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Abstract

Background: Alzheimer’s disease (AD) and type 2 diabetes (T2DM) are common causes of 

cognitive decline among older adults and share strong epidemiological links. Distinct patterns 

of cortical atrophy are observed in AD and T2DM, but robust comparisons between structure­

function relationships across these two disease states are lacking.

Objective: To compare how atrophy within distributed brain networks is related to cognition 

across the spectrum of cognitive aging.

Methods: The relationship between structural MRI changes and cognition was studied in 22 

mild-to-moderate AD, 28 T2DM, and 27 healthy participants. Cortical thickness measurements 

were obtained from networks of interest (NOIs) matching the limbic, default, and frontoparietal 

resting-state networks. Composite cognitive scores capturing domains of global cognition, 

memory, and executive function were created. Associations between cognitive scores and the NOIs 

were assessed using linear regression, with age as a covariate. Within-network General Linear 

Model (GLM) analysis was run in Freesurfer 6.0 to visualize differences in patterns of cortical 

atrophy related to cognitive function in each group. A secondary analysis examined hemispheric 

differences in each group.

Results: Across all groups, cortical atrophy within the limbic NOI was significantly correlated 

with Global Cognition (p = 0.009) and Memory Composite (p = 0.002). Within-network GLM 

analysis and hemispheric analysis revealed qualitatively different patterns of atrophy contributing 

to cognitive dysfunction between AD and T2DM.
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Conclusion: Brain network atrophy is related to cognitive function across AD, T2DM, and 

healthy participants. Differences in cortical atrophy patterns were seen between AD and T2DM, 

highlighting neuropathological differences.
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INTRODUCTION

The number of people aged 65 and older is expected to reach one billion worldwide by 

2030 [1, 2]. Aging is the strongest risk factor for neurodegenerative disease including 

Alzheimer’s disease (AD). Atrophy patterns are closely tied to cognitive function in 

dementia [3], and probing these structure-function relationships in AD has diagnostic, 

prognostic, and interventional utility [4-6]. Neuroimaging studies in AD have shown a 

characteristic pattern of cortical thinning associated with disease severity [7]: impairments in 

learning tend to be associated with greater atrophy of the temporal pole, while hippocampal 

and medial temporal lobe atrophy are more predictive of impairments with delayed recall 

and recognition [8]. In patients with mild cognitive impairment (MCI), cortical atrophy 

measures can predict risk of progression to AD-type of dementia, with cortical thickness as 

the strongest individual prognostic marker [9].

Structure-function relationships in other forms of pathological aging are less thoroughly 

characterized. In older adults, type 2 diabetes (T2DM) has been associated with declines 

in processing speed, attention, executive function, and free memory recall [10]. Older 

adults with T2DM show global atrophy and increased burden of microvascular disease 

[11, 12]. Brain atrophy in T2DM is correlated with disease severity and duration, and 

may reflect additional neurodegenerative mechanisms aside from microvascular disease [12, 

13]. While T2DM is often associated with vascular dementia (VaD), it is also linked to 

an almost twofold increased risk of AD, likely reflecting a complex interplay between 

vascular, neurodegenerative, and neurotoxic factors [14]. In order to identify neuroimaging 

targets for future intervention in T2DM, and determine which patients are at highest risk 

of cognitive decline, it would be useful to know whether T2DM exhibits similar structure­

function relationships to AD. However, prior studies of cortical atrophy and cognition in 

AD and T2DM have focused on single disease states, examined separate disease-specific 

regions of interest, or used atrophy measures other than cortical thickness [15, 16], limiting 

generalizability.

Measuring cortical thickness within functionally connected brain networks of interest 

(NOIs) represents a middle-ground between whole-brain analysis and localized region-of­

interest methods, offering a potentially powerful tool to quantify atrophy within distributed 

brain networks. Resting state functional connectivity MRI (rs-fcMRI) can be used to parcel­

late the brain into functionally connected but spatially separate brain regions showing 

correlated activity [17]. Recent studies have suggest that these intrinsic brain networks 

play a role in the distribution, and possibly the pathogenesis, of proteins involved in 
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neurodegenerative diseases [18]. In AD, patterns of tau deposition follow functionally 

connected brain networks, and greater pathology within these tau-networks is related to 

disease progression on Braak staging [19]. Prior studies have used an NOI approach to 

compare cortical atrophy, amyloid-β (Aβ) deposition, and tau distribution in AD [20]. 

The present study extends the NOI approach one step further, using NOIs to compare the 

relationship between cortical atrophy and cognition across the spectrum of cognitive aging.

This study used a network-based approach to analyze structure-function relationships 

between cortical thickness and cognitive function in T2DM and AD participants aged 

50 and older, compared to healthy, cognitively-intact older adults. The study tested the 

hypothesis that declines in global cognition, memory, and executive function would be 

associated with atrophy in distributed brain NOIs across different conditions of cognitive 

aging. Furthermore, the study tested the hypothesis that the pattern of atrophy and its 

relationship to cognitive function would vary between T2DM and AD participants, reflecting 

differences in underlying brain pathology.

MATERIALS AND METHODS

Participants

Neuroimaging and neuropsychological data from 77 adult study participants aged 50 and 

older who participated in research from 2011 to 2015 at the Berenson-Allen Center for 

Noninvasive Brain Stimulation at Beth Israel Deaconess Medical Center (BIDMC) were 

included in this retrospective cross-sectional study. The study was approved by the BIDMC 

Institutional Review Board, and all study participants provided written informed consent 

upon enrollment consistent with the Declaration of Helsinki. Study participants comprised 

three groups: 22 AD, 28 T2DM, and 27 healthy controls (HC). Inclusion criteria in the 

AD group were a clinical diagnosis of probable mild-to-moderate AD according to DSM­

V/NINCDS-ADRDA criteria [21], a Clinical Dementia Rating Scale (CDR) of 1, and a 

Mini-Mental Status Examination (MMSE) ranging from 18–24. Inclusion criteria for the 

T2DM participants included a clinical diagnosis of T2DM, relatively good glucose control 

with an A1c ≤ 10%, and normal cognition (MMSE ≥ 27). HC participants were required 

to have normal cognition (MMSE ≥ 27) and be non-diabetic (A1c < 6.2). All participants 

underwent equivalent testing, including a standardized neurological exam, medical history 

review, formal neuropsychological testing, and a structural MRI scan. Participants were 

excluded if they had unstable medical conditions, neuropsychiatric conditions, or premorbid 

IQ below 80 as measured by the age-adjusted Wechsler Test of Adult Reading (W-TAR).

Neuropsychological testing

Neuropsychological memory testing was performed by a trained psychometrist. Testing 

included the MMSE and Geriatric Depression Scale (GDS; 15-item) drawn from the 

National Alzheimer’s Coordination Center’s Uniform Data Set version 1.1 [22]. The Trail 

Making Test (TMT) was administered, and the time difference in seconds that it took each 

subject to complete TMT B versus TMT A was calculated (TMTB-A). The Digit Symbol 

Substitution Test (DSST; number correct in 90 seconds), Digit Span Backwards Length 

(DSB Length; longest digit span), Logical Memory Story (LMS) Story-A were drawn from 
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the Wechsler Memory Scale-Revised. The LMS included an immediate story recall score 

(LMS Immediate Recall) and a delayed 30-minute recall score (LMS Delayed Recall) 

without cueing. Additionally, the Alzheimer’s Disease Assessment Scale-Cognitive Subscale 

was administered, and the total score (ADAS-Cog Total; 70 item), word list immediate 

recall subscore (ADAS-Cog Immediate Recall), and word list delayed recognition subscore 

(ADAS-Cog Delayed Recognition) were analyzed independently [23]. The Rey Auditory 

Verbal Learning Test (RAVLT) was also administered, and sub-scores of percent correct 

responses analyzed included a percent correct during initial learning (RAVLT Immediate 

Recall), 20 minute delayed recall (RAVLT Delayed Recall), and delayed recognition 

(RAVLT Delayed Recognition) [24, 25]. Neuropsychological scores were not obtained for 

ADAS-Cog Recall and ADAS-Cog Recognition in one AD participant and one HC, for 

RAVLT Delayed Recognition in one T2DM participant, for the DSST in one AD participant, 

and for TMTB-A in one T2DM participant and six AD participants (four of whom were 

unable to complete either TMT A or TMT B). These participants were excluded from 

analysis of those missing measures alone.

For each neuropsychological measure, z-scores were calculated by subtracting each 

individual score from the mean score of the all three groups and dividing by the standard 

deviation across all three groups. Scores of the TMTB-A, ADAS-Cog Total, ADAS-Cog 

Immediate Recall, and ADAS-Cog Delayed Recognition were inverted so that higher scores 

reflected better performance across all tests. Following an approach from the Alzheimer’s 

Disease Neuroimaging Initiative, composite scores were computed by averaging together 

z-scores from individual tests so that atrophy patterns could be related to cognitive domains 

more generally [26, 27]. A Memory Composite was created by from the RAVLT Immediate 

Recall, RAVLT Delayed Recall, RAVLT Delayed Recognition, LMS Immediate Recall, 

LMS Delayed Recall, ADAS-Cog Recall, and ADAS-Cog Recognition. An Executive 

Composite was computed by averaging the z-scores of DSB Length, TMTB-A, and DSST. 

Global Cognition was measured using the ADAS-Cog Total, which is already a composite 

score of multiple subtests.

MRI imaging data

A T1-weighted anatomical magnetic resonance imaging scan was obtained in all participants 

on a 3T scanner (GE Healthcare, Ltd., UK) using a 3D spoiled gradient echo sequence: 162 

axial-oriented slices for whole-brain coverage; 240-mm isotropic field-of-view; 0.937-mm 

× 0.937-mm × 1-mm native resolution; flip angle = 15°; TE/TR ≥ 2.9/6.9 ms; duration 

≥ 432 s. T1-weighted anatomical MRIs were analyzed with Freesurfer 6.0 (documented 

and freely available online at http://surfer.nmr.mgh.harvard.edu/). The technical details of 

these procedures are described in prior publications [28-41]. To ensure overall accuracy 

of segmentations and parcellations, all reconstructions were subjected to a rigorous data 

quality control process: a trained rater reviewed and manually corrected reconstructions 

when necessary, which were reviewed by an independent rater.

In addition to thickness of neocortical areas, hippocampal volume was calculated in 

Freesurfer and corrected for individual head size by dividing by total intracranial volume. 

One T2DM participant with an intracranial volume greater than two standard deviations 
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above the mean was excluded from this analysis alone. Normed hippocampal volumes 

were then converted to z-scores over all three groups (following the same procedure as the 

neuropsychological scores) in order to compare hippocampal atrophy between groups.

Measures of network atrophy

Atrophy across distributed brain networks, referred to herein as “network atrophy,” was 

defined using gray matter cortical thickness measurements within predefined NOIs. NOIs 

were derived from a 1000-subject group average rs-fcMRI analysis from Yeo and colleagues 

[17]. Cortical thickness was selected as the primary measure of atrophy because it is robust 

to head size and gender bias [42], and shows promise as a marker of disease progression 

and conversion from MCI to AD [9]. A previous study in AD used an equivalent rs-fcMRI 

parcellation approach to compare cortical atrophy, neurodegenerative protein deposition, and 

brain metabolism across cortical NOIs, but did not examine associations with cognition [20]. 

Another study in healthy adults found a relationship between NOI-based cortical thickness 

and executive function, but used a different technique to define NOIs, and did not examine 

memory function [43]. To our knowledge, this technique has not been previously used to 

make structure-function comparisons across different disease states.

NOIs were selected to encompass the limbic, default, and frontoparietal networks as defined 

by group-level functional connectivity maps from Yeo and colleagues [17] (Supplementary 

Figure 1). The limbic and default networks were chosen because these networks encompass 

brain regions with high levels of neuropathology on Braak staging [44], and include the 

entorhinal cortex, parahippocampal gyrus, and temporal pole which are implicated in 

memory encoding and retrieval [45-49]. The frontoparietal network was chosen because 

it shows high Aβ distribution and hypometabolism in AD [20], and is thought to play an 

important role in executive function [43, 50, 51]. Average cortical thickness (in mm) was 

assessed within each NOI bilaterally. Given the potential for functional specialization and 

hemispheric asymmetrical atrophy patterns, the left and right hemispheres of each NOI were 

also measured for use in a secondary analysis.

Statistical analysis

Statistical analyses were performed using JMP Pro 13.0 (SAS Institute Inc., Cary, NC) 

and Stata 14.2 (StataCorp, College Station, TX). Significance was determined with a 

two-tailed 95% confidence interval (α = 0.05). Baseline characteristics were compared 

for group differences. In the primary analysis, linear regression was used to determine 

the relationship between cortical thickness and cognitive measures across all three groups. 

To visualize the within-network atrophy patterns in each group contributing to structure­

function relationships, a General Linear Model (GLM) analysis was run using Freesurfer 

6.0. Finally, a secondary hemispheric analysis was performed using linear regression to test 

if there was right/left asymmetry contributing to the relationship between network atrophy 

and cognition.

Baseline characteristics

Demographics and cognitive scores from some T2DM and HC participants have 

been previously reported [52]. Baseline characteristics including demographics, atrophy 
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measures, and z-scored neuropsychological measures were tested for significant differences 

across all three groups. Fischer’s exact test was used for dichotomous variables, and 

oneway analysis of variance (ANOVA) was used for continuous variables. Tukey’s Honestly 

Significant Difference (HSD) was used for post hoc comparisons between each group. Since 

age was different between the groups (see Results), and was expected to relate to both brain 

atrophy and cognition, it was added as a covariate to all subsequent analyses.

To ensure that our dataset was consistent with prior literature [53], the relationship between 

right and left hippocampal volumes and RAVLT Delayed Recognition were tested in 

separate linear regression analyses for each group, with age as a covariate. For hippocampal 

volume analysis, uncorrected p-values are reported, and significance is indicated after 

correction using the Benjamini-Hochberg procedure for controlling the False Discovery Rate 

(FDR) with a global α = 0.05 [54].

Linear regression

Multiple linear regression analyses were preformed to assess the relationship between 

cognitive function and network atrophy (with each NOI separately to avoid collinearity) 

as well as the influence of participant age and diagnosis. Global Cognition, Memory 

Composite, and Executive Composite scores were entered as dependent variables into a 

fixed-effects linear model with the main independent factors of diagnosis (AD, T2DM, HC), 

thickness, the diagnosis*thickness interaction term, and age as a covariate. Uncorrected 

p-values are reported, and significance is indicated after correction using the Benjamini­

Hochberg procedure for FDR with a global α = 0.05 [54].

GLM analysis

A GLM analysis using a familywise error rate of 0.05 was run in Freesurfer 6.0 for each 

neuropsychological test associated with a NOI atrophy in the AD and T2DM groups. GLM 

analysis was restricted to vertices within the relevant NOI to identify regions within the 

network that were significantly associated with that neuropsychological measure, with age 
as a covariate.

Hemispheric analysis

Separate linear regression analyses were preformed using cortical thicknesses within 

right and left hemisphere NOIs. Linear regression was used to test the associations of 

memory tests with NOI thickness and hippocampal volumes, with age as a covariate. Only 

uncorrected p-values are reported in the secondary analysis.

RESULTS

Baseline characteristics

AD participants were significantly older than the HC group, and reported higher depression 

scores on the GDS (Table 1). The AD group showed atrophy within all NOIs and reduced 

hippocampal volume compared to HC and T2DM. No significant differences in network 

thickness or corrected hippocampal volume were seen between T2DM and HC groups. AD 
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participants scored significantly worse on all cognitive tests compared to HC, and T2DM 

group scored in the intermediate range between the AD and HC on multiple measures.

Left hippocampal volume was associated with RAVLT Delayed Recognition in AD (p = 

0.0029) and T2DM (p = 0.019). After correction with FDR, only the association in AD 

remained significant.

Multiple linear regression

None of the analyses yielded a significant diagnosis*thickness interaction (p values > 0.09), 

indicating no effect modification. Therefore, the models were rerun without the interaction 

term. Linear regression relationships between cortical thickness and composite cognitive 

scores are shown in Fig. 1.

Limbic NOI

There was a significant main effect of cortical thickness in the linear models for Global 

Cognition (p = 0.009) and Memory Composite (p = 0.002), indicating that limbic network 

atrophy was related to global cognition and memory function independent of group and 

controlling for age. After adjusting for multiple comparisons with FDR, both relationships 

remained significant.

Default NOI

There were no significant associations between cortical thickness within the default NOI and 

Global Cognition, Memory Composite, or Executive Composite.

Frontoparietal NOI

For Executive Composite, the linear model showed a main effect of cortical thickness (p 
= 0.033), indicating that frontoparietal network atrophy was related to memory function 

independent of group and controlling for age. This relationship was not significant after 

adjusting for multiple comparisons using FDR.

GLM analysis

Within-network GLM analysis relating cortical thickness in the limbic NOI with cognitive 

scores are shown for Global Cognition (Supplementary Figure 2) and Memory Composite 

(Supplementary Figure 3). In the AD group, cortical thickness within the medial temporal 

lobes was associated with Global Cognition and Memory Composite, with a left hemisphere 

predominance. In T2DM, cortical thickness in the anterior temporal, inferior temporal, 

and orbitofrontal cortex showed associations with both Global Cognition and Memory 

Composite. Supplementary Figure 4 shows associations between cortical thickness within 

the frontoparietal NOI and Executive Composite. In AD, cortical thickness in the superior 

frontal, parietal, and posterior temporal cortex was associated with Executive Composite. 

In T2DM, associations between cortical thickness and Executive composite were driven 

by anterior regions of the frontoparietal NOI, including regions of the left dorsolateral 

prefrontal cortex.
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Secondary hemispheric analysis

Supplementary Figure 5 shows associations between right and left NOI thickness measures 

and neuropsychological tests in each group. Given the exploratory nature of these analyses, 

p-values for the supplementary hemispheric analysis were not corrected for multiple 

comparisons and should be interpreted accordingly. Measures of global decline in AD were 

associated with atrophy in both the left limbic network and left default network. Structure­

function relationships between limbic NOI thickness and memory tests showed a strong left 

hemisphere predominance. Furthermore, there was a double dissociation between cortical 

thickness and cognition, with limbic network atrophy associated with memory function and 

frontoparietal network atrophy associated with executive function, which was seen only in 

the AD group. In T2DM thickness within the default NOI showed associations with both 

Memory Composite and Executive Composite. In HC, atrophy within all three networks was 

associated with RAVLT Delayed Recall.

DISCUSSION

The present study employed a relatively novel network-based approach to examine 

structure-function relationships impacting cognition across the spectrum from healthy to 

pathological cognitive aging. The primary hypothesis, that atrophy within distributed brain 

networks would be associated with declines in cognition across AD, T2DM, and HC, was 

upheld. Qualitative differences in structure-function relationships within AD and T2DM 

were observed following exploratory within-network GLM and hemispheric analyses. 

This suggests that different patterns of atrophy drive structure-function relationships in 

T2DM and AD, reflecting separable neurobiological substrates across different forms of 

pathological aging. Understanding these differences may help target future therapies aimed 

at slowing cognitive decline.

The limbic network contains anterior medial temporal regions including the entorhinal 

cortex, implicated in memory consolidation and retrieval, as well as the temporal pole, 

which is important in semantic memory encoding. In structural MRI studies in AD, gray 

matter atrophy is greatest in regions that comprise the limbic network, followed by those in 

the default network regions, with relative sparing of the frontoparietal network regions [20]. 

Additionally, regions within the limbic network experiences significant hypometabolism 

as shown with FDG-PET, but have relatively lower Aβ plaque burden compared to other 

networks [20]. The present study adds to existing literature by correlating limbic network 

atrophy with global cognitive and memory function across AD, T2DM, and HC. Left 

lateralization of these relationships in AD may be related to the semantic demands of 

verbal learning tests. The study also replicated the previously well-described association 

between medial temporal atrophy and recognition memory in AD [8, 55]. The limbic 

network’s structural relevance is supported by both seed-based fMRI methods and white 

matter tractography studies [56, 57]. Sub-regions of the temporal pole are involved in 

separable large-scale brain networks, suggesting that this area represent a multimodal 

“hub” integrating sensory, language, and limbic information [56]. The present finding of 

strong structure-function relationships within the limbic network suggests that breakdown in 

multimodal “hubs” may play a key role in cognitive decline for AD and as well as other 
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forms of cognitive aging. However, direct comparisons with rs-fcMRI literature are limited 

due to concerns that the orbitofrontal and temporal pole are highly prone to artefactual 

signal on rs-fcMRI [58]. Findings from the present study, which implicate the limbic 

network, should be interpreted with the caveat that the exact boundaries of this network 

may show modality-specific variations.

The default network is intrinsically present in the absence of externally-oriented cognitive 

activity, and deactivated by tasks requiring sustained attention [59]. Impairments in default 

network connectivity are thought to develop early in AD pathology, and can be seen even 

in asymptomatic individuals at high risk of AD, including patients with autosomal dominant 

AD mutations or in healthy older adults with Aβ deposition [60, 61]. In T2DM, aberrant 

functional connectivity in the default network is associated with both declines in executive 

function on a verbal fluency test and with increased insulin resistance [62]. Findings 

from the present study found no significant associations between default network atrophy 

and cognition. This contrasts with rs-fcMRI literature showing impairment in functional 

connectivity within the default network in both AD and T2DM [63, 64], and suggests a 

dissociation between functional and structural neuroimaging biomarkers. One hypothesis 

is that, while abnormal connectivity and atrophy within the default network may play an 

important role in cognitive decline during the preclinical AD, limbic and frontoparietal 

network atrophy may drive structure-function relationships during later disease stages when 

atrophy and cognitive decline are more advanced.

The frontoparietal network is implicated in tasks requiring complex attentional control in 

healthy older adults [43, 51]. In AD, the frontoparietal network shows high Aβ deposition 

and FDG-PET hypometabolism, but less atrophy compared to the limbic and default 

networks [20]. AD also shows increased functional connectivity in frontally-connected 

distributed networks, with the amount of increase related to executive function performance 

[65]. One possibility is that increased functional connectivity in the frontoparietal network 

in AD may be related to a compensatory strategy in the presence of default network 

dysfunction [66]. The present study adds the finding that atrophy frontoparietal network 

was significantly associated with executive function in both AD and T2DM. Overall, the 

structure-function relationship within the frontoparietal network suggests that network-based 

cortical atrophy and resting-state functional connectivity may have separable effects on 

cognition, and should be examined independently.

In the primary model, there was no significant diagnosis*thickness interaction. Thus, 

overall structure-function relationships were not significantly different between the groups, 

despite the significantly greater amount of atrophy in AD compared to HC and T2DM. 

With the caveat that the present study may not have had sufficient power to detect 

more subtle differences, this finding nonetheless supports the idea that examining network 

atrophy may be a useful tool for comparing structure-function relationships among different 

patient populations. Additionally, within-network GLM and hemispheric analyses did 

reveal qualitative differences in the atrophy pattern driving the associations among the 

three groups. These group-specific differences in atrophy patterns likely reflect different 

underlying neuropathological processes in different disease states.
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The mechanisms of neurotoxicity in T2DM and AD are complex and overlapping, and 

individual patients often present with more than one pathology. In animal models of 

AD, elements of the neurodegenerative cascade include oligomeric Aβ [67], tau [44], 

APOE [68], lipid metabolism [69, 70], and altered synaptic plasticity [71, 72]. Insulin 

resistance is an additional mechanism that is common to both T2DM and AD. Impaired 

insulin signaling may have multiple downstream effects including alterations in glucose 

metabolism, increased tau accumulation, and oxidative stress [73]. In a prospective 

study of non-demented adults, insulin resistance at baseline predicted subsequent atrophy 

of the hippocampus and parahippocampal gyrus and impaired performance on RAVLT 

encoding trials [13]. In healthy adults, hyperglycemia is associated with cortical thinning 

in AD-associated regions including the parahippocampal gyrus and temporal pole [74]. 

Furthermore, in observational studies, T2DM almost doubled the risk of developing AD 

[75]. Even in non-diabetic AD patients, there is impaired insulin and IGF-1 sensitivity in the 

hippocampus, and reduced insulin responses are associated with impaired episodic memory 

[76]. The present study adds the finding that cortical atrophy patterns drive structure­

function relationships in both T2DM and AD, and that the effect is not significantly different 

by group. Qualitative differences seen on GLM and secondary analysis in each group are 

likely to be the product of separable degenerative processes, which converge to cause 

atrophy in distributed brain networks. Comparing brain structure-function relationships 

in T2DM and AD can highlight neurotoxic mechanisms leading to the increased risk of 

dementia in T2DM, improving prognostication in patients at risk of AD [77]. Since insulin 

resistance is amenable to multiple medication and lifestyle medications, it represents a 

promising therapeutic target to promote healthy cognitive aging [78].

Understanding the structure-function relationships that are most relevant in different 

forms of pathological aging may help target future therapies aimed at slowing cognitive 

decline. Since many older adults have more than one comorbid pathology affecting 

cognition, any effective treatment targeting pathological aging will require a high degree of 

individualization. Knowledge of network-based structure-function relationships can facilitate 

development of investigational therapies aimed at slowing cognitive decline and prevention 

onset of dementia, including both lifestyle and neuromodulatory approaches. For example, 

in our hemispheric analysis, the LMS Immediate Recall test was impaired in both T2DM 

and AD, and was associated with NOI atrophy, yet the association was driven by distinct 

networks and showed different hemispheric lateralization. In the future, this knowledge 

could be applied to an individual patient’s structural imaging and cognitive profile, and 

used to target network-based therapies such as non-invasive brain stimulation (NBS). 

Neuromodulatory treatments are currently being investigated in AD [79, 80]. However, it 

is not yet known which brain regions or cognitive functions would be most useful to target 

in patients with other forms of pathological aging. Additionally, it is possible that combing 

NBS with interventions aimed at reducing insulin resistance such as diet and exercise might 

be more effective in treating certain populations, including AD patients with concurrent 

T2DM or pre-diabetes. These questions require further systemic study.

Strengths of this study include a well-characterized study population with in-depth 

neuropsychological testing and neuroimaging among three groups on a spectrum of 

cognitive aging. This study was the first of its kind to use a network-based approach to make 
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inferences about structure-function relationships among different forms of pathological 

aging. Our method demonstrated differences in patterns of network atrophy associated 

with cognitive decline in AD and T2DM, despite different severity of cortical atrophy and 

cognitive deficits in each group.

There are factors which may limit the generalizability of our findings. Our study had a 

relatively small sample size in each group, which limited the power of our secondary 

analyses. Our hemispheric analysis did not replicate structure-function relationships in 

HC seen in other studies, which had larger numbers of participants [43, 50]. Follow up 

studies in larger datasets would be required to confirm the hemispheric differences, and 

further elucidate patterns of atrophy that are driving structure-function relationships on 

GLM. Additionally, there was limited information about diabetes status in the AD cohort, 

and our T2DM and HC cohorts did not have CSF or PET Aβ biomarkers to rule out 

pre-symptomatic AD. However, since any overlap in pathology would have been expected to 

make group differences less robust, we do not think this significantly impacted the validity 

of our findings.

Conclusion

Prior research has found strong correlations between network atrophy and cognitive decline 

in AD [7, 8], but lacks a direct comparisons of patterns of structure-function relationships 

across a spectrum of cognitive aging. The present study demonstrates that atrophy within 

global brain networks is related to severity of overall cognitive dysfunction across AD, 

T2DM, and HC. Qualitative differences in the pattern of atrophy were seen in AD and 

T2DM, highlighting differences in neuropathologic mechanisms. In the future, measuring 

structure-function relationships may improve prognostication for older adults at high 

risk of cognitive decline [77], and allow for individualized targeting of future therapies 

using pharmacologic, lifestyle-based, and neuromodulatory approaches to promote healthy 

cognitive aging.
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Fig. 1. 
NOI thickness and cognitive composite scores. Within each NOI, linear regression between 

cortical thickness and cognitive composite scores are shown. Models which were significant 

based on uncorrected p-values are marked with a black box. (a) There is a significant 

relationship between cortical thickness in the limbic NOI and Global Cognition, (d) between 

cortical thickness in the limbic NOI and Memory Composite, and (i) between cortical 

thickness in the frontoparietal NOI and Executive Composite.
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