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Background.—The emergence of fentanyl around 2013 represented a new, deadly stage in the 

US opioid epidemic. We developed a statistical regression approach to identify counties at the 

highest risk of high overdose mortality in the next year by predicting annual county-level overdose 

death rates across the contiguous US and validated it against observed overdose mortality data 

from 2013 to 2018.

Methods.—We fit mixed effects negative binomial regression models to predict next year’s 

county-level overdose death rates for the years 2013 to 2018. We used publicly available county

level data related to healthcare access, drug markets, socio-demographics, and the geographic 

spread of opioid overdose as model predictors. The crude number of county-level overdose deaths 

was extracted from restricted Centers for Disease Control and Prevention mortality records. To 

predict county-level overdose rates for the year 201X: 1) a model was trained on county-level 

predictor data for the years 2010–201(X-2) paired with county-level overdose deaths for the 

year 2011–201(X-1); 2) county-level predictor data for the year 201(X-1) was then fed into the 

model to predict the 201(X) county-level crude number of overdose deaths; and 3) the latter 

was converted to a population-adjusted rate. For comparison, we generated a benchmark set of 

predictions by applying the observed slope of change in overdose death rates in the previous year 

to 201(X-1) rates. To assess the predictive performance of the model, we compared predicted 

values (of both the model and benchmark) to observed values by 1) calculating the mean average 

error, root mean squared error, and Spearman’s correlation coefficient and 2) assessing the 

proportion of counties in the top decile (10%) of overdose death rates that were correctly predicted 

as such. Finally, in a post-hoc analysis, we sought to identify variables with greatest predictive 

utility.

Findings.—Across the entire US and through time, our modeling approach outperformed the 

benchmark strategy across all metrics. The average county-level overdose death rate rose from 

11.8/100,000 to 15.4 in 2017 before falling to 14.8 in 2018. Our modeling approach similarly 

identified an increasing trend, predicting an average 11.8 deaths/100,000 in 2013 up to 15.1 in 

2017 and still increasing to 16.4 in 2018. The benchmark model over-predicted average death 

rates each year, ranging from 13.0/100,000 in 2013 to 18.3 in 2018. Our modeling approach 

successfully ranked counties by overdose death rate identifying between 41.6% and 56.8% of 

counties in the top decile of overdose mortality (compared to 28.7% and 42.6% using the 

benchmark) each year and identified 194 of the 808 with emergent overdose outbreaks (i.e., newly 

entered the top decile) across the study period, versus 31 using the benchmark. In the post-hoc 

analysis, we identified geospatial proximity of overdose in nearby counties, opioid prescription 

rate, presence of an urgent care facility, and several economic indicators as the variables with the 

greatest predictive utility.

Interpretation.—Our study demonstrates that a regression approach can effectively predict 

county-level overdose death rates and serve as a risk assessment tool to identify future high 

mortality counties throughout an emerging drug use epidemic.

Funding.—National Institute on Drug Abuse

Introduction

The opioid epidemic in the United States (U.S.) caused over 400,000 documented opioid 

overdose deaths from 1999 to 2018, with 46,000 deaths occurring in 2018 alone.1,2 In 
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particular, fentanyl, a synthetic opioid approximately fifty times more potent than heroin, 

emerged in the eastern U.S. illicit drug market in 2013 as an adulterant of, or substitute for, 

heroin.3–5 In 2012, synthetic opioid overdose resulted in fewer than 1 death per 100,000 

individuals.6 By 2018, synthetic opioids were responsible for nearly 10 deaths per 100,000 – 

over 31,000 deaths, accounting for 65% of all opioid overdose deaths for that year.6

Rather than a uniform increase in opioid-related mortality, the opioid overdose crisis is 

the latest in a decades long series of escalating geographically concentrated, time- and 

drug-specific overdose outbreaks, dating back to at least 1979.7,8 The current crisis has 

been described as a ‘triple wave’ of overdoses due to opioid pills, followed by escalating 

heroin-related overdose and most recently by a crescendo in synthetic opioid deaths.5 In 

the second and third waves, while the national opioid overdose death rate rose steadily 

over the past decade, mortality has been concentrated within specific regions – primarily 

the Midwest, Appalachia, and New England.5,6 However, increasingly greater synthetic 

opioid overdose deaths rates are being reported in the West, now likely exacerbated due 

to socio-economic, healthcare and drug markets disruptions associated with the Covid-19 

pandemic.9 This illustrates the need for the rapid development of tools to predict potential 

overdose outbreaks, particularly in localities that have yet to experience fentanyl-related 

overdose outbreaks.

Overall, the primary aim of this study was to validate the application of a statistical 

modeling approach for identifying counties at highest risk of a drug overdose outbreak 

in the next year, throughout the fentanyl epidemic, by predicting county-level overdose 

deaths rates. Unfortunately, inconsistent and poor reporting of drug-specific overdose 

mortality10 across counties inhibits us from modeling fentanyl-specific overdose outbreaks. 

We developed a series of regression models to predict nest year’s county-level overdose 

death rates in the US from 2013 to 2018. We validated our predictions against existing data 

on overdose death rates for each year to show how such a predictive tool could have been 

used throughout the course of the epidemic.

Methods

Data Preparation

Annual, county-level data for both outcomes and predictors were aggregated for all 

contiguous U.S. state counties (i.e. excluding Alaska and Hawaii) for the years 2010 through 

2018.

The primary outcome for this study was county-level crude overdose death rate for the next 

year (i.e., predictors from year n are paired with overdose death rate from year n+1). This 

outcome was extracted from the Centers for Disease Control and Prevention (CDC) Wonder 

restricted database (using UCD codes X40–44, X60–64, X85, Y10–14). Due to statistical 

disclosure control, the CDC does not publicly report the number of overdose deaths for 

a given county in a given year if the absolute total was less than 10 in order to protect 

individual privacy. Following the request protocol from the CDC, we were given access 

to the full dataset with all counties overdose death rates reported. To be consistent with 

CDC human subjects’ protections, we will not report or reflect on an individual county’s 
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overdose death rate in this report. As this study relied on the use of secondary de-identified 

county-level data, the Institutional Review Board (IRB) of the University of California San 

Diego determined that IRB review was not required (according to the Code of Federal 

Regulations, Title 45, part 46).

Predictors included as fixed effects in our modeling approach (see Table 1) were obtained 

from publicly available databases reporting county-level estimates throughout the study 

period. They were chosen to be consistent with prior literature modeling risk of overdose in 

the US, including indicators of healthcare access, drug markets, socio-economic indicators, 

and the geographic spread of the epidemic.11–14 To estimate the county-level availability 

of opioid use disorder treatment, we included the total number of buprenorphine physician 

waivers approved by the Substance Abuse and Mental Health Services Administration active 

each year. As well, to operationalize access to emergency health care, we included a binary 

variable measuring the presence of an urgent care facility within the given county. We 

included the county-level opioid prescription rate per 100 people and the state-level count 

of substances identified as including fentanyl in local-, state-, and federal-level forensic 

labs. Additionally, we included the log of the jail population. We included socio-economic 

indicators, such as unemployment rate, extracted from the Census American Community 

Survey. Consistent with health-related machine learning recommendations,15 we do not 

hypothesize there exists a relationship between race and overdose that is not mediated or 

confounded by latent structural racism (such as disparate opioid prescription patterns by 

race),16 thus we do not include race as a predictor (see Supplement Page 2 for further 

discussion). Finally, to account for the geographic spread of overdose death, we included a 

categorical measure of county urbanicity and a continuous gravity variable accounting for 

the overdose death rates of nearby counties. We provide full detail on the variables’ selection 

in the Supplement Page 3, including our assessment of predictor collinearity.

Statistical Modeling Approach

The modeling approach was applied to predict overdose death rates for each year from 

2013 to 2018. When predicting a given year (e.g., 201X), the model is trained on paired 

predictor-death rate data from years 2010 through two years prior to the prediction year 

(201X-2). Predictor data for a given year is paired with the crude number of overdoses 

that occurred in the subsequent year as the model outcome. Then, predictors from the year 

prior to the prediction year (201X-1) are fed into the model (which specifies coefficients 

relating each predictor to the outcome) to predict 201X county-level crude number of 

overdose deaths, which is then converted into a population rate (per 100,000). For example, 

as shown in Figure 1, in order to predict 2013 overdose death rates: 1) a model is trained 

using longitudinal predictor data from 2010 to 2011 (paired with outcomes for 2011 and 

2012, respectively); 2) predictors from 2012 are then fed into the model to predict 2013 

overdose death counts; 3) the predicted death counts are converted into overdose death rates 

(i.e. deaths per 100,000); and, finally, 4) the predicted overdose death rates for 2013 are 

compared to the actual overdose death rates to evaluate predictive accuracy.

For predicting each year’s overdose death rates, we applied mixed effects negative binomial 

regression (as detailed in Figure 1 – see Supplement Page 1 for a detailed discussion 
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justifying our chosen modeling approach). A random intercept for each county was 

incorporated with a random slope for year. This model specification accounts for two 

hypothesized relationships within the data: 1) overdose death observations from the same 

county are correlated (justifying the random intercept for each county); and 2) the rate 

of change in overdose deaths will be dependent on the epidemic stage in a given county 

(justifying the application of random slopes for year). In addition, we included an offset 

term for the log of the population “carrying capacity”, similar to Sumetsky et al.17 We 

hypothesized that as more overdose deaths occur in a location, the population of susceptible 

individuals would diminish. Thus, we defined carrying capacity as 5% of the 2010 county 

population minus the number of overdoses in the county the prior three years (or the prior 

available years in the data for years 2011 and 2012), setting 50 as the minimum possible 

carrying capacity (see Supplement Page 1 for further discussion of carrying capacity). The 

outcome of the model was the number of overdose deaths the subsequent year in each 

county. We included each variable in Table 1 as a fixed effect. Given that our goal was to 

simulate real-time prediction and that we cannot know the accuracy of model performance 

a priori, it would be unrealistic to choose a set of optimally performing fixed effects. In 

Post-Hoc Analysis, we describe additional steps taken to determine which fixed effects best 

informed model prediction.

All analyses were conducted in R using the lme4 package.18,19 Further details and code for 

running the analyses are available in the Supplement Pages 1 & 12.

Prediction Evaluation Approach.

We consider five primary metrics for assessing model performance. The first three, mean 

average error (MAE), root mean square error (RMSE), and Spearman’s ρ, measure the 

accuracy of outcome predictions. The MAE is the average magnitude of the difference 

between the predicted and observed overdose death rate for each county. The RMSE is 

the square root of the average magnitude of the difference squared – similar to MAE but 

penalizes prediction errors with greater magnitude. More accurate predictions will result 

in smaller MAE and RMSE. Spearman’s ρ compares the predicted ranking of counties by 

overdose death rate compared with the actual observed rankings – results closer to 1 indicate 

that the model was more effective at rank-ordering counties based on overdose death rate. 

The final two metrics seek to assess how well the model identified counties at highest risk 

of an overdose outbreak in the subsequent year (defined by an overdose death rate in the 

top decile relative to other counties). To do so, we first disaggregated the predicted and 

observed overdose death rates into deciles (10th, 20th,[…],100th centile) and categorized 

all counties into their corresponding decile for both predicted and observed overdose rates. 

The first metric is the proportion of counties observed in the top decile (i.e. top 10% of 

observed overdose deaths rates) that were rightly predicted to be in the top decile. Then, 

to characterize model performance identifying counties with emergent overdose outbreaks, 

we defined such an emergent outbreak as a county being outside of the top decile in 

the year 201(X-1) and then entering the top decile in year 201(X). The second metric is 

the proportion of all observed emergent outbreak counties which the modeling approach 

accurately predicted as newly being in the top decile in 201X.
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To contextualize the results, we generated benchmark predictions for comparison. This 

benchmark strategy assumed the change in overdose death rate between years 201X-2 and 

201X-1 would remain the same between the years 201X-1 and 201X. We calculated the 

slope for the change in overdose death rate from year 201X-2 to 201X-1 and added it to 

the 201X-1 overdose death rate to predict the 201X rate. If the value predicted for a county 

for a given year was below 0, we rounded it up to 0. This heuristic approach provides a 

simple, yet intuitive, way to predict future overdose death rates – the utility of our modeling 

approach can be understood in comparison to the performance of this benchmark approach.

Data Exploration Application

To address the challenges in presenting county-level data for the full US, we provide 

a web application that can be used to explore the data in various ways at http://

overdosepredictiondashboard.emergens-project.com/. We provide this dashboard as an aid to 

this manuscript and to display how such findings may be readily disseminated to appropriate 

stakeholders. In accordance with CDC data protections, we have censored data which are not 

available in the unrestricted CDC mortality records.

Post-Hoc Analyses

It is of interest to understand the contribution of fixed effects to the predictive accuracy of 

the model. When making predictions, it is also uncertain what the best set of fixed effects 

will be, given that the model cannot be evaluated until after the predicted events occur. 

We employ a bootstrapped forward variable selection strategy similar to that described by 

Beyene et al to identify the fixed effects with the greatest predictive utility (see Supplement 

Page 5 for full description).20 We focus only on predicting overdose death rate for the year 

2018 and the metric we are seeking to optimize is the proportion of counties correctly 

predicted in the top decile.

In total, we ran 100 bootstrap iterations. We display, as the result, the proportion of the time 

each variable was included in the final model. Fixed effects that are chosen more frequently 

are considered to have greater predictive value than fixed effects chosen less frequently.

We also implemented model diagnostics and a sensitivity analysis applying the model in the 

eastern and western regions of the U.S. to confirm its results are robust to changes in the 

model training process (see Supplement Pages 6 – 9). To execute the sensitivity analysis, the 

analytic approach described was run separately for counties east and west of the Mississippi 

River, respectively. Results were then evaluated to determine if the model still performed 

adequately when trained on smaller, distinct regions of the country.

Role of Funding Source

The funding source had no role in data collection, analysis, interpretation, writing of the 

manuscript, nor the decision to submit.
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Results

Among the 3,106 counties included in the study, from 2013 to 2018, observed mean county

level overdose death rates increased from 11.8 deaths per 100,000 in 2013 to 15.4 deaths per 

100,000 in 2017, before falling to 14.6 deaths per 100,000 in 2018 (Table 2). The benchmark 

prediction strategy over-predicted the mean county-level overdose death rate each year, 

increasing from 13.0 deaths per 100,000 in 2013 to 18.3 deaths per 100,000 in 2018. The 

negative binomial approach predicted a mean 11.8 deaths per 100,000 in 2013 and followed 

by a steady increase from 11.5 deaths per 100,000 in 2014 to 16.4 deaths per 100,000 in 

2018.

The negative binomial approach outperformed the benchmark prediction strategy each year, 

according to MAE, RMSE, and Spearman’s ρ (see Table 3). The benchmark MAE increased 

from 10.70 in 2013 to 12.37 in 2018, whereas the MAE of the negative binomial approach 

ranged from 6.58 to 7.73. The RMSE of the benchmark approach ranged from 18.38 to 

20.67, whereas the negative binomial approach RMSE ranged from 10.04 to 11.55. The 

benchmark Spearman’s ρ increased from 0.35 in 2013 to 0.45 in 2018, whereas the negative 

binomial model Spearman ρ was generally 0.2 greater, increasing from 0.57 in 2013 to 0.65 

in 2018.

We then divided counties into deciles based on observed and predicted overdose death rates 

(i.e. top decile were the 10% of counties with the highest overdose death rate, second decile 

the next 10%, and so on), to identify if the counties predicted to have the highest overdose 

death rates indeed experienced them. The benchmark prediction strategy correctly predicted 

between 89 and 132 of the 310 counties observed to be in the top decile for each year (see 

Table 4). The negative binomial approach generally improved over time, identifying 129 of 

the 310 counties in the top decile in 2013 and 171 in 2018. This improvement may indicate 

that model performance improves in this regard given more training data.

The number of counties that newly entered the top decile fell from 175 counties from 

2013 to 2014 to 149 counties from 2017 to 2018. The benchmark strategy, at its best in 

2018, correctly predicted only 7 of 149 counties newly entering the top decile, whereas 

the negative binomial approach correctly predicted at least 33 (and up to 46) of the 

counties newly entering the top decile. While these results indicate further room for 

improvement, they display that the negative binomial approach employed represents a 

meaningful predictive improvement over our benchmark heuristic of predicting based on 

annual overdose death rate trends.

Finally, we sought to characterize the predictive value of each fixed effect in the model 

via forward selection bootstrapping approach (Table 5). The overdose gravity variable was 

included in 81% of simulations, indicating that the geospatial dimension of overdose is 

highly predictive of subsequent year overdose death rate. The opioid prescription rate was 

included 66% of simulations and the presence of an urgent care facility in the county was 

included 53% of the time, indicating that such health care indicators are of predictive value 

– though we note that the number of buprenorphine provider waivers in the county was only 

chosen 11% of the time. As well, several economic indicators including changes in county 

Marks et al. Page 7

Lancet Public Health. Author manuscript; available in PMC 2021 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



payroll, median household income, and changes in employee were all chosen around half 

of the time. Diagnostic analyses indicated the model tended to underpredict high overdose 

death rates, but this improved over time. Separately implementing the model in the eastern 

and western regions, resulted in very similar (although marginally better) performance (see 

Supplement Page 8).

Discussion

This study demonstrated how a statistical modeling approach can be employed to identify 

counties at risk of experiencing overdose death outbreaks. Our model predicted counties’ 

overdose death rates from 2013 to 2018 with substantially greater accuracy than an intuitive 

benchmark heuristic. Most importantly, it displayed far greater capacity than the benchmark 

for predicting counties experiencing emergent drug overdose outbreaks by identifying 

counties newly entering the top mortality bracket. As such, this model should be considered 

when attempting to identify which counties are in need of resources to respond to potential 

overdose outbreaks, including counties yet to experience them. We note that further research 

aimed at improving model performance and timely access to data are needed to ensure 

efficacious application. Our post-hoc analysis indicates our fixed effects capturing the geo

spatial spread of overdose, opioid prescribing patterns, and several economic indicators 

provided the most predictive utility.

While similar models have been used to inform funding allocation, such as the CDC’s 

drug-related HIV outbreak risk assessment model,11,21 these have not been validated against 

data and have not been designed to provide yearly predictions (with a recent study from 

Sumetsky et al. as an exception).17 Model validation is key to both ensuring that the tools 

used for policy guidance are providing accurate information that will lead to an effective 

allocation of resources, as well as to improving our understanding of the epidemic processes. 

Given the changing nature of drug use epidemics, tools that capture risk over time are 

needed.

The study has limitations. First, the model performance is not optimal. However, predicting 

overdose outbreaks at national level is challenging and such improvements over a heuristic 

benchmark can prevent much harm by directing attention towards counties that would 

have otherwise not been considered at risk. While it was not possible to do so in this 

study, comparing the performance of our model with that of other models introduced in 

the literature (such as that by Sumetsky et al, Campo et al, and Cooper et al)17,22,23 may 

advance the broader effort to develop better performing models. Further, given that this 

is a nascent line of research, we highlight the importance of evaluating the performance 

of a variety of modeling strategies. To our knowledge, this study is the first to apply a 

mixed effects negative binomial regression strategy to predict overdose deaths. Recent works 

have applied Bayesian spatial-temporal models, polynomial functions, and a variation of the 

random forest algorithm.17,22,23 Future research should aim to replicate and compare these 

methods in order to identify strengths of each approach, which can inform future model 

development.
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Second, longitudinal predictive studies require the consistent and timely dissemination of 

data. Thus, the outcome and predictors need to be available for the same localities (i.e. 

counties), same time periods, and same time steps (i.e. years, months) in order to be 

utilized. Such requirements limit the pool of available variables to include as predictors. 

For example, while we incorporated estimates of opioid prescription rates per county and 

fentanyl seizures by state to capture changes in drug markets, these indicators provide only 

partial information as they do not tell us about either drug volume or potency. In addition, 

having county-level seizure data would likely improve model performance. Similarly, we 

included active buprenorphine providers per year by county as a measure of drug treatment 

coverage. However, there is high variation in the number of patients seen by each provider 

and regulations on the limit of patients per provider have been relaxed over time.24

Third, we took a simple approach for identifying the “susceptible” population in each 

county. Most people in each county are not at risk of experiencing an overdose. Sumetsky 

et al. provide an example of a more computationally intensive calculation of county 

carrying capacity.17 Future research should seek to design and validate approaches aimed at 

quantifying this county-level “susceptible” population.

As well, the timeliness of data availability shapes the utility of the method. As of January 

2021, the restricted overdose death data from the CDC was available through 2018. This 

means that future applications of this or other predictive modeling approaches require 

more rapid dissemination of data to ensure the timely access of evidence-based guidance 

among relevant stakeholders. Increasingly, individual states and counties’ public health 

departments are implementing web-portals, such as California’s, the Rhode Island and the 

Michigan Opioid Overdose Surveillance Dashboards,25–27 where preliminary data are made 

publicly available on a quarterly, biannual and near-real time basis, respectively. States with 

more rapid data dissemination may apply this method for their specific locality. Analytic 

approaches can be modified to make predictions several years into the future but given the 

rapidly changing nature of drug use epidemics, the timely availability of data promises to 

provide greater predictive benefit. This is particularly true in the context of the Covid-19 

pandemic, which has affected and will continue to shape drug use related behaviors and 

harms.28,29

Based on these findings, we provide directions for future research and endeavors which can 

improve the utility of this modeling approach. First, as highlighted in the limitations section, 

better and more timely data of both drug use patterns and drug markets are needed to enable 

rigorous analyses of drug use epidemics and prediction analyses. This could be achieved 

through more timely and granular accessibility to NFLIS data and through establishing free 

and accessible drug testing programs in collaboration with harm reduction organizations.5 

Publicly available data on prescription drugs is also key to evaluating risk in a population. 

Local data on both the size and socio-demographic characteristics of people who use 

drugs could be systematically collected and linked through coordinated collaboration with 

primary and emergency medical services, law enforcement institutions and harm reduction 

organizations. A recent study from Campo et al. displayed that concurrent Google search 

trends may be an effective strategy for making real-time, dynamic predictions of county

level overdose death rates, given the immediate availability of this data.23
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Second, to use prediction to mitigate the harms of the opioid crisis, it is crucial that we be 

able to swiftly communicate predictions to appropriate stakeholders – this is especially 

important considering how rapidly US drug markets are understood to change.30 The 

development of dashboards can facilitate the application of these peer-reviewed methods 

in a way that allows for the rapid dissemination of results. We provide a dashboard (http://

overdosepredictiondashboard.emergens-project.com/) where the results of this study can 

be explored – this dashboard represents a model for how this method may be applied 

to inform relevant stakeholders in making decisions about overdose prevention measures. 

Through such platforms, stakeholders can access prediction results and use the findings to 

inform resource allocation and overdose response initiatives. While this study focuses on the 

accuracy and validity of the approach employed, we expect to extend it to produce future 

predictions, conditional on data availability.

Conclusion

Our statistical model effectively rank-orders counties based on the predicted overdose death 

rates for the subsequent year and is able to predict counties that will experience emergent 

increases in overdose mortality. This study provides the first rigorously validated tool to 

inform policy planning in the context of overdose epidemics driven by emerging drugs and 

sets a new standard for the development of a data driven response to drug use epidemics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study

The rapid diversification in synthetic opioids of increased potency, the expansion of drug 

markets through the dark web and the observed increases in polydrug use associated 

with higher risk of health harms are all contributing to the emergence of increasingly 

rapid and harmful fatal overdose outbreaks in the United States (U.S.). To mitigate future 

harms, it is crucial to predict where and when opioid use-related outbreaks will occur 

and plan for a preemptive response. We reviewed the literature to identify quantitative 

studies aimed at predicting public health outbreaks associated with opioid use epidemics 

in the U.S. by searching for the following terms in PubMed (updated on January 20 

2021): (“Substance-Related Disorders”[Mesh] OR drug use[tiab] OR opioid[tiab]) AND 

(outbreak[tiab] OR “Epidemics”[Mesh] OR overdose[tiab]) AND (“Statistics as Topic”

[Mesh] OR “Regression Analysis”[Mesh] OR statistic*[tiab] OR predictive[tiab] OR 

model[tiab]) AND (“United States”). While the search retrieved over 1,000 studies, a 

minority were directly relevant to our research question as most employed an explanatory 

framework and few extended it for predictive purposes. An influential CDC study by Van 

Handel et al. aimed to assess the risk of injection drug use HIV and HCV associated 

outbreaks across U.S. counties. However, their methods have not been validated and did 

not include fatal overdose as an outcome. A recent study led by Sumetsky et al. addressed 

the urgent need for overdose outbreak prediction models and tested the performance 

of two statistical methods (standard log–linear vs. log–logistic Bayesian hierarchical 

Poisson conditionally autoregressive (CAR) spatial models) in predicting overdose deaths 

by county in two states from 2001–2014. While their findings are promising, they 

have not yet been evaluated across the entire country, which is important given the 

high geographical heterogeneity in overdose outcomes in the U.S. Another recent study 

by Cooper et al. used three-degree polynomial models to investigate fatal overdose 

dynamics from 2012 to 2016 by state, disaggregating rates by heroin, semi-synthetic 

and synthetic opioids. They identified states with highest elasticity (i.e. rate of change 

over time) for each of the opioid sub-epidemics. These findings are useful in terms 

of improving our understanding of different opioid sub-epidemics dynamics; however, 

there is no assessment of the model’s predictive performance and how outputs may 

be operationalized to inform policy. Finally, a 2020 study by Campo et al. applied 

a variation of the random forest algorithm to predict state and county-level overdose 

deaths rates, by using concurrent Google search trends as model predictors. Predictive 

performance was high, but they used publicly available overdose death data, hiding much 

of the heterogeneity across smaller counties. There remains a need to further develop 

the nascent field of overdose epidemic prediction through the design and validation of 

analytic methods that provide actionable information to guide the response at national 

and local levels in the context of emerging drug use epidemics.

Added value of this study

In this study, using publicly available predictor data, we implemented and validated a 

mixed effects negative binomial regression method for predicting county-level overdose 

death rates in the next year from the emergence of fentanyl in 2013 to 2018, across 
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the contiguous U.S. We compared our yearly overdose mortality predictions to observed 

data and to a simple predictive benchmark to further characterize our model’s predictive 

value. To produce meaningful results to guide policy, we identified counties in the top 

mortality decile as well as those newly entering that category (corresponding to counties 

with emerging outbreaks). We displayed that, if our method had been implemented in 

real-time, we would have had an improved capacity to identify counties at the highest risk 

of experiencing overdose outbreaks throughout the fentanyl wave of the opioid crisis.

Implications of all the available evidence

Taken together, to address the harms of the U.S. opioid crisis, it is crucial that available 

analytic approaches be employed to identify localities at the highest risk of experiencing 

an overdose outbreak in the near future. Our study contributes to ongoing efforts to 

strengthen our epidemiologic toolset to inform the opioid response, and the development 

of further quantitative methods, including geospatial, machine learning and dynamic 

modeling approaches should be encouraged. Importantly, timely and geographically 

representative data on drug use and associated outcomes, as well as drug markets, are 

crucial to increasing predictive power of these tools. A stronger drug market surveillance 

infrastructure is needed. Further, it is important that strategies to disseminate findings 

to relevant stakeholders be implemented. Here, we display our findings through an 

interactive a dashboard to illustrate how this can aid in the transparent dissemination of 

predictions. By improving our ability to make such predictions and relay this information 

to appropriate stakeholders, we will improve our ability to swiftly and precisely allocate 

resources and instantiate responses to effectively mitigate potential overdose harms.
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Figure 1. Workflow of modeling approach.
Predictors from the years 2010 to 201X-2, paired with respective overdose outcomes from 

2011 to 201X-1 were used to train each model. Then predictors from the year 201X-1 were 

fed into the model to predict the overdose death rate in 201X. Finally, these predicted rates 

were compared to the observed rates for 201X. OD = overdose.
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Table 1.

Predictors included as fixed effects in the final modeling approach.

Predictor Description Source*

Healthcare access

Buprenorphine waivered 
physicians Crude number of active buprenorphine waivered physicians each year SAMHSA

Urgent Care Presence Presence of an Urgent Care facility within county HSIP Gold

Drug markets

Opioid Prescription Rate Opioid prescribing rate per 100 people each year CDC (IQVIA 
Xponent)

Log Fentanyl Seizure Data State-level count of fentanyl tested in local-, state-, and federal-level forensic labs each 
year NFLIS

Log Jail Population Size The log of the jail population size VERA

Socio-economic indicators

High School Graduation Rate Proportion of people living in the county estimated to have graduated from high school or 
received an equivalent certification. ACS

Poverty Rate Proportion of households in the county estimated to be living at or below the poverty line. ACS

Unemployment Rate Proportion of people able to work in the county estimated to be unemployed. ACS

Employee capacity Difference Difference in the employment capacity (measured as number of staff employed) of all 
companies across industries between current and past year in the county. CBP

Payroll Difference Difference in payroll (measured in US dollars) of all companies across industries between 
current and past year in the county. CBP

Log Median Household 
Income The logarithm of the estimated median household income in the county. ACS

Proportion of Homeowner 
Households That Spend At 
Least 35% of Income on 
Mortgage

The proportion of homeowner households in the county where it estimated that the 
household spends at least 35% of their income on their mortgage. ACS

Proportion of Renter 
Household That Spend At 
Least 35% of Income on Rent

The proportion of renter households in the county where it estimated that the household 
spends at least 35% of their income on their rent. ACS

Geographic Spread of Epidemic

Log Overdose Gravity

Continuous variable generated to operationalize overdose death rates in neighboring 
counties. To derive the gravity variable for a given county x in year t, we first identified 
the set of all counties Y within 200 miles of county x. Distances were measured from 
central, internal points in each county and were extracted from a dataset created by the 
National Bureau of Economic Research. Second, for each county y in Y, we divided the 
overdose death rate for county y in the year t by the distance between counties x and y, 
squared. Third, we summed the values calculated in the previous step for each county y in 
Y. Finally, we took the natural logarithm of this summed value to get the final value.

NBER

Urbanicity
Six category variable based on US Office of Management and Budget 2013 determination 
of metropolitan statistical areas, coded on a spectrum from most urban (1) to most rural 
(6).

NCHS

*
Detailed source information for each variable is provided in the Supplement Page 3.

ACS: Census American Community Survey; NFLIS: National Forensic Laboratory Information System; CBP: County Business Patterns; 
NCHS: National Center for Health Statistics; SAMHSA: Substance Use and Mental Health Services Administration; HSIP: Homeland Security 
Infrastructure Program; VERA: VERA Institute of Justice; NBER: National Bureau of Economic Research
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Table 2.

Mean observed, benchmark prediction, and model prediction of county-level overdose death rates per 100,000 

each year from 2013 to 2018.

Observed Mean Overdose Death 
Rate

Benchmark Prediction Mean Overdose 
Death Rate

Negative Binomial Prediction Mean 
Overdose Death Rate

2013 11.8 13.0 11.8

2014 12.6 14.1 11.5

2015 13.1 14.7 12.3

2016 14.6 15.8 13.3

2017 15.4 18.0 15.1

2018 14.6 18.3 16.4
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Table 3.

Mean average error, root mean squared error and Spearman’s ρ for the both the benchmark and negative 

binomial predictions for each year from 2013 to 2018.

Benchmark Negative Binomial – With Fixed Effects

MAE RMSE Spearman’s ρ MAE RMSE Spearman’s ρ

2013 10.70 18.38 0.35 6.58 10.04 0.57

2014 10.92 18.09 0.36 6.70 10.42 0.58

2015 11.18 19.32 0.40 6.74 10.34 0.62

2016 11.72 20.20 0.41 7.66 11.55 0.64

2017 12.34 20.67 0.45 7.52 11.22 0.67

2018 12.37 20.67 0.45 7.73 10.95 0.65
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Table 4.
Number of total and new counties in the top decile of overdose death rates correctly 
predicted by the benchmark and model each year.

In the top portion of the table (Top Decile), the number of counties in the top decile (n = 310) that were 

accurately predicted (i.e., true positives) as such are presented for each year and each approach. The number of 

false positives (i.e., counties incorrectly predicted to be in the top decile) can be calculated by subtracting the 

number of true positives from 310. In the bottom half, the number of counties that newly entered the top decile 

(i.e., were not in the top decile the year before) that were accurately predicted as such are presented for each 

year and each approach.

Benchmark Negative Binomial

Top Decile Top Decile

2013 102/310 (32.9%) 129/310 (41.6%)

2014 89/310 (28.7%) 145/310 (46.8%)

2015 104/310 (33.5%) 158/310 (51.0%)

2016 111/310 (35.8%) 154/310 (49.7%)

2017 132/310 (42.6%) 176/310 (56.8%)

2018 122/310 (39.4%) 171/310 (55.2%)

Newly in Top Decile Newly in Top Decile

2014 8/175 (4.6%) 46/175 (26.3%)

2015 6/170 (3.5%) 40/170 (23.5%)

2016 6/165 (3.6%) 37/165 (22.4%)

2017 4/149 (2.7%) 38/149 (25.5%)

2018 7/149 (4.7%) 33/149 (22.1%)
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Table 5.

Percentage of bootstrap simulations in which each fixed effect was selected, ordered from most frequently 

included to least

Variable % of Times Chosen

Log Overdose Gravity 81%

Opioid Prescriptions Per 100 66%

Payroll Difference 54%

Urgent Care Presence 53%

Median Household Income 48%

Employee Difference 43%

Urbanicity 40%

Percent of Renters Spend 35+% of Income on Rent 39%

Log NFLIS 35%

Percent of Homeowners Spend 35+% of Income on Mortgage 32%

Poverty Rate 25%

High School Graduation Rate 20%

Log Jail Population 17%

Buprenorphine Provider Waivers 11%

Unemployment Rate 10%
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