution outcomes. We analyzed oral microbiome composi-
tion by shotgun metagenomic sequencing. Our findings uniquely describe how dysbiosis of the oral microbiome 
may have played a pivotal role in lengthening symptom duration, leading to the long COVID syndrome.

Results
Patient population. From a prospective sampling of  164 patients presenting with COVID-19 symptoms over a 
9-month period, 84 (51.2%) tested positive by PCR for SARS-CoV-2. Of these patients, 27 were successfully 
contacted for follow-up at both 4 weeks and 10 weeks (Figure 1). The average age was 62.6 (SD 12.5) with 
70.4% men, 66.7% White, 7.4% African American, and 25.9% Hispanic. Among the cohort for high-risk 
medical comorbidities, 16 (59.3%) had hypertension, 8 (29.6%) diabetes, and 5 (18.5%) chronic obstructive 
pulmonary disease. Neither the medical comorbidities nor the patients’ Charlson Comorbidity Index (CCI) 
scores differed by symptom duration outcome (Table 1). None of  these patients lived in the same household. 
All of  these patients were admitted to the hospital, with 4 (14.8%) admitted to the ICU. The average hospital 
length of  stay was 8.3 days (SD 7.7), with 85.2% requiring oxygen and 25.9% getting advanced oxygen deliv-
ery by high flow or positive airway pressure. Two patients were intubated with an endotracheal tube.

Symptom duration. The average length of  symptom duration was 45.8 days (SD 30.4), with 14 patients 
(51.9%) experiencing continuation of  symptoms after 4 weeks from disease onset, and 10 patients (37.0%) 
experiencing symptoms longer than 10 weeks. The symptoms that lasted the longest were respiratory in nature 
(81.5% cough or short of  breath) followed by fatigue (55.6%), gastrointestinal symptoms (14.8%), confusion 
or “brain fog” (22.2%), and ageusia or anosmia (14.8%). Brain fog is a symptom more recently linked to long 
COVID and characterized by a lack of  clear memory or an ability to focus (23, 24). There were no significant 
differences in demographics, medical history, or hospital treatments among the 2 outcome categories (Table 
1). However, among patients with symptoms lasting longer than 10 weeks, fatigue and brain fog were the most 
prominent symptoms that lasted the longest duration.

Oral microbiome composition predicted ongoing symptomatic COVID-19. We set out to explore the associa-
tions of  oral microbiome composition with the symptoms of ongoing symptomatic COVID-19. To do this 
we profiled the oral microbiome of subjects with acute COVID-19 infection using shotgun metagenomic 
sequencing (see Methods). Microbial species abundances were determined by running Metaphlan3 (25). We 
estimated microbiome α diversity by calculating Shannon diversity index (26). We started by applying unsu-
pervised learning methods, such as principal coordinate analysis (PCoA) and t-distributed stochastic neighbor 
embedding (t-SNE) and, as expected, found that interindividual variability overwhelmingly accounted for 
the majority of  the information in the data (Supplemental Figure 1; supplemental material available online 
with this article; https://doi.org/10.1172/jci.insight.152346DS1). PERMANOVA analysis on samples clas-
sified according to COVID-19 symptoms duration was not statistically significant (P < 0.05). We then applied 
random forest classification (RFC; refs. 27, 28) to identify microbiome and clinical features associated with 
ongoing disease. Feature selection was performed using the Boruta algorithm on 5-fold cross-validated data 
and then running RFC using the union of the selected Boruta features on the same 5-fold cross-validated 
data to estimate model performance (29). We compared classification accuracy for different models that were 
trained only on demographics and clinical data; only on microbiome species abundances; only on Shannon 
diversity; on demographics, clinical data, and Shannon diversity; on demographics, clinical data, microbiome 
species, and Shannon diversity; and on clinical data, microbiome species, and Shannon diversity (Figure 2A).  

https://doi.org/10.1172/jci.insight.152346
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Each model was run starting from 10 different random seeds to calculate appropriate performance statistics. 
The mean F1 score, the harmonic mean of precision and recall, was used to select the top-performing model 
for a given outcome. The best model — clinical data and microbiome species and Shannon diversity — per-
formed with a mean F1 score of  0.751 (Figure 2A).

Specific microbial members had the greatest contribution to correctly classifying samples. We detected 
both bacterial and eukaryotic organisms in the oral microbiome analysis, with only bacteria demonstrating 
associations with the outcomes. We examined the 19 bacterial species, whose abundances were associated 
with ongoing symptomatic COVID-19, and 2 clinical covariates based on their median RFC-estimated per-
mutated importance score over the 10 RFC pipeline iterations (Figure 2, B and C). The findings from the 
model indicate that both viral load and Shannon diversity were of  moderate importance, whereas specific 
microbiome members contributed the most to correct sample prediction. In particular, 2 of  the 3 top predic-
tors (Veillonella dispar and Veillonella infantium) as well as 2 other species associated with ongoing symptomatic 
COVID-19 belong to the genus Veillonella. Members of  this genus are gram-negative anaerobic coccus that 
can cause infection in humans (30). Specifically, V. infantium has been found in the bronchoalveolar lavage 
fluid of  the patients with COVID-19, suggesting it is a significant coinfectious agent (31). Other pathobionts 
(organisms that can coexist or cause disease under certain circumstances), such as Solobacterium moorei (32, 
33), Streptococcus infantis (34), and Rothia dentocariosa (35), were in higher abundances in patients with ongoing 

Figure 1. Study enrollment flow chart.

https://doi.org/10.1172/jci.insight.152346
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symptomatic COVID-19. Interestingly, S. infantis has been found to be enriched in fecal samples from patients 
with COVID-19 (9) and R. dentocariosa was predictive of  SARS-CoV-2 presence in hospital rooms (36).

In addition to being implicated in coinfection, the Veillonella species is also known to produce a large 
amount of  LPSs (37). Another pattern that emerges from these data is that the higher abundances of  other 
LPS-producing species are predictive of  ongoing symptomatic COVID-19. Five members of  the Prevotel-
la genus are positively associated with ongoing symptomatic COVID-19 in our analysis. Prevotella exhib-
its increased inflammatory properties (38) and has been thought to be a clinically important pathobiont 
involved in promoting chronic inflammation (39, 40). Other proinflammatory species such as Leptotrichia 
wadei (12) are also in higher abundances in patients with a longer symptom duration.

Dysbiotic inflammatory-type oral microbiome associated with the development of  long COVID syndrome. We 
repeated our machine learning–based analysis described above to predict long COVID outcome from micro-
bial abundance and clinical covariates. RFC was not able to capture any signal in the data for models that 
lacked microbiome information (i.e., only on demographics and clinical data; only on Shannon diversity; 
and on demographics, clinical data, and Shannon diversity; Figure 2A). The top-performing RFC for long 
COVID was the one trained on clinical data and microbiome species, resulting in an F1 score on 0.615 (Fig-
ure 3A). From the modeling, we identified 29 different bacterial species whose abundances were associated 
with long COVID (Figure 3, B and C). Similar to ongoing symptomatic COVID-19, multiple Veillonella spe-
cies were associated with long COVID. Several of  the top-predicting species (4 out of  29) belong to the genus 
Actinomyces. Actinomyces cause actinomycosis, a rare infectious disease in which bacteria can spread to the 
respiratory tract causing inflammation (41). As with ongoing symptomatic COVID-19, multiple Prevotella spe-
cies (38) are associated with long COVID. Prevotella species are overrepresented in patients with COVID-19 
and are thought to produce proteins that can promote SARS-CoV-2 infection and increase clinical severity of  

Table 1. Demographics, hospital treatments, and symptoms by outcome category

Patient characteristicsA Early symptom resolution 
(n = 13)

Ongoing symptomatic 
COVID-19 (n = 4)

Long COVID 
(n = 10) P

Demographics and medical
  Age (mean [SD]) (yr) 62.3 (14.3) 63.8 (13.5) 62.5 (10.9) 0.98
  Male, n (%) 11 (84.6) 3 (75.0) 5 (50.0) 0.19
  Female, n (%) 2 (15.4) 1 (25.0) 5 (50.0) 0.19
  White, n (%) 9 (69.2) 2 (50.0) 7 (70.0) 0.75
  African American, n (%) 1 (7.7) 1 (25.0) 0 (0.0) 0.27
  Hispanic, n (%) 3 (23.1) 2 (25.0) 3 (30.0) 0.93
  Smoker, n (%) 4 (30.8) 2 (50.0) 3 (30.0) 0.75
  CCI (mean [SD]) 4.1 (3.1) 1.75 (1.5) 3.2 (2.2) 0.31
  Hypertension, n (%) 9 (69.2) 1 (25.0) 6 (60.0) 0.29
  Diabetes, n (%) 6 (46.2) 0 (0.0) 2 (20.0) 0.15
  Chronic obstructive lung disease, n (%) 1 (7.7) 1 (25.0) 3 (30.0) 0.37
  BMI (mean [SD]) 30.2 (6.4) 39.3 (5.3) 31.5 (4.8) 0.77
  ICU admission, n (%) 2 (15.4) 1 (25.0) 1 (10.0) 0.77
  Remdesivir, n (%) 5 (38.5) 4 (100.0) 6 (60.0) 0.09
  Clinical trial, n (%) 4 (30.8) 1 (25.0) 1 (10.0) 0.49
Longest lasting symptoms

  Fatigue, n (%) 6 (46.2) 1 (25.0) 8 (80.0) 0.11
  Respiratory symptoms, n (%) 10 (76.9) 3 (75.0) 9 (90.0) 0.68
  GI symptoms, n (%) 3 (23.1) 0 (0.0) 1 (10.0) 0.45
  Fever, n (%) 2 (15.4) 0 (0.0) 0 (0.0) 0.31
  Ageusia/anosmia, n (%) 3 (23.1) 0 (0.0) 1 (10.0) 0.45
  Confusion/“brain fog,” n (%) 0 (0.0) 1 (25.0) 5 (50.0) 0.017
  Duration of symptoms days (mean [SD]) 18.8 (11.5) 47.8 (5.4) 80.1 (10.7) <0.001

χ2 Test was used to compare categoric variables and analysis of variance for continuous variables. Advanced O2, if patients received oxygen beyond nasal 
cannula (i.e., high flow, continuous positive airway pressure); clinical trial, if patient received therapy as part of a clinical trial; GI, gastrointestinal; CCI, 
Charlson Comorbidity Index. AData are presented as the number (%), unless otherwise specified.
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COVID-19 (42). Additional species known to cause infections such as the S. anginosus group bacterial species, 
which has been reported to be particularly important in the pathogenesis of  respiratory infections (43), and 
Gemella sanguinis, which has been shown to cause bloodstream infections in patients with COVID-19 (44) 
were also found to be associated with long COVID.

Inflammatory metabolic pathways associated with ongoing symptomatic COVID-19 and long COVID states. Build-
ing upon the taxonomy analysis, we explored the metabolic pathways and their association with ongoing symp-
tomatic COVID-19 and long COVID states using HUMAnN3 (45). For each outcome we again performed 
RFC analysis and compared classification accuracy for different trained models: demographics, clinical data, 
and relative pathway abundances and only relative pathway abundances. For both patients with ongoing symp-
tomatic COVID-19 and patients with long COVID, the top-performing model was (ii) only relative pathway 
abundances, producing an F1 score of 0.814 and 0.689, respectively (Figure 4A and Figure 5A). We identified 
greater than 40 metabolic gene pathways whose abundances were associated with both ongoing symptomatic 
and long COVID (Figure 4B and Figure 5B). The top 15 predictors indicate a striking proinflammatory pattern.

For ongoing symptomatic COVID-19, there are 5 pathways involved in the biosynthesis of  branched-
chain amino acids that are reduced in patients with longer symptoms (Figure 4, B and C). These include 
the superpathway of  L-isoleucine I (MetaCyc PWY-3001), L-isoleucine biosynthesis III (PWY-5103), super-
pathway of  branched amino acids (BRANCHED-CHAIN-AA-SYN-PWY), L-valine (VALSYN-PWY), and 
L-isoleucine (ILEUSYN-PWY) biosynthesis pathways (ref. 46; Figure 4C). Branched amino acids have been 

Figure 2. Bacterial abundances predict ongoing symptomatic COVID-19. RFC to identify predictors of ongoing symptomatic COVID-19 using 6 different combi-
nations of data modalities. (A) F1 scores for the different RFC models trained on different sets of covariates. Box plot represents the median and IQR. (B) Rank-
ing of forest predictors based on median permutated variable importance for the top-performing model. (C) Relative abundances for each bacteria found to be 
important in predicting ongoing symptomatic COVID-19 from the top-performing RFC model (on clinical data, microbiome species, and Shannon diversity). Violin 
plots showing the distribution of relative abundance for microbes in each patient with symptoms less than 4 weeks and 4 weeks or longer. 0 indicates “no” and 
1 indicates “yes ongoing symptomatic COVID-19.” CC, clinical covariates; Abn, abundances; Div, diversity; RFC, forest classification modeling.

https://doi.org/10.1172/jci.insight.152346
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shown to act as antiinflammatory agents (47, 48) with orally administered L-isoleucine and L-leucine exhib-
iting antiinflammatory activities (49). Four of  15 of  the top pathways involve synthesis of  molecules with 
antiinflammatory effects and are lower in patients with ongoing symptomatic COVID-19. These include the 
top predictor, Polyisoprenoid (50), whose biosynthesis has also been identified as significantly decreased in 
inflammatory conditions such as Crohn’s disease (51). Tetrapyrrole (52) and farnesol (53) also have anti-
inflammatory effects. Conversely, 3 pathways for biosynthesis of  proinflammatory molecules are increased 
in patients with ongoing symptomatic COVID-19: dTDP-L-rhamnose (DTDPRHAMSYN-PWY; ref. 54), 
pyrimidine (PWY-6545; ref. 55), and purine (P164 PWY; ref. 56) deoxyribonucleotides. Finally, both O-an-
tigen building block biosynthesis (OANTIGEN-PWY), an important step in the LPS biosynthetic pathway 
(57), and the superpathway of  phospholipid biosynthesis (PHOSLIPSYN-PWY), important in LPS produc-
tion (58, 59), are higher among patients with ongoing symptomatic COVID-19. Similar patterns emerge with 
the long COVID analysis, which share 6 predictors with the ongoing symptomatic COVID-19 analysis.

Proinflammatory molecule synthesis was higher among patients with long COVID relative to those 
without as well as reduced branch-chain amino acid and antiinflammatory molecule biosynthesis (Figure 
5C). Additional proinflammatory molecule biosynthesis is noted, with chorismite (PWY-6163; ref. 60), 

Figure 3. Bacterial abundances can predict long COVID. RFC modeling to predict long COVID. (A) F1 scores for all subsets of trainable RFC models. 
(B) Ranking of top 29 predictors associated with long COVID based on median permutated variable importance from the top-performing model (on 
demographics, clinical data, and Shannon diversity). (C) Relative abundances for each bacteria identified by model (on demographics, clinical data, and 
Shannon diversity) as important for predicting long COVID are presented as violin plots. Long COVID is presented as orange plots. CC, clinical covariates; 
Abn., abundances; Div., diversity. RFC, forest classification modeling.

https://doi.org/10.1172/jci.insight.152346
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colanic acid (COLANSYN-PWY; ref. 61), and NAD biosynthesis (PWY-241; ref. 62) all being higher 
among the patients with long COVID.

Discussion
Many patients recovering from SARS-CoV-2 infection have symptoms that last long after the acute infec-
tion has run its course and our study highlights this same phenomenon. Over one third of  our cohort had 
symptoms lasting longer than 10 weeks and thus entered the long COVID stage. Fatigue and “brain fog” 
were the longer lasting, most prominent symptoms among these patients. In an attempt to better understand 
both patients with ongoing symptomatic COVID-19 and patients with long COVID, we investigated potential 
clinical and microbiome associations with these disorders. Our modeling identified (a) microbial associations 
that are known to promote inflammation via LPS production or other mechanisms, (b) reduction of  antiin-
flammatory metabolic pathways, (c) pathobionts known to cause pulmonary infections, and (d) microbiota 
previously shown to have associations with COVID-19. Thus, our work begins to shed light on the hypothesis 
that the oral microbiome composition may influence the duration of  COVID-19 symptoms.

Patients with longer COVID-19 symptoms had dysbiotic, inflammatory-type oral microbiome. The oral microbi-
ome has been shown to closely associate with SARS-CoV-2 coinfections in the lungs (11) and the oral–lung 
aspiration axis is a key factor leading to many respiratory infectious processes (63). We hypothesized that the 
oral microbiome might associate with the duration of  postacute infection symptoms presented in ongoing 

Figure 4. Bacterial metabolic pathways involving inflammation are significantly associated with ongoing symptomatic COVID-19. Results from RFC mod-
eling to predict ongoing symptomatic COVID-19 and long COVID from HUMAnN3 pathway abundances. (A) F1 scores for demographics, clinical covariates, 
and pathway abundances and only on pathway abundances. (B) Ranking of forest predictors based on median permutated variable importance from the 
top-performing model, pathways only, for each outcome. (C) Relative pathway abundances for each pathway found to be important in predicting ongoing 
symptomatic COVID-19 and long COVID, respectively, by RFC modeling using only pathway abundances. We report violin plots showing the distribution of 
the relative abundance of pathways in patients with symptoms less than 4 weeks (blue) and 4 weeks or longer (yellow). RFC, forest classification modeling.

https://doi.org/10.1172/jci.insight.152346
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symptomatic COVID-19 and long COVID states (64). Our findings extend previous work demonstrating how 
specific members of  the genera Prevotella and Veillonella were distinctive in the oral microbiota of  patients with 
COVID-19 (65). Prevotella species have been overrepresented in COVID-19 patient populations (42), whereas 
members of  both the Prevotella and the Veillonella genera have been found in the bronchoalveolar lavage fluid 
of  the patients with COVID-19 (31). Members of  the Prevotella genus are thought to produce proteins that can 
promote SARS-CoV-2 infection and increase clinical severity of  COVID-19 (42) and have previously been 
tied to systemic diseases, including low-grade systemic inflammation (38). The increased abundances of  these 
2 genera on the tongue have also been associated with an increased risk of  death due to pneumonia in older, 
frail patients (66, 67). Finally, both genera induce inflammatory responses. Veillonella species have shown 
a strong capacity to induce IL-6 (68), whereas Prevotella strains primarily activate TLR-2 and enhance the 
expression of  inflammatory cytokines, including IL-23 and IL-1 (69, 70). Other proinflammatory microbiota 
were identified in our analysis that also associated with longer disease symptoms such as L. wadei (12), S. 
moorei (71), and multiple Actinomyces species (41).

Metabolic pathways associated with the production of  proinflammatory molecules were increased in 
abundance, whereas pathways associated with the production of  antiinflammatory molecules were decreased 
in patients presenting with ongoing and long COVID symptoms. One of  the top predictors, and thus demon-
strating the strongest association in our data with both ongoing symptomatic COVID-19 and long COVID, 
was polyisoprenoid biosynthesis. Polyisoprenoid expresses antiinflammatory activity (50) and is significantly 

Figure 5. Bacterial metabolic pathways involving inflammation are significantly associated with long COVID. Results from RFC modeling to predict 
ongoing symptomatic COVID-19 and long COVID from HUMAnN3 pathway abundances. (A) F1 scores for (i) demographics, clinical covariates, and pathway 
abundances and only on pathway abundances. (B) Ranking of forest predictors based on median permutated variable importance from the top-performing 
model, pathways only, for each outcome. (C) Relative pathway abundances for each pathway found to be important in predicting long COVID, respectively, 
by RFC modeling using only pathway abundances. We report violin plots showing the distribution of the relative abundance of pathways in patients with 
symptoms less than 10 weeks (blue) and 10 weeks or longer (yellow). RFC, forest classification modeling.
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decreased in inflammatory conditions such as Crohn’s disease (51). Among the top predictors in our analysis 
was a reduced abundance of  genes involved in the production of  branched amino acids. Branched amino 
acids have long been shown to act as antiinflammatory agents (47, 48). Evidence is accumulating to sup-
port the hypothesis that systemic chronic inflammation contributes to the symptomatic progression to long 
COVID (22, 72). Given that changes in the microbiome composition can result in chronic inflammation and 
metabolic dysfunction (73), it is possible that the proinflammatory microbiome profiles we observe here could 
have played a pivotal role in this disease process.

LPS-producing bacteria may have promoted inflammation and have driven COVID-19 symptom duration. LPSs is 
an outer membrane component of gram-negative bacteria and can also be released in vesicles (74). Vesicle- 
associated LPS can have proinflammatory effects on host immune systems (75). Microbiome-derived LPS 
causes systemic inflammation (76, 77) and can even induce cognitive impairment and neuroinflammation (78, 
79). Increases in LPS-producing bacteria, such as Leptotrichia, have been demonstrated in the oral cavity of  
patients with COVID-19 and are thought to be involved in the inflammatory response (12). Our analysis reveals 
higher abundances of many LPS-producing bacteria in patients with longer lasting symptoms. For example, 
Veillonella species, known to produce large amounts of LPSs (37), are present in increased abundances in our 
patients with COVID-19 with longer lasting symptoms. Increases in species such as V. dispar, V. infantium, 
and V. atypica are top predictors of ongoing symptomatic COVID-19, whereas V. infantium is found in higher 
abundances among patients with long COVID. Other LPS-producing species such as L. wadei (12) and M. 
micronuciformis (80) are also found to be in increased abundances. Additionally, our metabolic pathway analysis 
revealed an association with important steps in LPS biosynthesis and ongoing symptomatic COVID-19 and 
long COVID states. It is possible that LPS production may be a marker of other risk factors rather than a direct 
causal contributor. This would be critical to investigate in future work; however, this evidence points toward the 
important association of inflammation and long symptom disease states.

Myalgic encephalomyelitis/chronic fatigue syndrome linking to long-term COVID-19 symptoms through oral micro-
biome dysbiosis. There has been a growing concern that patients with COVID-19 with long-term sequelae 
resemble patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS; ref. 81). These 2 con-
ditions share some of  the same symptoms, especially fatigue and cognitive impairment (17, 82). ME/CFS is a 
condition characterized by chronic fatigue, lasting at least 6 months, that impairs one’s ability to perform daily 
activities and typically has additional impairments in memory and concentration (83). This syndrome is also 
closely linked to chronic inflammation as the driver of  these patients’ symptoms (84). The link to long-term 
symptoms is not unique to COVID-19 because patients with both SARS-CoV-1 and Middle East respiratory 
syndrome have also suffered from long-term sequelae in the previous epidemics (85).

ME/CFS has been hypothesized to be linked to infectious agents and microbiome dysbiosis has spe-
cifically been described in this syndrome through either the presence of  pathobionts or microbial species 
that promote chronic inflammation (86). The gut microbiome has been shown to have reduced diversity and 
altered composition in patients with ME/CFS (87), and viral-induced microbiome changes are also thought 
to play a pivotal role (88). Clinical trials targeting the gut microbiome have shown promise in treating ME/
CFS (89). Interestingly, patients with ME/CFS have been shown to have altered dysbiotic oral microbiomes 
characterized by increased abundances in the genera Leptotrichia, Prevotella, and Fusobacterium (90). Using 
whole genome sequencing, we have shown many species belonging to these genera are increased abundance 
in both patients with ongoing symptomatic COVID-19 and patients with long COVID. Specifically, top- 
predicting species L. wadei, P. sp F0091, P. denticola, P. nigrescens, P. histicola, and P. oulorum in the ongoing 
symptomatic COVID-19 group and P. denticola, P. melaninogenica, P. jejuni, P. nigrescens, and F. nucleatum in 
the long COVID group were all present in higher abundances in patients suffering from longer lasting symp-
toms. These finding add intriguing evidence of  a possible link between patients with ME/CFS and patients 
with COVID-19 suffering from longer lasting symptoms related to inflammation in the oral microbiome.

Strengths and limitations. This study has several notable strengths and limitations. This study is limited 
in the number of  patients enrolled and followed for symptom duration outcomes. A more robust cohort 
would allow deeper investigation of  preexisting medical conditions and medications that might shape 
the oral microbiome composition. Larger cohorts would also include a more diverse patient set involv-
ing those treated as outpatients and more intensive care unit admissions. Generalization of  our findings 
would need to be performed in a more diverse patient population. This limitation is balanced by our appli-
cation of  whole genome sequencing, which provides greater resolution than 16S rRNA gene sequencing 
used in many of  the previous microbiome investigations (91). We also applied RFC which enable us to 
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include both clinical and microbiome data in our modeling (27, 28). This modeling approach has signifi-
cant advantages compared with traditional classification techniques. Because it is agnostic to model struc-
ture (e.g., nonparametric regression), it does not need to meet common assumptions underlying classical 
regression techniques, and is able to intrinsically perform permutated ranked feature selection (29). We 
also have the advantage of  collecting samples at the time of  diagnosis before medical treatments that may 
alter the microbiome composition.

Conclusions. In conclusion, the oral microbiome of  patients with prolonged symptoms falling under 
the ongoing symptomatic COVID-19 or long COVID states demonstrated a dysbiotic pattern of  increased 
pathobionts, an increase in inflammation-inducing and LPS-producing microbiota, and a reduction of  met-
abolic pathways known to have antiinflammatory properties. Although this work needs further validation, 
it supports the tenet that the microbiome may have played a role in prolonging symptom duration among 
COVID-19 through promotion of  inflammation. The microbiome may therefore hold the key to better under-
standing the postinfection prolonged syndromes now facing patients after they recover from acute infection 
and provide a way to predict and subsequently act upon and prevent the development of  long COVID.

Methods
Study setting and population. This prospective cohort consists of  patients presenting to an emergency depart-
ment located in central Massachusetts from April 2020 through February 2021. We enrolled patients who 
presented with symptoms consistent with a COVID-19 infection, but we analyzed only those who tested 
positive by PCR for SARS-CoV-2 and could contact for follow-up. We defined symptoms of  COVID-19 based 
on the CDC guidelines (92).

Data collection. We collected baseline factors that included demographics, medical history, and presenting 
disease duration, and symptomatology. Comorbidity was assessed at baseline using the CCI, a widely used 
instrument designed to measure the burden of medical diseases and predict mortality (93). Patients were then 
followed through their hospital course for treatment types and length of stay. After discharge from the hospital, 
subsequent healthcare visits were recorded through the medical record. Patients were contacted by phone after 
4 weeks of total symptoms after discharge and then again a second time if  they were experiencing ongoing 
symptoms, after 10 weeks. Patients were categorized as symptoms lasting longer than 4 weeks and symptoms 
lasting longer than 10 weeks for analysis. Patients were also queried as to the type of symptoms that lasted the 
longest. Patients were excluded from follow-up if  they died, were unable to communicate in English, had severe 
dementia, were in hospice, or withdrew themselves from the study.

Sample collection and processing. Oropharyngeal samples were collected using OMNIgene•ORAL collec-
tion kits (OMR-120, DNAgenotek). Briefly, the posterior oropharynx was swabbed for 30 seconds and then 
the swab was inserted into a tube with a DNA/RNA stabilization buffer. Samples were heated to 65oC–70oC 
for 1 hour to inactivate SARS-CoV-2 (94) and stored frozen. Nucleic acids were extracted by first thawing 
samples and then treating with 5ul Proteinase K (P8107S, New England Biolabs) for 2 hours at 50oC. DNA 
and RNA was then extracted using ZymoBIOMICS DNA/RNA Miniprep Kits (R2002, Zymo Research) as 
per the manufacture’s protocol.

Sequence processing and analysis. Metagenomic DNA sequencing libraries were constructed using the Nextera 
XT DNA Library Prep Kit (FC-131-1096, Illumina) and sequenced on a NextSeq500 Sequencing System as 2 × 
150 nucleotide paired-end reads. Shotgun metagenomic reads were first trimmed and quality filtered to remove 
sequencing adapters and host contamination using Trimmomatic (95) and Bowtie2 (96), respectively, as part 
of the KneadData pipeline (https://bitbucket.org/biobakery/kneaddata). As in our previous work (28, 97), 
metagenomic data were profiled for microbial taxonomic abundances and microbial metabolic pathways using 
Metaphlan3 (25) and HUMAnN3 (45), respectively. The total number of microbial and contaminant reads 
recovered as presented in Supplemental Table 1.

SARS-CoV-2 viral load quantification. PCR was performed using the ViiA 7 Real-Time PCR System (Applied 
Biosystems) and the GoTaq Probe 1-Step RT-qPCR System (Promega, A6120). The primer-probe set N1 
(2019-nCoV_N1-F: 5′-GACCCCAAAATCAGCGAAAT-3′; 2019-nCoV_N1-R: 5′-TCTGGTTACTGC-
CAGTTGAATCTG-3′; 2019-nCoV_N1-P: 5′-FAM-ACCCCGCATTACGTTTGGACC-BHQ1-3′) designed 
by the CDC were obtained from Integrated DNA Technologies (10006713) and used at concentrations of 500 
nM and 125 nM, respectively (98). Eluted RNA (5 μl) were used to prepare 20 μl PCR reactions. Cycling con-
ditions were as indicated by the CDC: 45°C for 15 minutes, 95°C for 2 minutes, followed by 45 cycles of 95°C 
for 3 seconds and 55°C for 30 seconds (98). Cycle threshold values were converted into viral RNA copies based 
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on a standard curve prepared from 4-fold serial dilutions of known quantities (1.0 × 106 to 2.44 × 102 viral 
copies) of a SARS-CoV-2_N positive control plasmid (10006625, Integrated DNA Technologies). The lower 
limit threshold for positive detection in our study was 244 viral copies per reaction. Viral load was calculated as 
the number of genome copies per milliliter of transport media to resuspend tongue swabs. The assay was run 
in triplicate for each sample and 3 nontemplate wells were included as negative controls.

Data availability. Data relating to the metagenomic sequencing that support the findings of  this study 
have been uploaded to the NCBI BioProject (https://www.ncbi.nlm.nih.gov/bioproject/) and are avail-
able for download via accession PRJNA735193 under the title “Oral Microbiome associated with Coro-
navirus disease 2019 (COVID-19).”

Statistics. To determine similarity in oral microbiome samples among the patients with COVID-19 and to 
associate microbiome features to duration of symptom outcomes, we started by performing traditional unsuper-
vised correspondence analysis (PCoA and t-SNE). Because most of the signal from the unsupervised analysis 
was accounted by interindividual variability, we then decided to run supervised machine learning models. We 
built a RFC pipeline to predict either ongoing symptomatic COVID-19 or long COVID from a given data sub-
set. One sample failed the sequencing run, and thus 26 samples were included in our modeling. The first step 
of our pipeline used the feature selection algorithm Boruta on 5-fold cross-validated data to estimate model 
performance (29). The permutated variable importance from each RFC was also calculated. Each model was 
run starting from 10 different random seeds to calculate performance metrics. F1 score, the harmonic mean of  
precision and accuracy, was used to select the top-performing model for each outcome. P values of less than 0.05 
were considered significant.

Study approval. This prospective cohort study was approved by the IRB at the University of Massachusetts 
Medical School. Written informed consent was received from all study participants prior to inclusion in the study.
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