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Abstract

Background: Schizophrenia (57) and obsessive-compulsive disorder (OCD) share many demographic characteristics
and severity of clinical symptoms, genetic risk factors, pathophysiological underpinnings, and brain structure and
function. However, the differences in the spontaneous brain activity patterns between the two diseases remain
unclear. Here this study aimed to compare the features of intrinsic brain activity in treatment-naive participants with
SZ and OCD and to explore the relationship between spontaneous brain activity and the severity of symptoms.

Methods: In this study, 22 treatment-naive participants with SZ, 27 treatment-naive participants with OCD, and
sixty healthy controls (HC) underwent a resting-state functional magnetic resonance imaging (fMRI) scan. The
amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo) and degree of centrality (DC) were
performed to examine the intrinsic brain activity of participants. Additionally, the relationships among spontaneous
brain activity, the severity of symptoms, and the duration of illness were explored in SZ and OCD groups.

Results: Compared with SZ group and HC group, participants with OCD had significantly higher ALFF in the right
angular gyrus and the left middle frontal gyrus/precentral gyrus and significantly lower ALFF in the left superior
temporal gyrus/insula/rolandic operculum and the left postcentral gyrus, while there was no significant difference
in ALFF between SZ group and HC group. Compared with HC group, lower ALFF in the right supramarginal gyrus/
inferior parietal lobule and lower DC in the right lingual gyrus/calcarine fissure and surrounding cortex of the two
patient groups, higher ReHo in OCD group and lower ReHo in SZ group in the right angular gyrus/middle occipital
gyrus brain region were documented in the present study. DC in SZ group was significantly higher than that in HC
group in the right inferior parietal lobule/angular gyrus, while there were no significant DC differences between
OCD group and HC group. In addition, ALFF in the left postcentral gyrus were positively correlated with positive
subscale score (r=0.588, P =0.013) and general psychopathology subscale score (r=0.488, P = 0.047) respectively
on the Positive and Negative Syndrome Scale (PANSS) in SZ group. ALFF in the left superior temporal gyrus/insula/
rolandic operculum of participants with OCD were positively correlated with compulsion subscale score (r=0.463,
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P =0.030) on the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). The longer the illness duration in SZ group, the
smaller the ALFF of the left superior temporal gyrus/insula/rolandic operculum (Rho =0.-492, P = 0.020). The longer
the illness duration in OCD group, the higher the ALFF of the right supramarginal gyrus/inferior parietal lobule
(Rho=0.392, P =0.043) and the left postcentral gyrus (Rho =0.385, P =0.048), and the lower the DC of the right
inferior parietal lobule/angular gyrus (Rho =—0.518, P = 0.006).

Conclusion: SZ and OCD show some similarities in spontaneous brain activity in parietal and occipital lobes, but
exhibit different patterns of spontaneous brain activity in frontal, temporal, parietal, occipital, and insula brain
regions, which might imply different underlying neurobiological mechanisms in the two diseases. Compared with
OCD, SZ implicates more significant abnormalities in the functional connections among brain regions.
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Background

Although schizophrenia (SZ) and obsessive-compulsive
disorder (OCD) are separate diagnostic entities, they
both share high comorbidity, and the family history of
OCD is a risk factor for SZ, suggesting that they may
have some common neurobiological bases [1]. SZ and
OCD equally belong to neurodevelopmental disorders
and are characterized by similar traits, e.g., reportedly
numerous overlaps between the two disorders in some
domains, like demographic and clinical characteristics,
genetic risk factors, pathophysiological underpinnings,
and brain structure and function [2, 3]. There is growing
evidence that SZ and OCD share neurobiological abnor-
malities, while some studies have suggested that SZ is a
more serious biological and neurological disorder than
OCD, with significant differences in their neural mecha-
nisms [2-5]. Till now, either shared or the unique
neuroanatomical features of these two diseases have not
yet been fully identified, consequently calling for a direct
comparison of the brain imaging characteristics of SZ
and OCD under the same research method and frame-
work, which is more convincing to address this issue,
contributing to a better understanding of the relation-
ship between the two diseases [5, 6].

Resting-state functional magnetic resonance imaging
(rs-fMRI) is a promising tool for examining the blood
oxygen level-dependent (BOLD) signal of the spontan-
eous fluctuation of the whole brain, which does not re-
quire subjects to participate in cognitive activities and is
more convenient in clinical practice [7, 8]. In recent
years, several methods such as amplitude of low-
frequency fluctuation (ALFF), regional homogeneity
(ReHo), and degree centrality (DC) have been widely
used in the study of spontaneous brain activity in various
neuropsychiatric diseases. ALFF is an indicator that is
used to detect the regional intensity of spontaneous fluc-
tuation in the BOLD signal, which pinpoints the spon-
taneous neural activity of a specific region and
physiological state of the brain in a resting state [9, 10].

The ReHo method, testing the local correlations in
BOLD time series by using Kendall’s coefficient of con-
cordance (KCC), is often used to investigate regional
synchronizations of temporal changes in the brain [11,
12]. Based on the voxel level, DC is a measure of the
connectome graph indexing the number of direct con-
nections for a given node and reflects its functional con-
nectivity (FC) within the whole brain network without
requiring a priori selection [13, 14].

Previous neuroimaging studies have summarized that
both SZ and OCD are impaired in several crucial brain
regions, including the caudate nucleus, orbitofrontal cor-
tex, anterior cingulate gyrus, and thalamus [15]. Good-
kind et al. [16] conducted a meta-analysis of 193 studies
based on the voxel-based morphometry (VBM), showing
that the dorsal anterior cingulate gyrus and bilateral in-
sula demonstrated consistent reductions in gray matter
volume in participants with six different psychiatric dis-
orders, e.g., SZ and OCD, and that lower gray matter in
these above-mentioned brain regions was associated
with decreased executive function. In addition, although
the frontostriatal deficit is involved in the neuropatho-
logical mechanisms of SZ and OCD, participants with
SZ may exhibit more structural abnormalities and cogni-
tive deficits [17]. Particularly, under the same research
conditions, our previous diffusion MRI study showed
that SZ and OCD had different patterns of anatomical
and topological organizations, which both present more
severe and extensive disruptions in SZ [5]. A few studies
have used rs-fMRI to directly compare imaging differ-
ences between SZ and OCD. Fan et al. [18] found that
sustained attention deficits in SZ were significantly cor-
related with altered FC of the left medial prefrontal cor-
tex (mPFC)-bilateral anterior cingulate cortices and
those in OCD were correlated with altered FC of the
right mPFC-left superior frontal gyrus. Wang et al. [19]
compared the strength of FC between 19 subregions of
default mode network (DMN) and whole-brain voxels in
SZ group, OCD group, and schizo-obsessive comorbidity
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(SOC) group, respectively, and found that the FC be-
tween the subregions of DMN and executive control
network (ECN) increased in all three patient groups
compared with the healthy control group. The difference
is that both the SZ and SOC groups showed increased
FC between the middle temporal gyrus and the subre-
gions of the DMN, where, however, the OCD group ex-
hibited decreased FC. Several previous studies have used
ALFF, ReHo, and DC methods to find that both SZ and
OCD demonstrate abnormalities in spontaneous brain
activity, which may have both diffuse and regionally-
specific characteristics [20, 21]. Taken together, associa-
tions of brain networks between participants with SZ
and OCD have been proposed and many previous fMRI
studies have demonstrated abnormalities of ALFF, ReHo,
and DC in multiple brain regions of participants with ei-
ther SZ or OCD, whereas no consistent conclusion has
been reached [20, 21].

However, as far as we know, there have been very few
studies directly compare intrinsic brain abnormalities
between SZ and OCD based on the same research con-
ditions and framework. Therefore, in the present study,
we aimed to compare the characteristics of resting-state
spontaneous brain activity between treatment-naive par-
ticipants with SZ and OCD by adopting ALFF, ReHo
and DC, and further to explore the relationships among
brain spontaneous activities, the severity of clinical
symptoms, and the duration of illness. We hypothesized
that both SZ and OCD have abnormal spontaneous
neural activity, whereas they share distinct neural
activity.

Methods

Participants

This study was approved by the Research Ethics Review
Board of Wuxi Mental Health Center, and all partici-
pants provided written informed consent. We recruited
29 SZ and 29 OCD subjects from Wuxi Mental Health
Center, Nanjing Medical University, China, as well as 65
healthy controls (HC) from the local community. All
subjects met the DSM-IV-TR [22] criteria and none of
them had received any pharmacologic treatment or psy-
chotherapies before the MRI scanning of this study. MRI
scans and evaluations of the severity of clinical symp-
toms of the participants were completed on the same
day. The positive and Negative Syndrome Scale (PANSS)
[23] was conducted in SZ by experienced psychiatrists.
As for OCD, the severity of OCD symptoms, anxious
and depressive symptoms were respectively assessed by
Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) [24],
Hamilton Rating Scale for Anxiety(HARS) [25], and 24-
item Hamilton Rating Scale for Depression (24-HDRS)
[26], respectively. Individuals having a lack of current or
historic diagnoses of any psychiatric disorder were
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chosen as healthy controls. Besides, individuals with
family histories of any psychiatric disorders or neuro-
logical illnesses were excluded from healthy controls. All
recruited participants were right-handed when assessed
with Edinburgh Handedness Inventory [27]. Exclusion
criteria for all participants included brain injury, intra-
cranial pathology, neurological illness, alcohol, nicotine
or other substances abuse or dependence, pregnancy,
contraindications of MRI, and head movements during
scanning more than 3mm or 3.0° in any direction. In
data preprocessing, 7 SZ, 2 OCD and 5 HC were ex-
cluded due to incomplete functional imaging or exces-
sive head movement. Finally, 22 SZ, 27 OCD and 60 HC
were included in the statistical analyses. Table 1 provides
detailed demographic and clinical characteristics.

Data acquisition

MRI was performed at the Department of Medical Im-
aging, Wuxi People’s Hospital, Nanjing Medical Univer-
sity by using a 3.0-Tesla Magnetom Trio Tim (Siemens
Medical System, Erlangen, Germany) and a 12-channel
phased-array head coil. All participants, whose heads
were fixed with foam pads to reduce scanner noise and
head motion, were required to close their eyes, to relax
their minds but not to fall asleep, and to move as little
as possible during imaging acquisition. Three-
dimensional T;-weighted images were acquired using
the 3D magnetization-prepared rapid acquisition
gradient-echo sequence with the following parameters:
time repetition (TR)=2530ms, time echo (TE) =3.44
ms, flip angle = 7°, field of view (FOV) = 256 x 256 mm?,
matrix size = 256 x 256, slice thickness =1 mm, 192 sa-
gittal slices, acquisition voxel size=1x1x 1 mm? total
acquisition time = 649 s. After structural MRI scans, the
gradient-echo planar imaging sequence was used to ob-
tain the rs-fMRI scans with the following parameters:
single shot, TR=2000ms, TE =30ms, flip angle = 90,
FOV =220 x 220 mm?, matrix size = 64 x 64, slice thick-
ness =4 mm, 33 axial slices, acquisition voxel size =
3.4 x 3.4 x 4 mm?>, resulting in 240 volumes.

Data preprocessing

Analysis of the RS-fMRI data was performed by using
Data Processing and Analysis of Brain Imaging [28]
(DPABL  http://rfmri.org/DPABI_V4.3) in MATLAB
2013b (The Math Works, Natick, MA, USA) based on
Statistical Parametric Mapping (SPM12; http://www.fil.
ion.ucl.ac.uk/spm/software/spm12). The first 10 time
points were discarded for initial signal stabilization. The
remaining 230 volumes were corrected for the intra-
volume acquisition time delay using slice timing correc-
tion and were realigned for head movement correction.
If the head movement was more than 3 mm or 3°, the
data were excluded from the analysis. To further
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Table 1 Demographic, clinical and head-motion characteristics of the participants in this study

Variables SZ (n =22) OCD (n=27) HC (n =60) Statistics (F/ le T/Z/H) P value P1-2 P1-3 P2-3
Age (years) 3341+11.03 (16-61) 2689 +8.15 (16-43) 32.87 +10.78% (17-50) 3.65 0029 0087 1000 0040
Education (years) 10.77 +4.74 1326 +£2.96 14.02+3.72 5.94 0004 0072 0002 1.000
Sex (M/F) 11/11 21/6 38/22 412 0128" - - -
Disease duration (years) 1.29 (0.17,3.25) 3.00 (1.00, 6.00) ° - -261 0.009% - - -
PANSS positive score 27.18+4.63 - - - - - - -
PANSS negative score 1982 +5.14 - - - - - - -
PANSS general score 46.50+7.58 - - - - - - -
PANSS total score 93.50+12.39 - - - - - - -
Y-BOCS score - - -
Obsession score - 1233+387 - - - - - -
Compulsive score - 8.70+295 - - - - - -
Total score - 21.04+£593 - - - - - -
HARS score - 14.00 (12.00,19.00) - - - - - -
24-HDRS score - 16.30+7.83 - - - - - -
Mean FD 0.07 (0.05,0.10) 0.08 (0.05,0.12) 0.07 (0.06,0.12) 0.95 0623V - - -

Note: ° Values are presented as mean + SD
P Values are presented as median (first quartile, third quartile)
" one-way ANOVA; # X2 test; &,Mann—Whitney U test; ¥ Kruskal-Wallis test

¢ post hoc analysis showed that participants with OCD differed significantly from controls (Bonferroni, P < 0.05)
9 post hoc analysis showed that participants with SZ differed significantly from controls (Bonferroni, P < 0.05)

P <0.05 is considered significant

P1-2 for SZ group versus OCD group, P1-3 for SZ group versus HC group, P2-3 for OCD group versus HC group
Abbreviations: HC, healthy controls; OCD, participants with obsessive-compulsive disorder; SZ, participants with schizophrenia; PANSS, Positive and Negative
Syndrome Scale; HARS, the Hamilton Rating Scale for Anxiety; 24-HDRS, the 24-item Hamilton Rating Scale for Depression; Y-BOCS, the Yale-Brown Obsessive-

Compulsive Scale; Mean FD, mean framewise displacement

eliminate the residual effect of motion on rs-fMRI meas-
urement, Jenkinson’s mean framewise displacement
(mean FD) was calculated based on their realignment
parameters to quantify head motion, which was used as
a covariable of all voxel-wise group functional analyses
[10, 29]. Each T;-weighted image was registered with
the average functional image, and the image was divided
into white matter, gray matter, and cerebrospinal fluid
tissue maps. Then the image space was normalized to
the standard Montreal Neurological Institute (MNI)
space, and the resampling was 3 x 3 x3mm® Subse-
quently, the generalized linear model was used to regress
the signals from white matter and cerebrospinal fluid
and the covariates of Friston-24 parameters, and linear
trends of the time courses were removed from the fMRI
data [30, 31]. Before ALFF analysis, a Gaussian filter (6-
mm full-width half-maximum, FWHM) was used for
spatial smoothing, but smoothing was performed after
ReHo and DC calculations. Smoothing before the calcu-
lation of ReHo and DC will cause the regional correl-
ation of adjacent voxels and affect the calculation of the
above two parameters, so smoothing was usually carried
out after calculation to reduce spatial noise and the in-
completeness of the registration effect of the participants
[13, 32]. Finally, DPABI_V4.3 was used to calculate
ALFF, ReHo and DC.

ALFF analyses

After data preprocessing, the time series for each voxel
was transformed to the frequency domain using fast
Fourier transforms, and the square root of this spectrum
was calculated for each frequency and then averaged
across 0.01-0.08 Hz [9]. This averaged square root was
used as an ALFF index. For standardization, the ALFF of
each voxel was divided by the global mean ALFF, to get
the mALFF map [33, 34].

ReHo and DC analyses
ReHo and DC were measured based on unsmoothed
data. After preprocessing, a temporal filter (0.01-0.08
Hz) was applied to reduce the influences of high-
frequency physiological noises and low-frequency drifts.
The ReHo was obtained on a voxel-by-voxel basis by
calculating KCC of a given voxel with those of its 26
nearest neighbors [11]. Then the ReHo of each voxel
was divided by the global mean ReHo of each individual,
to get the mReHo map [33, 34]. Next, mReHo maps
were smoothed with a 6-mm FWHM Gaussian kernel.
After data preprocessing, fMRI data were used to cal-
culate the voxel-wise DC, and then Pearson’s correlation
method was utilized to correlate the time series of each
voxel with the time series of every other voxel, after
which a matrix of Pearson’s correlation coefficients
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matrix was obtained. Next, the correlation coefficient of
r=0.25 was used as the lowest threshold to eliminate
the low time correlation caused by signal noise [13, 35].
Subsequently, the binary DC of the whole-brain network
was calculated [34, 36]. As a result, each participant ob-
tained a map of DC of each gray matter voxel. Before
group-level statistical analysis, we divided DC of each
voxel by the global mean DC, to get the mDC map, and
then used Gaussian smoothing kernels (full width half
maximum, half-width = 6 mm) to spatially smooth all in-
dividual mDC maps [33, 34].

Statistical analyses

The demographic and clinical data of the subjects were
analyzed by SPSS 25.0 software (SPSS, Chicago, IL,
United States). The normal distribution data were de-
scribed as the average + standard deviation, while the
non-normal distribution data were presented by the me-
dian (the first quartile-the third quartile). The age and
education level of the three groups showed normal dis-
tribution, and then a one-way analysis of variance
(ANOVA) was used to test differences among the three
groups. The duration of illness of the two patient groups
was not subject to the normal distribution, and a Mann-
Whitney U test was used to assess between-group differ-
ences. The mean framewise displacement (FD) was also
not subject to the normal distribution, and a Kruskal-
Wallis test was used to detect whether there were sig-
nificant differences among the three groups. A P value
of <0.05 was considered to be statistically significant.

In this study, SPM12 software and voxel-wise analysis
of covariance (ANCOVA) were used to test the differ-
ences in ALFF, ReHo and DC among the three groups.
The confounding factors of age, sex, the level of educa-
tion, and Jenkinson’s mean FD were controlled as covar-
iates. The multiple comparisons correction of statistical
F-maps was performed with family-wise error (FWE)
cluster-corrected (P < 0.05) when using a primary voxel
determining the threshold of P < 0.001 to protect against
false-positive findings. For the clusters showing signifi-
cant differences among the three groups, the mean
ALFF, ReHo and DC were extracted from the cluster for
each participant. Then the post hoc analyses were con-
ducted using SPSS25.0, and the analyses were corrected
for multiple comparisons using Bonferroni correction at
a statistical significance level of P < 0.05. Moreover, par-
tial correlation analysis was performed to evaluate the
relationship between the ALFF, ReHo and DC extracted
from the above-mentioned significant difference clusters
respectively and the severity of symptoms (PANSS
scores and compulsion subscale scores and obsession
subscale scores of Y-BOCS). Age, sex, the level of educa-
tion, Jenkinson’s mean FD, and duration of disease were
taken as covariates. Spearman correlation analysis was
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conducted with SPSS 25.0 to explore the relationship be-
tween ALFF, ReHo, and DC of significantly altered brain
regions and the duration of illness of participants of the
two patient groups, respectively. Results with P <0.05
(uncorrected) were considered statistically significant.

Results

Demographics and clinical characteristics

Demographic, clinical variables and the mean FD of the
participants are presented in Table 1. The three groups
did not differ statistically in the mean FD and sex (P>
0.05). There were significant differences in age and edu-
cation level among the three groups (P <0.05). The re-
sults of post hoc analyses showed that OCD group was
lower in age than HC group, and SZ group was lower in
education level than HC group (Bonferroni, P < 0.05).
The duration of illness in OCD group was significantly
longer than that in SZ group (P < 0.05).

ALFF differences among the three groups
ANCOVA and post hoc analyses were used to compare
the differences in ALFF, ReHo and DC among the three
groups. As shown in Fig. 1A and Table 2, significant
group differences in ALFF primarily exist in the left su-
perior temporal gyrus/insula/rolandic operculum, left
middle frontal gyrus/ precentral gyrus, left postcentral
gyrus, right angular gyrus, and right supramarginal
gyrus/inferior parietal lobule (voxel significance, P <
0.001; cluster significance, P < 0.05, FWE correction).
Post hoc t-tests (P<0.05 Bonferroni correction)
showed that compared to HC group, participants with
OCD showed higher ALFF in the right angular gyrus
(SZ group: 1.08+0.26; OCD group: 1.60 +0.48; HC
group: 1.17 +0.21, Fig. 2A) and the left middle frontal
gyrus/precentral gyrus (SZ group: 0.75+0.10; OCD
group: 0.92+0.20; HC group: 0.68+0.12, Fig. 2A),
and lower ALFF in the left superior temporal gyrus/
insula/rolandic operculum (SZ group: 0.76 +0.16;
OCD group: 0.60+0.11; HC group: 0.75+0.14, Fig.
2A) and the left postcentral gyrus (SZ group: 1.49 +
0.50; OCD group: 1.00+0.29; HC group: 1.28 +0.40,
Fig. 2A). Compared to HC group, ALFF in the right
supramarginal gyrus/inferior parietal lobule of the two
patient groups was lower (SZ group: 1.07 £ 0.18; OCD
group: 1.12+0.15; HC group: 1.37+0.29, Fig. 2A).
Compared to OCD group, ALFF of SZ group in the
left superior temporal gyrus/insula/rolandic operculum
and the left postcentral gyrus was significantly higher,
while that in the right angular gyrus and the left mid-
dle frontal gyrus/precentral gyrus was significantly
lower (Fig. 2A).
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Fig. 1 Significant differences in ALFF, ReHo and DC among the three groups. (A). Brain regions with significant differences (cluster-level Peye <
0.05 when the voxel-level threshold was P < 0.001) of the ALFF among the three groups. (B). Brain regions with significant differences (cluster-
level Prye < 0.05 when the voxel-level threshold was P < 0.001) of the ReHo among the three groups. (C). Brain regions with significant
differences (cluster-level Peye < 0.05 when the voxel-level threshold was P < 0.001) of the DC among the three groups. Notes: The colored bars
show F values. Abbreviations: L, left; R, right; ALFF, amplitude of low-frequency fluctuation; ReHo, regional homogeneity; DC, degree centrality
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ReHo differences among the three groups

As shown in Fig. 1B and Table 2, significant group dif-
ferences in ReHo primarily exist in the right angular
gyrus/middle occipital gyrus (voxel significance, P <
0.001; cluster significance, P<0.05, FWE correction).
Compared to HC group, ReHo in the right angular
gyrus/middle occipital gyrus (SZ group:1.23 + 0.20; OCD
group:1.47 + 0.17; HC group: 1.32+0.11, Fig. 2B) was
significantly higher in OCD group, whereas that was

significantly lower in SZ group (P <0.05, Bonferroni
correction).

DC differences among the three groups

Analyses of ANCOVA showed that there were signifi-
cant group differences in DC of the right lingual gyrus/
calcarine fissure and surrounding cortex and the right
inferior parietal lobule/angular (Fig. 1C; Table 2). Com-
pared to HC group, DC in the right lingual gyrus/
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Table 2 The ALFF, ReHo and DC clusters with significant between-group differences (Cluster-level Prye < 0.05 when voxel-level

threshold was P < 0.001)

Feature Index C.Iuster Brain regions side BA MNI coordinate Peak F
size X y z
ALFF 1 47 Angular gyrus R 39 42 =51 30 29.20
2 40 Superior temporal gyrus L 48 —45 -36 24 8.77
Insula L 48 -36 -18 15 11.20
Rolandic operculum L 48 -36 =27 18 10.85
3 37 Middle frontal gyrus L 9 -36 9 51 2184
Precentral gyrus L 6 -36 3 42 12.08
4 37 Postcentral gyrus L 4 —24 =30 66 11.39
5 33 Supramarginal gyrus R 2 45 -33 39 13.06
Inferior parietal lobule R 2 48 -36 51 11.96
ReHo 1 105 Angular gyrus R 39 42 =51 30 40.14
Middle occipital gyrus R 19 39 =72 33 18.76
DC 1 105 Lingual gyrus R 18 12 -87 -12 17.18
Calcarine fissure and surrounding cortex R 17 6 -78 3 832
2 49 Inferior parietal lobule R 40 54 -57 48 14.42
Angular gyrus R 39 60 =57 30 10.19

Abbreviations: BA, Brodmann area; MNI, Montreal Neurological Institute; R, right; L, left; ALFF, amplitude of low-frequency fluctuation; ReHo, regional homogeneity;

DC, degree centrality; Prwe, P < 0.05, FWE correction

calcarine fissure and surrounding cortex (SZ group:
1.21 £ 0.28; OCD group: 1.28 £0.28; HC group: 1.51 +
0.22, Fig. 2C) were significantly lower in both SZ and
OCD group and significantly higher in the right inferior
parietal lobule/angular gyrus (SZ group: 1.03+0.21;
OCD group: 0.83 +0.21; HC group: 0.76 + 0.18, Fig. 2C)
in SZ group. Compared to OCD group, DC of SZ group
was significantly higher in the right inferior parietal lob-
ule/angular gyrus (P < 0.05, Bonferroni correction).

Correlations with clinical scores and illness duration

In SZ group, ALFF in the left postcentral gyrus was posi-
tively correlated with PANSS positive subscale score
(r=0.588, P =0.013, Fig. 3A) and PANSS general psy-
chopathological subscale score (r=0.488, P =0.047, Fig.
3A), respectively. ALFF in the left superior temporal
gyrus/insula/rolandic operculum of participants with
OCD was positively correlated with compulsion subscale
score (r=0.463, P =0.030, Fig. 3B). No significant
correlation was found between ReHo and DC and the
severity of clinical symptoms, respectively.

In SZ group, the longer the illness duration, the
lower the ALFF of the left superior temporal gyrus/
insula/rolandic operculum (Rho =0.-492, P =0.020,
Fig. 4A). The longer the illness duration in OCD
group, the higher the ALFF of the right supramarginal
gyrus/inferior parietal lobule (Rho=0.392, P =0.043,
Fig. 4B) and the left postcentral gyrus (Rho =0.385,
P =0.048, Fig. 4C), and the lower the DC of the right

inferior parietal lobule/angular gyrus (Rho =-0.518,
P =0.006, Fig. 4D).

Discussion

In this study, we investigated similar and different spon-
taneous brain activities between participants with SZ
and OCD. We found that both the SZ and OCD groups
presented with decreased ALFF in the right supramargi-
nal gyrus/inferior parietal lobule, and decreased DC in
the right lingual gyrus/calcarine fissure and surrounding
cortex. There were differences in spontaneous brain ac-
tivity between SZ and OCD in the frontal, temporal, par-
ietal, occipital, and insula regions. The exploratory
correlation analyses showed that ALFF and DC of cer-
tain brain regions were associated with the severity of
clinical symptoms and duration of illness in participants
with SZ and OCD.

Altered spontaneous brain activities in SZ and OCD
respectively

This study showed that OCD group had abnormal ALFF
in the frontal lobe, angular gyrus, insula, temporal lobe,
and rolandic operculum, where SZ group had no signifi-
cantly abnormal ALFF, compared to HC group. Consist-
ent with the results of this study, previous studies have
shown that participants with OCD have abnormalities in
brain regions not only within the classic cortico-striato-
thalamo-cortical (CSTC) circuit but also outside the
CSTC circuit [14]. Our findings provide broader evi-
dence that brain regions outside the CSTC circuits are
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Fig. 2 Histogram plots illustrate the mean ALFF/ReHo/DC values of the clusters showing significant differences among the three groups. (A). The
mean ALFF in the ANG. R, STG.L/INS.L/ROLR, MFG.L/PreCGLL, PoCG. L, and SMG.R/IPLR among the three groups. (B). The mean ReHo in the
ANG.R/MoG.R among the three groups. (C). The mean DC in the INGR/CALR and IPLR/ANG.R among the three groups. Error bars reflect the SD.
Abbreviations: HC, healthy controls; OCD, participants with obsessive-compulsive disorder; SZ, participants with schizophrenia; ALFF, amplitude
of low-frequency fluctuation; ReHo, regional homogeneity; DC, degree centrality; NS, nonsignificance; ANG. R, right angular gyrus; STG.L/INS.L/
ROLL, left superior temporal gyrus/insula/rolandic operculum; MFG.L/PreCGLL, left middle frontal gyrus/precentral gyrus; PoCG. L, left postcentral
gyrus, SMG.R/IPLR, right supramarginal gyrus/inferior parietal lobule; ANGR/MoGR, right angular gyrus/middle occipital gyrus; ING.R/CALR, right
lingual gyrus/ calcarine fissure and surrounding cortex; IPLR/ANGNR, right inferior parietal lobule/ angular gyrus

involved in the pathophysiology of OCD. However, the
results of this study did not demonstrate the damage of
spontaneous brain activities in the common CSTC cir-
cuits such as the orbitofrontal lobe, thalamus, and anter-
ior cingulate gyrus in participants with OCD, which may
be ascribed to the difference in sample size and research
method.

In the right inferior parietal gyrus/angular gyrus, DC
was significantly increased in SZ group, which, however,

was not significantly altered in OCD group. The inferior
parietal lobule, including the supramarginal gyrus and
angular gyrus, is a major network hub of the human
brain and plays an important role in a wide range of be-
haviors and functions from bottom-up perception to so-
cial cognition. Previous reviews suggested that the
impairments of the inferior parietal lobule in partici-
pants with SZ mainly affect their body image, sensory in-
tegration, self-concept, and executive function [37].
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Differences in spontaneous brain activities between SZ
and OCD

Compared with HC group, ReHo of the right angular
gyrus/middle occipital gyrus was significantly higher in
OCD group and lower in SZ group. These present find-
ings are compatible with the previous functional alter-
ations results. Recent researches have suggested that the
angular gyrus is responsible for complex mental phe-
nomena and processes, such as understanding visual and
audio inputs [38], interpreting languages [39], retrieving
memories [40], and maintaining consciousness [41].
Moreover, the angular gyrus has been demonstrated to
be one of the overlapping regions between the DMN
and social brain networks [42]. Niu et al. [43]. demon-
strated that higher ReHo was found in the left angular
gyrus in participants with OCD. Nierenberg et al. [44].
found that volume of the left angular gyrus in

participants with new-onset SZ was smaller than that in
healthy subjects and proposed that the angular gyrus
may be the neuroanatomical substrate of the expression
of SZ. The occipital cortex is considered to play an im-
portant role in early visual processing, such as visual hal-
lucinations and object-recognition defects [45]. Fan et al.
found that participants with OCD had higher ALFF in
the right middle occipital gyrus [46]. Moreover, the oc-
cipital cortex was also demonstrated to play an import-
ant role in OCD by several previous studies [46, 47]. Yu
et al. [48]. reported lower ReHo in the occipital lobe in
participants with SZ. Therefore, the distinct patterns of
ReHo in the right middle occipital gyrus may indicate
differently impaired visual processing in the two dif-
ferent diseases, which is compatible with the previous
findings on the eye movement characteristics of par-
ticipants with SZ and OCD [49]. Wang et al. [18]
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Fig. 4 Scatter plots show the relationships between the ALFF, ReHo, and DC and the duration of illness in SZ and OCD, respectively. (A). The
ALFF of the left superior temporal gyrus/insula/rolandic operculum was negatively correlated with the duration of illness in SZ; (B). The ALFF of
the right supramarginal gyrus/inferior parietal lobule was positively correlated with the duration of illness in OCD; (C). The ALFF of the left
postcentral gyrus was positively correlated with the duration of illness in OCD; (D). The DC of the right inferior parietal lobule/angular gyrus was
negatively correlated with the duration of illness in OCD. Abbreviations: HC, healthy controls; OCD, participants with obsessive-compulsive

used the resting-state functional connectivity (rsFC)
method to find that SZ group had increased rsFC between
the middle temporal gyrus and the subregions of the
DMN, where OCD group exhibited decreased rsFC. The
rsFC between the subregions of DMN and executive con-
trol network (ECN) increased in both SZ and OCD
groups. A previous comparative study using probabilistic
tractography found that compared with OCD, SZ exhib-
ited increased connection probability within the right mid-
dle occipital gyrus, and between the left middle occipital
gyrus and the left middle temporal gyrus [50].

Shared spontaneous brain activity alterations between SZ
and OCD

We detected that both the SZ and OCD groups had de-
creased ALFF in the right supramarginal gyrus/inferior

parietal lobule and decreased DC in the right lingual
gyrus/calcarine fissure and surrounding cortex. The in-
ferior parietal lobule is a major network hub of the hu-
man brain and plays an important role in a wide range
of behaviors and functions from bottom-up perception
to social cognition [51, 52]. Previous studies have also
found abnormalities in the structure or function of the
inferior parietal lobule in SZ and OCD, respectively [37,
53]. The lingual gyrus and calcarine fissure and sur-
rounding cortex are located in the occipital lobe and are
closely related to visual information processing. The lin-
gual gyrus, an important part of the visual recognition
network, plays a role in mediating visual word process-
ing and analyzing the complex features of visual forms
and also participates in emotion perception during facial
stimulation, especially facial recognition [54]. Several
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studies have observed structural or functional abnormal-
ities of the lingual gyrus or occipital lobe in both SZ and
OCD [55-59]. The meta-analysis of Gao et al. [56]
showed structural abnormalities in the lingual gyrus in
drug-free participants with SZ. Moreira et al. [55] ob-
served that participants with OCD displayed reduced
functional connectivity within and between visual and
sensorimotor networks.

Overall comparison of altered spontaneous brain
activities between SZ and OCD

In general, the results of this study showed that SZ and
OCD had some similarities in the spontaneous brain ac-
tivity in the parietal and occipital lobes, but exhibited
different spontaneous brain activity patterns in the
frontal, temporal, parietal, occipital, and insular lobes.
Although there is increasing evidence that SZ and OCD
share neurobiological abnormalities [3, 6], some studies
have failed to find overlap between them. Previous stud-
ies have shown that SZ is a more severe biological dis-
turbance with greater neurological abnormalities than
OCD, and SZ and OCD may have different potential
neurobiological mechanisms [4, 5, 60]. Our previous
studies investigated the association between SZ and
OCD from the perspective of the topological
organization of the white matter (WM) network and
found that SZ exhibits a wide range of abnormal pat-
terns involving the frontal, parietal, occipital, temporal,
and subcortical regions [5].

It is noteworthy that this study showed that there were
more significant ALFF alterations in OCD and more sig-
nificant DC alterations in SZ. For a single voxel, its
neural activity intensity was characterized with ALFF,
and its importance in complex brain networks is re-
vealed with DC. Therefore, these dissimilarities between
SZ and OCD suggested that the two disorders may have
distinct patterns of spontaneous brain activity impair-
ments and that SZ implicates more abnormalities in
functional connections among brain regions.

Correlations among ALFF, symptoms severity and course
of disease in SZ and OCD respectively

Our findings showed that ALFF in the left postcentral
gyrus was positively associated with the severity of clin-
ical symptoms expressed by positive subscale score and
general psychopathological subscale score respectively
on the PANSS in participants with SZ, and ALFF in the
left superior temporal gyrus, insula, and rolandic opercu-
lum was positively associated with the severity of clinical
symptoms presented by compulsion subscale score and
total score on the Y-BOCS in participants with OCD.
These present findings are compatible with the previous
studies. Qiu et al. [61] reported that abnormal gray mat-
ter density was shown in the left postcentral gyrus,
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where the abnormal gray matter density was correlated
with RSS, a specific eye movement index of schizophre-
nia, which is associated with the integration of several
perceptual/cognitive processes, including selective and
sustained attention, and working memory [62-64],
reflecting the clinical hallucination severity of schizo-
phrenia [65]. As for OCD, the superior temporal gyrus
was documented to be specifically associated with social
anhedonia in OCD [66]. Moreover, greater recruitment
of the left superior temporal gyrus was found in
pediatric participants with OCD than HC during com-
bined symptom provocation, which suggested the in-
volvement of the temporal poles in pediatric OCD
during symptom provocation [67].

To increase the credibility of the initial results, the
correlation method was employed to correlate measures
of brain activity with symptom severity and illness dur-
ation, respectively, in our present study. Results from
these correlation analyses demonstrated the longer the
illness duration in SZ, the lower the ALFF of the left su-
perior temporal gyrus/insula/rolandic operculum. A pre-
vious study reported a progressive gray matter volume
reduction in the left posterior superior temporal gyrus in
participants with first-episode SZ [68]. Keshavan et al.
[69] also found that the duration of pretreatment illness
was negatively correlated with the volume of the left su-
perior temporal gyrus, and this correlation was only lim-
ited to men. In addition, we observed the longer the
illness duration in OCD group, the higher the ALFF of
the right supramarginal gyrus/inferior parietal lobule
and the left postcentral gyrus, and the lower the DC of
the right inferior parietal lobule/angular gyrus. These re-
sults suggested that the duration of illness in SZ and
OCD may influence spontaneous brain activity in some
brain regions.

Limitations

The present study has some potential limitations. First,
the sample size used for imaging analyses in this study is
relatively small, which may limit the value of the re-
search. For example, due to the limitation of the sample
size, difficulties in subdividing participants with SZ and
OCD respectively into different groups based on symp-
toms or subtypes increased, resulting in a lack of full
consideration of the heterogeneity of the sample. As for
sample size estimation, we could not calculate the power
of the study in a scientific way. Second, the disadvantage
is that the three groups of subjects in our present study
are unevenly matched in terms of the number of partici-
pants, age, and education level. Third, the HC group in
this study lacked PANSS, Y-BOCS, HARS, and 24-
HDRS for comparison. In addition, it was reported that
different standardized procedures may affect the re-test
reliability of ALFF, ReHo and DC [70]. Future studies
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should recruit untreated people with first-episode SZ
and OCD, as well as add a schizo-obsessive [2] group to
further investigate the characteristics of brain imaging
changes in SZ and OCD.

Conclusions

In summary, our data demonstrated that SZ and OCD
show some similarities in spontaneous brain activity in
parietal and occipital lobes, but exhibit different patterns
of spontaneous brain activity in frontal, temporal, par-
ietal, occipital, and insula lobes, which might reveal that
SZ and OCD have different underlying neurobiological
mechanisms. In OCD, there are more significant spon-
taneous brain activity alterations in local brain regions
in the resting state, while in SZ, there are more signifi-
cant functional connections alterations between individ-
ual brain regions and other brain regions. Moreover, the
exploratory correlation analyses showed that both ALFF
and DC in certain brain regions were correlated with the
severity of clinical symptoms or illness duration in par-
ticipants with SZ and OCD respectively.
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