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Abstract

Computational approaches have recently gained popularity in the field of read-across to 

automatically fill data-gaps for untested chemicals. Previously, we developed the generalized 

read-across (GenRA) tool, which utilizes in vitro bioactivity data in conjunction with chemical 

descriptor information to derive local validity domains to predict hazards observed in in vivo 
toxicity studies. Here, we modified GenRA to quantitatively predict point of departure (POD) 

values obtained from US EPA’s Toxicity Reference Database (ToxRefDB) version 2.0. To evaluate 

GenRA predictions, we first aggregated oral Lowest Observed Adverse Effect Levels (LOAEL) 

for 1,014 chemicals by systemic, developmental, reproductive, and cholinesterase effects. The 

mean LOAEL values for each chemical were converted to log molar equivalents. Applying GenRA 

to all chemicals with a minimum Jaccard similarity threshold of 0.05 for Morgan fingerprints 

and a maximum of 10 nearest neighbors predicted systemic, developmental, reproductive, and 

cholinesterase inhibition min aggregated LOAEL values with R2 values of 0.23, 0.22, 0.14, and 

0.43, respectively. However, when evaluating GenRA locally to clusters of structurally-similar 

chemicals (containing 2 to 362 chemicals), average R2 values for systemic, developmental, 

reproductive, and cholinesterase LOAEL predictions improved to 0.73, 0.66, 0.60 and 0.79, 

respectively. Our findings highlight the complexity of the chemical-toxicity landscape and the 

importance of identifying local domains where GenRA can be used most effectively for predicting 

PODs.

Introduction

There is an increasing demand for hazard, exposure, and dose-response information to 

evaluate the safety of thousands of data-poor chemicals in commerce. International chemical 

management laws including the U.S. Toxic Substances Control Act (TSCA) (EPA, 2008), 

the European Union’s Registration, Evaluation, Authorisation and Restriction of Chemicals 
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(REACH)(EC, 2006), and the Canadian Chemicals Management Plan (CMP) (ECCC/HC, 

2016) are considering the use of new approach methodologies (NAMs) to fill data gaps. 

NAMs refer to a broadly descriptive reference to any technology, methodology, approach, 

or combination thereof that can be used to provide information on chemical hazard and risk 

assessment that avoids the use of intact animals (EPA, 2018). Data from NAMs such as 

high-throughput screening (HTS) (Houck et al., 2013), and more recently transcriptomics 

(Harrill et al., 2019), are being used to advance hazard and risk assessment in several ways 

(Kavlock et al., 2018; Thomas et al., 2019): to evaluate the utility of NAMs to estimate 

quantitative PODs for adverse effects and identify mode-of-action; to develop NAM based 

profiles for chemicals categories; and to develop new methods for estimating exposure. 

Here, we present our work on a generalized read-across approach, GenRA (Shah et al., 

2016; Helman et al., 2018; Helman et al., 2019) that uses available large-scale chemical, 

biological and toxicological data to predict hazard for data-poor substances.

Read-across is a widely used technique for filling data gaps for poorly studied substances 

within category and analogue approaches for regulatory purposes. Read-across is an 

approach for inferring an unknown property for a substance of interest from known 

information on the same property from a ‘similar’ substance or substances. Despite 

considerable regulatory technical guidance (for example, (OECD, 2017)), there are 

many challenges in establishing consistency between methods, e.g. how to characterize 

‘similarity’, determining the level of evidence required, and evaluating the confidence or 

uncertainty in read-across inferences (Patlewicz et al., 2017). To address some of these 

issues, we have developed an approach for performing systematic and automated read-across 

predictions, called GenRA (Generalized Read-Across) (Shah et al., 2016). In GenRA, an 

unknown property of a chemical (called the target) is calculated as a similarity weighted 

average of the same property from similar analogues (also referred to as source analogues), 

based on an approach originally developed by Low et al. (Low et al., 2013). A key 

feature of GenRA is the ability to estimate confidence in read-across predictions based 

on local validity domains, which can be defined by chemical structure, bioactivity data, and 

more recently, physicochemical properties (Helman et al., 2018). Previously, we have used 

GenRA to predict toxicity classifications in repeated dose studies (Shah et al., 2016) and 

here we extend the approach to generate similarity-weighted POD predictions from the same 

studies.

There are few sources of highly standardized information from animal toxicity testing 

studies and ToxRefDB (Watford et al., 2019) is one of them. ToxRefDB is a database 

containing summary results for repeated dose studies, including subacute, subchronic, 

developmental, multi-generation reproduction, and chronic study designs that often follow 

or resemble the US EPA Health Effects guidelines, with data for over 1,000 substances. 

ToxRefDB data include effect level information, including the dose associated with a 

specific target tissue and effect type, and study metadata from multiple study types and 

sources. The summary values in ToxRefDB include lowest observed adverse effect levels 

(LOAELs) and lowest effect levels (LELs), where LOAELs reflect toxicological expertise 

regarding adversity and LELs reflect only statistical significance; often, the LEL and 

LOAEL value coincide for a given chemical-effect pair. In chemical safety evaluation, in 
vivo toxicology studies for hazard identification can be used to define a POD, or dose 
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corresponding to the no or lowest observable adverse effect level (NOAEL or LOAEL), or in 

some cases, a modelled benchmark dose. The POD is then used as the basis for derivation 

of a reference dose that incorporates additional uncertainty factors. Thus, using GenRA 

to obtain a quantitative prediction of possible range of LOAEL values, and qualitative 

prediction of target organs or effects, may have direct value for chemical safety assessment. 

In this work, the LOAELs from ToxRefDB version 2.0, and predictions of LOAELs, are 

collectively referred to as PODs that could be used in screening level chemical safety 

assessments.

Although the target tissues and endpoints measured in studies that are from guideline­

adherent or guideline-like studies produce a dataset that often shares the same measures, the 

specific types of adverse effects (e.g. histopathological lesion, morphological alteration, 

clinical chemistry measure) for a given set of chemicals can be diverse. Therefore, 

careful attention to how adverse effect information are aggregated for GenRA is needed. 

Further, though ToxRefDB v2.0 is a rich resource of study and effect information, not 

all chemicals have summary information in ToxRefDB v2.0 for all chemical-study type­

species-administration combinations. For example, tabulating the critical effects and PODs 

for source analogues of a chemical of interest across diverse study types often results in 

sparsely populated matrix. While such a matrix may be routinely used for expert-driven 

read-across, it cannot be readily used for data driven read-across predictions. One approach 

for dealing with the sparsity of toxicity information for chemicals is to aggregate it 

meaningfully based on study design, anatomic localization, effect severity, etc. In our 

previous work (Shah et al., 2016), for instance, we aggregated diverse histopathological 

effects of each chemical by a guideline study type to assign a binary outcome at the 

level of target organs. As a result, each chemical was determined to be either positive or 

negative for one of 164 different types of study-target organ effects. Here, we use a higher­

order aggregation scheme to assign effects into four broad endpoint categories (systemic, 

reproductive, developmental, cholinesterase) from ToxRefDB v2.0 that may be informative 

for hazard identification. Additionally, instead of a binary hazard classification, we have a 

quantitative POD for each chemical and endpoint category derived from the LOAEL values 

across multiple studies.

Predicting the dose at which a chemical will cause toxicity is challenging because 

of the underlying complexity of toxicokinetic (or pharmacokinetic) and toxicodynamic 

(or pharmacodynamic) processes. The type of predictive approach depends on the 

risk assessment context (e.g. prioritization or screening vs. environmental clean-up) 

and availability of chemical-specific data. For data-rich chemicals, physiologically-based 

computational modeling approaches attempt to capture relevant processes at varying 

levels of resolution to quantitatively predict exposure levels associated with adverse 

effects (Bhattacharya et al., 2012; DeWoskin et al., 2014; Shah and Wambaugh, 2010; 

Wambaugh and Shah, 2010). For data-poor chemicals (i.e. when only chemical structure is 

available), machine learning techniques that analyze structural patterns in chemicals to mine 

associations with bioactivity (quantitatively and quantitatively), are one of the few options 

available to risk assessors. Quantitative structure activity relationships (QSAR) have been 

widely employed to predict POD values associated with acute toxicity (Zhu et al., 2009), 

developmental toxicity (Venkatapathy and Wang, 2013), reproductive toxicity (Basant et al., 
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2016) and chronic toxicity (Rupp et al., 2010). More recently, Wignall et al (Wignall et al., 

2018) used QSAR models to systematically predict POD and reference dose values, which 

they refer to as conditional toxicity values (CTVs). Since the publication of the OECD 

Validation Principles for (Q)SARs (OECD, 2004), most QSAR approaches consider the 

notion of an applicability domain (Sahigara et al., 2012) for predicting quantitative toxicity 

outcomes. GenRA is most closely related to local QSAR approaches that explicitly use 

nearest-neighbors to predict POD values (Helman et al., 2019a; Luechtefeld et al., 2018). 

To our knowledge, no existing approach has systematically evaluated the predictive accuracy 

of LOAEL values for reproductive, developmental and systemic effects, and cholinesterase 

inhibition for the entire set of chemicals in ToxRefDB v2.0.

In this manuscript, we describe how we used GenRA to make quantitative POD predictions 

for chemicals based on aggregated LOAEL values from ToxRefDB v2.0. First, we extended 

GenRA to make similarity weighted predictions of POD values (based on LOAELs). 

Second, we systematically analyzed local domains for all chemicals using structure 

descriptors and evaluated the accuracy for predicting PODs ‘globally’ by cross-validation 

testing. Third, and finally, we compared the accuracy of GenRA POD predictions for 

clusters of structurally related chemicals (containing 2 to 362 chemicals) (identified by us 

previously in (Shah et al., 2016)) with the ‘global’ GenRA predictions. The outcome of this 

research is a new version of GenRA v2.0 that can provide both qualitative and quantitative 

information for regulatory data gap filling, with clear acknowledgement of the uncertainties 

in the read-across performed.

Methods

Toxicity data

We obtained toxicity data on from ToxRefDB v2.0, which contains in vivo effects for 1,014 

chemicals and 5,900 standardized animal testing studies (Watford et al., 2019). In a major 

update of ToxRefDB, the v2.0 database further standardizes the nomenclature for chemical­

induced effects using a specific ToxRefDB vocabulary that captures testing requirements 

that is then mapped to the Unified Medical Language System (UMLS) (Bodenreider, 

2003), includes a thorough expert evaluation of toxicity data to determine LOAELs for 

most study records, clearly distinguishes between negative effects versus untested effects, 

and provides several approaches for aggregating diverse chemical effects to estimate POD 

values. ToxRefDB v2.0 defines “effect profiles” to aggregate toxicologically-relevant in vivo 
findings and their associated PODs. For example, there are four broad endpoint categories in 

ToxRefDB including: cholinesterase inhibition, developmental effects, reproductive effects, 

and systemic effects. These four categories can be categorized into 13 endpoint types 

(displayed in Figure 1) and associated with 253 target organs. For this analysis, we only 

considered LOAEL values that were based on oral administration, which were available 

for 1,049 chemicals. Since LOAEL values were aggregated across multiple studies, there 

were 27,546 values for 1,049 chemicals across the four endpoint categories. Table 1 shows 

a breakdown of the number of POD values per endpoint category. We converted the POD 

values to their log molar equivalents to normalize the data and to decrease the impact of 

potential outliers on predictions (Figure 2).
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For chemicals with multiple LOAEL values for each chemical and endpoint category, 

the minimum and mean LOAEL values were recorded. Most chemicals that produced 

cholinesterase inhibition, developmental, and reproductive effects only had 1 POD value. 

On the other hand, chemicals had approximately 9 systemic LOAEL values on average 

and the mean or the minimum value were used for the subsequent analysis. Out of the 

1,049 chemicals considered in this analysis, the numbers of chemicals with LOAEL values 

associated with systemic, developmental, reproductive effects, and cholinesterase inhibition, 

were 1041, 488, 452, and 85, respectively. The aggregated POD data used in the analysis are 

provided as supplemental material (S1).

Chemical structure data

The chemical structures were represented as Morgan fingerprints (Rogers and Hahn, 2010) 

as described previously (Shah et al., 2016). Briefly, fingerprints were represented as binary 

(bit) vectors where the elements represent the presence or absence of a certain chemical 

structural feature. First, the substances in ToxRefDB v2.0, were mapped to unique chemical 

structures in the EPA CompTox Chemicals dashboard (Williams et al., 2017). This was 

possible for 1014 out of the 1049 chemicals in ToxRefDB v2.0. Second, the standardized 

chemical structure data, which are available in “QSAR-ready” form in simple molecular­

input line-entry system (SMILES) format, were obtained from EPA CompTox Chemicals 

dashboard. Third, the SMILES strings were converted to Morgan fingerprints using the 

freely available python RDKit cheminformatics library (Landrum, 2015). The Morgan 

chemical fingerprints for all chemicals are provided as supplemental material (S2).

Predicting POD values using GenRA

GenRA uses similarity weighted activity to predict hazard classifications for a chemical 

of interested using information about the nearest neighbors (Shah et al., 2016). Here, we 

extended the GenRA algorithm to estimate POD values for a chemical of interest based on 

the POD values for the nearest neighbors using the following formula (Equation 1):

pitox =
∑j

ksijcℎm qjtox

∑j
ksijcℎm [1]

Where, pitox is the predicted POD for the endpoint category (tox) of the chemical (ci) of 

interest qjtox, is the in vivo POD of the nearest neighbor cj , sijcℎm is the Jaccard index for the 

chemical structure fingerprints of ci and cj, and k is the number of nearest neighbors. Per 

read-across terminology (Shah et al., 2016; Patlewicz et al., 2018), ci and cj are referred to as 

the target and source analogue, respectively. We used Equation 1 to predict the POD values 

for each chemical in ToxRefDB v2.0 by varying the number of source analogues (k)and the 

similarity threshold (s). We refer to kand s as the tuning parameters (or hyperparameters) for 

GenRA as they determine the local validity domain for an automated read-across prediction 

of POD and its accuracy. The default parameter settings of s=0.05 and k=10 (up to k source 

analogues) were used in this analysis, unless stated otherwise. These default values for 

GenRA were aimed at maximizing the ability to predict POD for as many chemicals as 
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possible. We conducted a grid search on values of k and s to find the optimal parameter 

settings for each endpoint category and examined two choices for selecting k source 

analogues including: picking exactly k source analogues, and up to k source analogues. 

When choosing up to k analogues, predictions were not made unless there were at least k 

source analogues.

Illustrate prototypical predictionWe show an illustrative example of how to generate a 

GenRA systemic LOAEL prediction for target chemical Di(2-ethylhexyl) phthalate (DEHP). 

Source analogues characterised by their Morgan chemical fingerprints were used to search 

for up to 10 source analogues (k=10) with systemic LOAEL values. Figure 3 shows 

the results of searching the neighborhood of DEHP as a radial plot (which can be 

generated using the GenRA web tool (Helman et al., 2019b), which shows the 10 most 

similar chemicals to DEHP with systemic LOAEL data and their associated Jaccard 

similarity scores (the results are also shown in Table 2). The number of analogues 

returned by the similarity search depends on the choice of chemical, the fingerprint 

type used to represent the chemical and the metric used to measure similarity between 

chemicals. The prediction of the LOAEL for systemic toxicity for DEHP is computed 

as the similarity-weighted average of the source analogue LOAEL values. Therefore, ptox 

=(0.61*2.81+0.51*2.67+0.49*2.31…)/(0.61+0.51+0.49…) = 2.95, which is very similar to 

the ‘true’ or observed log molar systemic LOAEL for DEHP of qtox = 3.00.

Performance evaluation

The prediction accuracy for a POD of each endpoint category across all chemicals was 

evaluated in local neighborhoods. For each endpoint category, linear regression was used 

to fit the predicted POD (ptox) and true POD (qtox) for all chemicals for k nearest 

neighbors (where the value of kranged from 1 to the maximum number of chemicals in 

the neighborhood), and with a similarity threshold, s (where the value of s ranged from 

the minimum to maximum values of s across all unique pairwise comparisons in the 

neighborhood). The coefficient of determination (R2) for the regression model was used as 

a measure of ‘global’ GenRA performance. Finally, Monte Carlo cross validation (MCCV) 

(Xu et al., 2004) was used to estimate confidence in R2 estimates. Briefly, 10% of the data 

for each endpoint category was randomly sampled (without replacement) as the holdout 

set to select targets. The remaining 90% of the dataset was used to search for source 

analogues for the chemicals in the holdout set. Performance of the holdout set predictions 

was calculated using R2. This process was repeated 100 times to estimate the variability in 

R2 for each endpoint category.

Performance evaluation in Local neighborhoods

In our previous work (Shah et al., 2016), we identified chemical structure-based clusters 

using an unsupervised K-means algorithm. As the set of chemicals analyzed in this work 

was the same, we used the same structure-based clusters that were identified previously. 

Briefly, we used K-means clustering to partition the chemicals based on structural similarity 

(defined by Morgan fingerprints and Jaccard index) and then used cluster stability analysis 

to identify the value of K for which the most reproducible clusters were identified. We found 

K=100 produced a statistically reliable and chemically meaningful set of clusters. Examples 

Helman et al. Page 6

Regul Toxicol Pharmacol. Author manuscript; available in PMC 2021 November 03.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



of these clusters included: pyrrolidones (cluster 3), cyclodienes (cluster 4), nitrobenzene­

containing chemicals (cluster 5), and benzoylurea chemicals (cluster 16). The coefficient of 

determination (R2) for the regression model within structure-based clusters was used as a 

measure of ‘local’ GenRA performance. The membership of all chemicals in the clusters is 

provided as supplemental material (Table S3). Results and Discussion

Summary of toxicity data

We identified 1,049 chemicals from ToxRefDB v2.0, each with an average of 27±22 

(mean ± standard deviation) LOAEL values. The distributions of the number of studies 

per chemical, and the different types of guideline testing studies are shown in Figure 4. The 

contribution of the different types of guideline testing studies to the endpoint categories are 

given in Table 3. In all, there were 1041, 452, 488 and 85 unique chemicals with toxicity 

values for systemic toxicity, developmental toxicity, reproductive toxicity, and cholinesterase 

inhibition, respectively. While most chemicals (98.9%) had systemic toxicity values, only 

7.9% of the chemicals had cholinesterase inhibition data.

GenRA ‘global’ predictions of POD

Out of 1,049 substances from ToxRefDB, 1014 could be mapped to chemical structures in 

the EPA CompTox Chemicals dashboard. We systematically analyzed the neighborhoods 

for each of the 1,014 chemicals to predict the POD for the four endpoint categories using 

GenRA. A key challenge for applying GenRA is identifying the optimal number of nearest 

neighbors (k) and the minimum similarity threshold (s) to accurately predict the POD. For 

low values of s, there are generally many potential source analogues but as the value of s 

increases, the number of analogues decreases. For high values of s, it may not be possible 

to make GenRA predictions as there may be insufficient (or no) source analogues that 

exceed the similarity threshold. The relationship between the number of chemicals for which 

POD values can be predicted using GenRA and the similarity threshold, which we call 

“coverage,” is shown in Figure 5. The coverage of the data set is 92.3% for low values of s 

(s=0.10) as most chemicals in the dataset have at least one source analogue. The coverage 

decreases rapidly as s increases to 12.6% at s=0.60. To establish a performance baseline for 

GenRA across this data set, we selected a low value of s=0.05 and k=10. These parameters 

ensure highly sensitive predictions, which may be relevant for data-poor chemicals with few 

structural analogues.

The GenRA prediction results for the LOAELs per chemical using s=0.05 and k=10 for the 

entire data set across the four endpoint categories are shown in Figures 6 and 7. As there 

could be multiple LOAEL values for each chemical for systemic toxicity (as we combined 

observations across multiple studies), we aggregated these as the minimum toxicity values. 

We found the R2 values for systemic toxicity, developmental toxicity, reproductive toxicity, 

and cholinesterase inhibition to be 0.23, 0.22, 0.14, and 0.43 respectively (Figure 6). 

Using the mean instead of the minimum of multiple toxicity values for each chemical had 

no impact on the results (see Figure 7) (R2 values for systemic effects, developmental 

effects, reproductive effects, and, cholinesterase inhibition to be 0.26, 0.22, 0.14, and 

0.43, respectively). To evaluate confidence in GenRA POD predictions, we conducted 

cross-validation testing as described in Methods and the results are shown in Figure 
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8. As a result of the cross-validation testing analysis, the mean and standard deviation 

for R2 values for systemic toxicity, developmental toxicity, reproductive toxicity, and 

cholinesterase inhibition were 0.25±0.06, 0.21±0.07, 0.14±.09, and 0.42±0.17, respectively. 

The means of R2 values for subsamples of the data were found to be close to the 

entire dataset. However, there was considerable variability in R2 values for developmental, 

reproductive and cholinesterase endpoints. We suspect the variability can be attributed 

in part to insufficient data for developmental, reproductive, and cholinesterase endpoints, 

which makes it difficult to find appropriate source analogues to make accurate predictions. 

This is supported by the relationship between the average Jaccard similarity between the 

first 2 neighbors for each target chemical by endpoint category (Figure 9), where the 

median Jaccard similarity appears slightly higher for systemic toxicity-related information 

versus cholinesterase, developmental, and reproductive information. Figure 9 also shows 

that the endpoint categories with fewer chemicals generally have a smaller number of 

similar neighbors on average. Overall, GenRA POD predictions for systemic LOAELs had 

the greatest cross-validation performance and least variability, possibly due to a greater 

frequency of observed PODs available for systemic effects, such as changes in body or target 

organ weight, within ToxRefDB v2.0.

Tuning GenRA parameters to improve ‘global’ performance

Although the cross validation R2 values were relatively low (ranging from 0.14–0.43), it is 

important to note that these performance scores summarize the accuracy for nearly the entire 

dataset, including those target chemicals without very similar (s<0.1) source analogues. For 

comparison, (Helman et al., 2019a) reported cross validation R2 values of 0.43–0.6 when 

applying a similar read-across approach to a dataset of 988 chronic LOAEL values for 671 

unique chemicals. Wignall et al. (2018) reported Q2 between 0.2 and 0.45 for random forest 

regression QSAR models modelling toxicity values. Using parameter values s=0.05 and 

k=10, GenRA achieved 92.3% database coverage producing highly sensitive predictions of 

POD. Next, we attempted to improve the performance of GenRA by tuning the parameters, k 

and s using grid search. Grid search systematically explores a predefined range of values for 

k and s to find the best performing (optimal) combination. While tuning the parameters, we 

also considered two possible interpretations of the parameter k including: searching for up 

to k source analogues and searching for exactly k source analogues. In all, we systematically 

evaluated 800 different combinations of k and s including: the two interpretations of k, 20 

values of k (1≤k≤20 in increments of 1), and 20 values of s (0.05≤s≤1 in increments of 

0.05).

The results of the grid search for up to k source analogues can be found in Figure 10. We 

can see in the figures that the main factor determining the performance is the similarity 

threshold, and the predictions do not vary dramatically with respect to k. This is because we 

are searching for up to k source analogues, so increasing k only adds new source analogues 

to our predictions, and those new source analogues will have less Jaccard similarity, and 

therefore have less of an impact on the prediction.

We also observed high variability in performance scores for s>0.6, which we suspect to 

be due to an insufficient number of chemicals. This is because the number of source 
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analogues and target chemicals available for prediction decreases as the similarity threshold 

is increased (see Figure 5). Thus, when there are very few chemicals available for prediction 

in the grid search then there can be considerable variability in predictive performance 

between adjacent values of k and s.

Globally across endpoint categories, we see a gradual increase in performance with 

increasing values of s until s=0.65 and then a decrease in performance (supplemental 

material Figure S4). This decrease in performance mainly occurs because there are similar 

decreases in performance for both the systemic and developmental effects. Performance 

for the reproductive effects has inflection points in the relationship between k and s, with 

decreased performances at both s=0.25 and again at s=0.4. For chemicals that produced 

reproductive effects (Figure S4), we found GenRA performed better when there were at least 

two or more source analogues. It is worth noting that reproductive predictions have poor 

performance across the grid search to begin with, being the worst performing of all four 

categories. For systemic, reproductive, and developmental categories, performance trends 

upward sharply for high values of s. Lastly, sufficient data do not currently exist for the 

cholinesterase inhibition category to produce confidence in the performance trend for high 

values of s (as this may be a result of instability caused by lack of data).

The results of the grid search for exactly k source analogues can be found in Figure 11. Note 

that because we are searching for exactly k source analogues, the amount of data at each 

point (i.e. each value of k and s) in the grid search is lesser than when searching for up to 

k analogues. For the sake of clarity, we only show points in the grid search where we were 

able to predict for more than 10 chemicals.

We see more interesting variations between endpoint categories when conducting a grid 

search for k and s using exactly k analogues. The performance of GenRA for cholinesterase 

inhibition (Figure 10) is best when it has a single source analogue (k=1) and at least 0.45 

similarity (s≥0.45). GenRA performance for developmental and reproductive effects is best 

with 2 source analogues (k=2), with at least 0.4 and 0.5 Jaccard similarity respectively. 

On the other hand, GenRA predictions for systemic toxicity were optimal when there 

were 10 source analogues (k=10) with at least 0.35 similarity (s≥0.35). Since systemic 

toxicity represents most of our data, we believe that a choice of k=10 may be considered a 

reasonable default value for GenRA.

GenRA ‘local’ predictions of POD

One of the unique features of GenRA is that it uses local validity domains to identify 

the optimal number of source analogues and similarity threshold to predict LOAEL values 

for different in vivo effects. However, aggregating these predictions globally, i.e. across 

all chemicals, results in performance scores that are relatively low. We were interested 

in identifying local chemical structural neighborhoods in which POD values could be 

quantitatively and accurately predicted by GenRA. We attempted to identify such structural 

neighborhoods by partitioning a large set of chemicals by similarity into 100 clusters 

(Shah et al., 2016). Next, we used chemicals in these 100 clusters to investigate the 

‘local’ performance of GenRA for predicting LOAEL values. Since a cluster represents 
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a structurally-related group of chemicals, we considered this a ‘local’ vs a ‘global’ analysis 

of predictive performance for GenRA.

The local predictions of GenRA used only chemicals in a cluster as the targets to predict the 

LOAEL values for each endpoint category using all chemicals as potential source analogues. 

Unlike the global analysis, the performance of the local analysis was calculated based on a 

linear regression between the predicted and measured LOAEL values for only the chemicals 

in each cluster (and reported as R2 scores). GenRA local predictions of endpoint categories 

were only made for clusters in which chemicals had at least two source analogues with 

LOAEL values.

We used a grid search to find the optimal values of k and s for each cluster and endpoint 

category. The values of k, s resulting in the maximum R2 values for GenRA predictions 

for each endpoint category and cluster are provided as supplemental material Table S5. 

Overall, we found 36/100 clusters in which the local GenRA predictions performed better 

than the global prediction by endpoint categories. These 36 clusters include 22% (222/1014) 

of all chemicals and their performance scores are shown in Table 4. The average R2 values 

for systemic, developmental, reproductive effects and cholinesterase inhibition for these 36 

clusters were 0.73, 0.66, 0.60 and 0.79, respectively.

We discuss some illustrative examples of local GenRA predictions. For example, local 

GenRA prediction accuracy exceeded global accuracy for systemic, developmental, 

reproductive effects and cholinesterase inhibition for clusters 5, 7, 25 respectively 

(performance improved for multiple endpoints for some clusters). Cluster 5 includes thirty 

chemicals, a majority of which contain either a nitrobenzene or a nitrofuran moiety. Toxicity 

data were available for some of the chemicals in this cluster including: 3-nitrotoluene, 4­

nitroaniline, 4-nitrobenzoic acid, 4-nitrophenol, 4-nitrotoluene, nitrofurantoin, nitrofurazone, 

norflurazon, methyl parathion and parathion. The range of LOAEL values for chemicals 

in this cluster were 0.0079–0.03 mg/kg/day for cholinesterase inhibition, 2–160 mg/kg/day 

for developmental toxicity, 20–2400 mg/kg/day for reproductive toxicity and 0.21–400 

mg/kg/day for systemic toxicity. GenRA predicted reproductive and systemic toxicity 

LOAEL values with R2=0.28 (k=7, s=0.05) and R2=0.88 (k=3, s=0.45), respectively. 

The results of grid search for optimal values of k and s for this cluster show that 

reproductive toxicity could either be predicted using 7 source analogues with low similarity 

(0.05≤s≤0.15) or just using a single source analogue with higher similarity (0.25≤s≤0.35). 

The predictive accuracies for reproductive toxicity (R2=−2) and cholinesterase inhibition 

(R2=0.07) were lower than the global performance (Table S5). Although methyl parathion 

and parathion are potent cholinesterase inhibitors (Diggle and Gage, 1951), the absence of 

other source analogues with this toxic activity made it difficult for GenRA to accurately 

predict LOAEL values.

Cluster 7 contains a diverse group of 35 polyols and ethers out of which 13 chemicals 

had toxicity data including: 2-(2-butoxyethoxy)ethanol, 2-(2-ethoxyethoxy)ethanol, 

2-butoxyethanol, 2-ethoxyethanol, 5-ethyl-1-aza-3,7-dioxabicyclo[3.3.0]octane, bis(2­

methoxyethyl) ether, diethylene glycol, diethylene glycol monomethyl ether, dinotefuran, 

piperonyl butoxide, tepraloxydim, triethylene glycol and triethylene glycol dimethyl ether. 
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The range of LOAEL values for chemicals in this cluster were 120–11260 mg/kg/day 

for developmental toxicity, 175–5175 mg/kg/day for reproductive toxicity and 3–2795 

mg/kg/day for systemic toxicity. GenRA predicted developmental, reproductive and 

systemic toxicity LOAEL values with R2=0.95 (k=1, s=0.65), R2= 0.76 (k=7, s=0.20) 

and R2=0.73 (k=1, s=0.70), respectively. Grid search analysis results showed substantial 

variation in the predictive performance for different numbers of source analogues and 

similarity threshold across the endpoint categories. For reproductive toxicity, GenRA 

performance was poor (R2<0) for less than seven source analogues (k<7) and for s<0.15, 

but the performance was reasonable (R2>0) for a narrow range of k (6<k<12) and s 

(0.1<s<0.25). The converse was true for GenRA performance for developmental toxicity 

LOAEL values: most values of k and s produced reasonable predictions (R2>0), some range 

of k and s values produced poor predictions (R2<0) and a single source analogue with 

s=0.65 produced the best prediction. Polyols are known for their reproductive (Prooije et al., 

1996) and developmental (Canimoglu and Rencuzogullari, 2013) effects.

Cluster 25 represents another group of 60 chemical including mostly linear alkanes and 

9/60 had toxicity data. The median LOAEL values for chemicals in this cluster were 

250 mg/kg/day for cholinesterase inhibition, 20 mg/kg/day for developmental toxicity, 

16 mg/kg/day for reproductive toxicity and 58 mg/kg/day for systemic toxicity. GenRA 

predicted cholinesterase inhibition, reproductive and systemic toxicity LOAEL values with 

R2= 0.86 (k=1, s=0.05), R2= 0.97 (k=12, s=0.15) and R2= 0.86 (k=2, s=0.05), respectively. 

As with our previous analysis of grid search for optimal values of k and s, there was 

considerable variation in the predictive performance of GenRA between toxicity endpoints. 

Cholinesterase inhibition was predicted most accurately for the best source analogue, 

reproductive toxicity was predicted poorly (R2<0) for all but k=12 and s=0.15, and systemic 

toxicity could be predicted reasonably (R2>0) for most values of k and s with some 

exceptions. While GenRA local predictions of LOAEL values for the endpoint categories 

for 36% of the clusters exceeded the global accuracy, the performance was either lower than 

the global accuracy or could not be calculated for the remaining 64% of clusters (due to the 

lack of data).

Conclusions

We developed GenRA to investigate the feasibility of data driven approaches to augment 

the current practice of read-across, which is expert-driven in nature and does not readily 

scale to thousands of chemicals. GenRA used a dataset of 1,014 chemicals, 2,048 chemical 

descriptors, and Jaccard similarity scores to define local validity domains, and then applied 

similarity weighted activity to estimate LOAEL values using source analogues. Our analysis 

estimated the ‘global’ performance of GenRA (using mean aggregated LOAEL values) for 

predicting systemic effects, developmental effects, reproductive effects, and cholinesterase 

inhibition with R2 values of 0.26, 0.22, 0.14, and 0.43 respectively. This performance is 

comparable with recent published works such as studies by Helman et al. (Helman et al., 

2019a) and Wignall et al. (Wignall et al., 2018). In contrast, the local performance of 

GenRA, based on structurally-related clusters of chemicals, improved the average R2 for 

systemic effects, developmental effects, reproductive effects, and cholinesterase inhibition to 

0.73, 0.66, 0.60 and 0.79, respectively. Our development of GenRA version 2.0 supports 
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the notion that local validity domains can be identified computationally in large-scale 

databases and simple predictive approaches (i.e. similarity weighted activity) can be useful 

for accurately predicting POD values.

The global prediction results show that overall, it is difficult to accurately predict LOAEL 

values for different toxicological effects using similarity weighted activity (the algorithm 

used in GenRA). Even optimizing the performance of GenRA by systematically searching 

for different numbers of source analogues and similarity thresholds did not improve 

predictive performance substantially. However, evaluation of performance within chemical 

clusters demonstrated that LOAEL values can be predicted more accurately than the global 

prediction identified. Though computationally identified clusters do not correspond to 

formal chemical categories, they may serve as a useful starting point for local structural 

domains with which to predict PODs for untested chemicals.

The performance of ‘local’ GenRA LOAEL predictions for in vivo effects, and the choice 

of optimal parameters k and s was highly dependent upon the chemical clusters. In other 

words, the performance results depend on the selection of chemicals in clusters, and 

the nature of in vivo data that are available for them. The choice of specific chemicals 

defines the context for read-across and determines the subsequent read-across inferences 

that can be made. This context-dependence is consistent with our evaluation of hazard 

predictions using GenRA (Shah et al, 2016), and it also agrees with current approaches 

for analogue identification and evaluation (Patlewicz, 2018). Like all nearest-neighbor 

approaches, GenRA predictions depend on the source analogues and the extent of data 

available for them: if source analogues change so do the predictions. Nevertheless, we 

believe that it is important to use automated techniques to group chemicals in the large-scale 

chemical landscape to identify regions where GenRA can (or cannot) confidently predict 

LOAEL values for specific toxicologically-relevant effects. Here, we have investigated 

only chemical structure descriptors for defining such regions, but it may be important to 

also consider physico-chemical properties (Helman et al, 2018), metabolism and in vitro 
bioactivity (as discussed in Patlewicz et al, 2018).

Prediction accuracy depends on the amount of available data. The global performance 

for different endpoint categories (R2) is roughly proportional to the number of chemicals 

with LOAEL values for each category. The distribution of chemicals across these effect 

types is partly due to nature of the underlying assays but depends more on the approach 

used for aggregating the data. For example, our analysis used a specific aggregation of 

the LOAEL data for each chemical across diverse study types into four toxicologically­

relevant categories: neurotoxic effects (i.e. cholinesterase inhibition), reproductive effects, 

developmental effects and systemic effects. Using a different aggregation scheme, e.g. 

one that captures the effects by target organ, or differentiates between study types, would 

produce different LOAEL values and will result in different predictive accuracies. We plan 

to systematically compare the impact of alternative aggregation schemes on performance.

We generalized the ideas of similarity weighted activity proposed by Low et al (Low et al, 

2013) as a simple starting point for a predictive algorithm because it is readily interpretable 

by domain experts. The first version of GenRA used multiple chemical structure and in vitro 
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bioactivity descriptors to predict hazard classifications (true or false) using repeat-dose in 
vivo testing data from ToxRefDB v1.0 (Shah et al, 2016, Martin et al, 2010). To facilitate 

the interactive use of GenRA by domain experts, we have also implemented a web-based 

version of the tool (Helman et al., 2019b) in the EPA CompTox Chemicals dashboard 

(Williams et al., 2017). Here we have described the next major version of GenRA v2.0 

in which we predict POD values quantitatively based on the most recent and augmented 

ToxRefDB v2.0 (Watford et al., 2019). In future work we will implement this functionality 

into the GenRA web-based tool to enable interactive prediction of hazard and POD for 

untested chemicals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• GenRA uses similarity-weighted activity to automate read-across predictions

• GenRA now quantitatively predicts lowest observed adverse effect levels 

(LOAELs)

• LOAEL predictions evaluated by cross-validation and reported as R2 scores

• Chemical clusters identified where GenRA quantitative predictions are 

accurate

• Quantitative GenRA can automatically predict point of departure (POD) 

values
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Figure 1. 
Hierarchical relationship between the endpoint categories and endpoint types used to 

aggregate the lowest observed adverse effect levels (LOAELs) in ToxRefDB v2. The top­

level value is LOAEL, followed by the 4 endpoint categories and finally the 14 endpoint 

types.
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Figure 2. 
Distributions of lowest observed adverse effect levels (LOAELs) in ToxRefDB v2.0. The 

histogram on the left shows the LOAELs in mg/kg/day while the histogram on the right 

shows the same values after they have been transformed by log10 molar units.
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Figure 3. 
The analogues of Di(2-ethylhexyl) phthalate. The visualization shows the 10 analogues, 

or nearest neighbors, of Di(2-ethylhexyl) phthalate based on Morgan fingerprints and 

Jaccard similarity from ToxRefDB v2.0. The analogues are shown in a clockwise manner in 

descending order of Jaccard similarity, which is shown in red (as decimal numbers followed 

by a ‘c’).
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Figure 4. 
Distributions for the number of studies per chemical (left) and the number of guideline study 

types per chemical (right) in ToxRefDB v2.0.
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Figure 5. 
Relationship between dataset coverage and the similarity threshold. The graph shows the 

number of chemicals in the dataset (y-axis), defined as the coverage for which there are 

analogues at a given level of Jaccard similarity threshold (x-axis). The dataset coverage 

decreases with an increasing similarity threshold.
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Figure 6. 
GenRA predictions of the minimum aggregated lowest observed adverse effect levels 

(LOAELs) for (a) cholinesterase inhibition, (b) developmental effects, (c) reproductive 

effects and (d) systemic effects. The predictions are based on k=10 (analogues) and s=0.05 

(Jaccard similarity threshold). Each scatterplot shows GenRA predictions (y-axis) and the 

true minimum aggregated LOAEL values in units of log10 molar of the daily mg/kg/day 

dose. The coefficient of determination (R2) values for GenRA predictions are shown in each 

plot.

Helman et al. Page 22

Regul Toxicol Pharmacol. Author manuscript; available in PMC 2021 November 03.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 7. 
GenRA predictions of the mean aggregated lowest observed adverse effect levels (LOAELs) 

for (a) cholinesterase inhibition, (b) developmental effects, (c) reproductive effects and 

(d) systemic effects. The predictions are based on k=10 (analogues) and s=0.05 (Jaccard 

similarity threshold). Each scatterplot shows GenRA predictions (y-axis) and the true 

mean aggregated LOAEL values in units of log10 molar of the daily mg/kg/day dose. The 

coefficient of determination (R2) values for GenRA predictions are shown in each plot.
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Figure 8. 
GenRA cross-validation performance scores by endpoint category for mean aggregated 

LOAEL values. Each graph shows the distribution of the coefficient of determination (R2) 

scores (x-axis) for GenRA predictions based on k=10 and s=0.05, which were calculated 

using 100 cross-validation testing trials using a 90% training and 10% testing split of the 

data. The distributions are as visualized as histograms and smoothed density plots, and the 

performance of the full data set is shown for comparison (orange vertical line). The mean 

and standard deviation of performance scores are also shown on each graph.
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Figure 9. 
Similarity between target and source analogues by endpoint category. The distributions of 

the average Jaccard similarity (y-axis) between the target and first two source analogues are 

visualized as boxplots by endpoint category (x-axis).
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Figure 10. 
GenRA performance for mean aggregated LOAEL for up to k neighbours. The performance 

of GenRA calculated as the coefficient of determination (R2) for up to k analogues and 

Jaccard similarity score thresholds (s) is visualized as heatmaps for the entire dataset 

(global), cholinesterase inhibition, developmental effects, reproductive effects, and systemic 

effects. On each heatmap, increasing values of k (0<k<30) are shown in the rows (from 

bottom to top), and increasing values of s (0<s<1) are shown in the columns (from left to 

right). The color of each cell corresponds to the R2 value for a specific hyperparameter (k,s) 

combination where the red/blue indicate high/low R2 values.
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Figure 11. 
GenRA performance for mean aggregated LOAEL values for exactly k neighbours. The 

performance of GenRA calculated as the coefficient of determination (R2) for exactly k 

analogues and Jaccard similarity score thresholds (s) is visualized as heatmaps for the entire 

dataset (global), cholinesterase inhibition, developmental effects, reproductive effects, and 

systemic effects. On each heatmap, increasing values of k (0<k<30) are shown in the rows 

(from bottom to top), and increasing values of s (0<s<1) are shown in the columns (from left 

to right). The color of each cell corresponds to the R2 value for a specific hyperparameter 

(k,s) combination where the red/blue indicate high/low R2 values.
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Table 1.

The number of chemicals and lowest observed adverse effect level (LOAEL) values based on endpoint 

categories in ToxRefDB v2.0.

# of chemicals with at least these many LOAEL 
values

Endpoint category # of LOAELS # of chemicals 2 3 mean(# LOAEL 
values)

Cholinesterase inhibition 162 85 18 8 1.9

Developmental effects 1754 488 195 151 3.6

Reproductive effects 1129 452 140 79 2.5

Systemic effects 24501 1041 963 937 24
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Table 2.

Data used for calculating the systemic lowest observed adverse effect levels (LOAEL) for Di(2-ethylhexyl) 

phthalate using GenRA. The table shows the target chemical, Di(2-ethylhexyl) phthalate in the first row and 

the ten nearest neighbors in ToxRefDB 2 in descending order of similarity. The columns show the chemical 

name (Name), the DSSTox substance identifier (DSSTox SID), the Chemical Abstracts registry number (CAS 

RN), the molecular weight of the chemical (Mol Weight), the Jaccard similarity and the systemic LOAEL.

Name DSSTox SID CAS RN Mol Weight Jaccard similarity Systemic LOAEL

Di(2-ethylhexyl) phthalate DTXSID5020607 117-81-7 390.564 1 (target) 3.002148

Bis(2-ethylhexyl) terephthalate DTXSID7027625 6422-86-2 390.564 0.612245 2.812554

Diisobutyl phthalate DTXSID9022522 84-69-5 278.348 0.510638 2.666437

Dibutyl phthalate DTXSID2021781 84-74-2 278.348 0.489796 2.306154

Dipentyl phthalate DTXSID5031131 131-18-0 306.402 0.470588 4.805956

Di(2-ethylhexyl) adipate DTXSID0020606 103-23-1 370.574 0.461538 2.150474

Diethyl phthalate DTXSID7021780 84-66-2 222.24 0.456522 2.533993

Dihexyl phthalate DTXSID6025068 84-75-3 334.456 0.45283 2.621514

Dioctyl phthalate DTXSID1021956 117-84-0 390.564 0.436364 2.714783

Picloram-isoctyl DTXSID3039406 2695220-5 353.67 0.430769 3.111143

2,4-D 2-EHE DTXSID4034235 1928-43-4 333.25 0.385714 4.045649
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Table 3.

The distribution of chemicals and lowest observed adverse effect level (LOAEL) values across guideline 

testing study types. The rows show the endpoint categories and the columns different type of guideline studies 

including: acute (ACU), chronic (CHR), developmental (DEV), multigenerational (MGR), neurotoxicity 

(NEU), other (OTH), reproductive (REP), sub-acute (SAC) and sub-chronic (SUB). Further details about 

these studies are available in ToxRefDB v2.0.

Endpoint Category ACU CHR DEV DNT MGR NEU OTH REP SAC SUB

Cholinesterase 
inhibition 65 (123) 10 (10) 17 (20) 16 (17) 2 (2) 49 (69)

Developmental 
effects 391 (531) 41 (54) 149 (165) 2 (2) 12 (12) 2 (2)

Reproductive effects 5 (5) 297 (405) 37 (42) 146 (163) 1 (1) 2 (2) 41 (53) 13 (16) 26 (32)

Systemic effects 3 (3) 607 (1394) 500 (831) 92 (120) 304 (339) 10 (10) 10 (13) 65 (97) 150 
(418) 569 (1099)
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Table 4.

GenRA predictive performance for clusters. The table shows the clusters (rows) for which the GenRA 

performance improved for systemic, developmental, reproductive effects and cholinesterase inhibition 

(columns). The performance is reported using coefficient of determination (R2) followed by number of 

analogues (k), similarity threshold (s) and number of chemicals in the cluster for the endpoint category (n). 

The final row shows the mean ± standard deviation of R2 values for each endpoint category.

Cluster Systemic effect Developmental effect Reproductive effect Cholinesterase inhibition

0 0.75 (k=19,s=0.10,n=3)

1 0.64 (k=2,s=0.30,n=4) 0.31 (k=2,s=0.05,n=10)

3 0.84 (k=1,s=0.05,n=2)

4 1.00 (k=1,s=0.30,n=2)

5 0.88 (k=3,s=0.45,n=2) 0.28 (k=7,s=0.05,n=7)

6 0.84 (k=5,s=0.05,n=3) 0.69 (k=3,s=0.15,n=3)

7 0.73 (k=1,s=0.70,n=6) 0.95 (k=1,s=0.65,n=4) 0.76 (k=7,s=0.20,n=2)

10 0.92 (k=3,s=0.35,n=2) 0.77 (k=3,s=0.25,n=2) 0.94 (k=2,s=0.05,n=3)

16 0.41 (k=3,s=0.20,n=3)

18 0.56 (k=2,s=0.05,n=3)

19 0.76 (k=1,s=0.35,n=3) 0.50 (k=5,s=0.05,n=2)

20 0.43 (k=13,s=0.05,n=4)

21 0.44 (k=1,s=0.40,n=5)

24 0.38 (k=3,s=0.05,n=5)

25 0.86 (k=2,s=0.05,n=9) 0.97 (k=12,s=0.15,n=2) 0.86 (k=1,s=0.05,n=2)

28 0.62 (k=3,s=0.30,n=2)

31 0.48 (k=3,s=0.40,n=2) 0.24 (k=13,s=0.20,n=3) 0.77 (k=5,s=0.20,n=6) 0.52 (k=9,s=0.05,n=2)

35 0.84 (k=4,s=0.35,n=18) 0.98 (k=6,s=0.40,n=2) 0.87 (k=4,s=0.30,n=2) 0.85 (k=1,s=0.35,n=8)

37 0.34 (k=3,s=0.05,n=2)

53 0.91 (k=19,s=0.15,n=3)

55 0.68 (k=1,s=0.90,n=2) 0.73 (k=1,s=0.30,n=7) 0.54 (k=4,s=0.25,n=5) 0.98 (k=8,s=0.05,n=3)

56 0.73 (k=1,s=0.05,n=4)

58 0.72 (k=13,s=0.05,n=2)

59 0.48 (k=6,s=0.20,n=4) 0.37 (k=19,s=0.15,n=2)

60 0.33 (k=11,s=0.05,n=2)

63 0.84 (k=1,s=0.05,n=2)

67 0.33 (k=14,s=0.15,n=6)

75 0.34 (k=10,s=0.15,n=4) 0.78 (k=9,s=0.15,n=4)

76 0.76 (k=3,s=0.55,n=2) 0.86 (k=2,s=0.20,n=3)

77 0.67 (k=1,s=0.05,n=7) 0.60 (k=2,s=0.20,n=4) 0.62 (k=3,s=0.05,n=3)

78 0.34 (k=2,s=0.40,n=2)

79 0.38 (k=1,s=0.05,n=7) 0.54 (k=1,s=0.05,n=3)

85 0.79 (k=2,s=0.25,n=2)
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Cluster Systemic effect Developmental effect Reproductive effect Cholinesterase inhibition

86 0.95 (k=2,s=0.25,n=2) 0.96 (k=7,s=0.05,n=2)

96 0.65 (k=16,s=0.20,n=6)

97 0.65 (k=15,s=0.15,n=4) 0.50 (k=10,s=0.15,n=2) 0.88 (k=3,s=0.15,n=2)

Summary 0.73 ± 0.16 0.66 ± 0.22 0.60 ± 0.24 0.79 ± 0.20
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