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Summary

Understanding how the brain represents the identity of complex objects is a central challenge of 

visual neuroscience. The principles governing object processing have been extensively studied in 

the macaque face patch system, a sub-network of inferotemporal (IT) cortex specialized for face 

processing. A previous study reported that single face patch neurons encode axes of a generative 

model called the “active appearance” model, which transforms 50-d feature vectors separately 

representing facial shape and facial texture into facial images. However, a systematic investigation 

comparing this model to other computational models, especially convolutional neural network 

models that have shown success in explaining neural responses in the ventral visual stream, has 

been lacking. Here, we recorded responses of cells in the most anterior face patch AM to a large 

set of real face images and compared a large number of models for explaining neural responses. 

We found that the active appearance model better explained responses than any other model 

except CORnet-Z, a feedforward deep neural network trained on general object classification 

to classify non-face images, whose performance it tied on some face image sets and exceeded 
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on others. Surprisingly, deep neural networks trained specifically on facial identification did not 

explain neural responses well. A major reason is that units in the network, unlike neurons, are less 

modulated by face-related factors unrelated to facial identification such as illumination.
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Introduction

Primates are able to recognize objects invariant to changes in orientation and position. 

Neurons in macaque face patch AM represent facial identity independent of head orientation 

[1], therefore providing a unique opportunity to study how invariant object identity is 

represented in the brain. One intuitive computational strategy for invariant face recognition 

is to separate information about facial shape from that about facial texture. Changes in 

head orientation or expression can produce changes in facial shape but leave unaltered the 

underlying texture map of the face (arising largely from physical features such as skin 

pigmentation, the shape and thickness of eyebrows, eyes, lips, and so on). An effective 

computational approach to decouple shape and texture information contained in a face is 

the “active appearance model,” a scheme for representing faces by projecting them onto 

two sets of axes, one describing the shape and one describing the shape-free appearance of 

a face [2, 3]. The decoupling between shape and texture parameters accomplished by the 

active appearance model approximately aligns with the needs of invariant face identification 

(though some shape-related features, e.g., inter-eye distance can vary depending on facial 

identity, and some appearance-related features, e.g., illumination, can vary for the same 

facial identity).

A recent study used facial images synthesized by an active appearance model to explore 

the coding scheme of AM face cells [4]. The study found that the active appearance 

model provides a remarkably simple account of AM activity: AM cells approximately 

encode linear combinations of axes of this model. However, this study left several issues 

unaddressed. First, the study used synthetic faces generated by the active appearance model 

rather than real faces. The code for real faces in the macaque brain may be different from 

that for synthetic faces. Furthermore, since the faces tested were directly controlled by 

parameters of the active appearance model, this may have given an unfair advantage to 

this model over other models for explaining face cell responses. Second, while the study 

compared the active appearance model to a few other models, it notably did not evaluate 

state-of-art deep networks trained on face recognition. Convolutional neural networks 

(CNNs) trained to perform face recognition now achieve close-to-human or even better 

performance [5, 6], naturally raising the question, how similar are the representations used 

by these artificial networks compared to those used by the primate face patch system?

Here, we set out to compare a large set of different models for face representation in terms 

of their power to explain neural responses from macaque face patch AM to pictures of real 

faces. The models tested include the original active appearance model used by Chang and 
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Tsao [4], referred to below as the “2D Morphable Model”, an Eigenface Model [7, 8] a 3D 

Morphable Model [9, 10], several CNN models [5, 11–13], a β variational autoencoder [14], 

and a model implementing Hebbian learning on V1-like representations [15].

Results

We collected 2100 real faces from multiple online face databases, including the FERET 

face database [16] [17], CVL face database [18], MR2 face database [19], PEAL face 

database [20], AR face database [21], Chicago face database [22], and CelebA database 

[23] (Figure 1A). Responses of 159 face-selective cells in macaque face patch AM were 

recorded from two monkeys while presenting the facial images (Figure 1B). To find the 

optimal set of axes explaining neuronal responses, we extracted feature vectors from several 

different models, including 2D Morphable Model [2], 3D Morphable Model [9], Eigenface 

Model [18] [8], AlexNet [11], VGG-face [5], VGG-19 [12], CORnet [13], β-VAE [14], 

and a model implementing Hebbian learning on V1-like representations [15] (Figure 1C). 

These models each parameterize faces using very different principles. The Eigenface model 

has the simplest form, consisting of principal components of pixel-level representations of 

facial images. The 2D and 3D Morphable Models are generative face models that convert 

a set of parameters into a facial image. AlexNet, VGGs, and CORnet are neural network 

models each trained on a different task: AlexNet, VGG-19, and the CORnets are all trained 

to classify images into 1000 non-face object categories. VGG-face is trained to identify 

2,622 celebrities..The CORnet family includes three networks: CORnet-Z, CORnet-R, and 

CORnet-S. All three models have four areas that are identified with cortical areas V1, 

V2, V4, and IT. CORnet-Z has a purely feedforward structure, while CORnet-R and S 

contain recurrent connections within areas. β-VAE is a deep generative model that learns 

to faithfully reconstruct the input images, while being additionally regularized in a way 

that encourages individual network units to code for semantically meaningful variables. The 

Hebbian learning model is a biologically plausible model accounting for mirror-symmetric 

view tuning in face patch AL and view invariance in face patch AM. We chose these models 

because they are well known CNN models trained on object categorization (AlexNet, 

VGGs and CORnets), important computational models for face recognition (Eigenface, 2D 

Morphable Model, 3D Morphable Model, and Hebbian learning model), or a state-of-art 

neural network model for unsupervised disentangled representation learning (β-VAE). Note 

that the models being compared are quite different--the 2D/3D Morphable models are 

generative models for faces that do not possess any explicit identification with a specific 

stage of visual processing, while deep network models have an architecture in rough 

correspondence with the ventral visual stream [24].

To quantify how well each model can explain AM neuronal responses, for each model, 

we learned a linear mapping between features of that model and the neural population 

response vector. To avoid overfitting, we first reduced the dimensionality of each model 

by performing principal components analysis (PCA) on model responses to the 2100 faces, 

yielding N features for each face and each model. Then a 50-fold cross-validation paradigm 

was performed: responses of each neuron to 42*49=2058 faces were fit by linear regression 

using the N features, and then the responses of the neuron to the remaining 42 faces 

were predicted using the same linear transform. Besides measuring how much variance in 
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neural responses could be explained by the linear transform for each individual neuron, we 

also took a different approach using the population response: we compared the predicted 

population response vector to each face with the actual population response vector to the 

face as well as the population response vector to a random distractor face (Figure 1D). If the 

angle between prediction and target was smaller than that between prediction and distractor, 

the prediction was considered correct.

To compare different models, we used the top 50 PCs of features from each model, 

as in a previous study [4]. We found the best model was one of the CORnet models, 

CORnet-Z, followed by the 2D Morphable Model (Figure 2A, good performance=high 

explained variance and low encoding error). Interestingly, we found that VGG-face, a deep 

network trained to identify individual faces, performed worse than the other models, while 

CORnet-Z, which was trained to classify 1000 classes of non-face objects, performed 

better than any other model. A confounding factor is that the images we used came 

from multiple face databases which have variable backgrounds. Some of the models may 

use background information more than other models for prediction. Hence performance 

differences between models could have been driven by representation of the background. In 

theory, the background should not be relevant to a model of face representation.

Thus we next extracted features from facial images without background (see STAR 

Methods), and repeated the comparison of different models. The ordering of model 

performance was largely preserved after background removal (Figure 2B). However, after 

background removal, the performance of the 2D Morphable Model was not significantly 

different from CORnet-Z (p=0.30 for explained variance; p=0.79 for encoding error); this is 

consistent with the fact that the 2D Morphable Model only accounts for intensity variations 

of faces, but not background.

In the above two cases, we found the performance of the 3D Morphable Model was much 

lower than the 2D Morphable Model. However, there is an important difference between the 

2D and 3D Morphable Models: the latter does not fit hair-related features. To compensate 

for this difference, we further tested the models on hairless facial images derived from 

fits using the 3D Morphable Model (Figure 2C, left). We performed the analysis using 

either 50 PCs or 110 PCs (the dimension of the 3D Morphable Model). In both cases, the 

3D Morphable Model outperformed VGG-face, VGG-19, CORnet-R, CORnet-S, Eigenface 

(Figure 2C). In the case with 110 PCs, it even outperformed AlexNet, CORnet-Z and the 

2D Morphable Model (Figure 2D). For faces without hair, the 2D Morphable Model also 

performed significantly better than all of the neural network models. As an alternative 

strategy to removing hair, a mask was created by the 3D morphable model fit, and the 

original image was cropped using that mask, thus ensuring that all non-hair features were 

left unchanged. The results were largely consistent (Figure S1).

Furthermore, the use of the facial images generated by the 3D Morphable Model allowed 

us to test a Hebbian learning model recently proposed to account for face patch responses 

[15]. This model posits that the weights of face cells, learned through Hebbian learning, 

converge to the top PCs of the neuron’s past inputs, and these inputs should generically 

constitute short movies of faces rotating in depth. The 3D Morphable Model allowed us 
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to readily synthesize a set of facial images at multiple views and thus test the Hebbian 

model (see STAR Methods). For explained variance, the Hebbian model performed better 

than VGG-face (p<0.001 for 50 PCs, but p=0.82 for 110 PCs), comparably to Eigenface 

(p=0.32 for 50 PCs, p=0.35 for 110 PCs), and worse than the other models (Figure 2C and 

D, upper panels). For encoding error, the Hebbian model performed better than the VGGs, 

CORnet-R and Eigenface models, comparably to CORnet-S (p=0.11 for 50 PCs and p=0.37 

for 110 PCs) and AlexNet (p=0.16 for 50PCs, p=0.06 for 110 PCs), and worse than the 2D 

Morphable Model, 3D Morphable Model, and CORnet-Z (Figure 2C,D).

Finally, we performed a more detailed comparison between the 2D Morphable Model and 

another generative model, β-VAE, whose latent units are encouraged to encode semantically 

meaningful variables, otherwise known as disentangled variables [14]. β-VAE contains an 

encoder that transforms the image input into a vector of disentangled latent variables and 

a decoder that transforms the vector back into an image. The encoder is implemented with 

a convolutional neural network, similar to other network models. A recent analysis of the 

same data set as in the present paper found that a subset of single AM cells have selectivity 

remarkably matched to that of single β-VAE latents, suggesting that AM and β-VAE have 

converged, at least partially, upon the same set of parameters for describing faces [25]. In 

particular, the single-neuron alignment between AM and β-VAE was better than that for any 

other model including the 2D morphable model. Thus we wanted to address in detail how 

β-VAE compares to the 2D Morphable Model by the metric of neural population encoding 

(Figure 2A). Due to variations in training parameters, 400 different β-VAE models were 

trained, each with 50 latent units. For the comparison in Figure 2A, we chose the β-VAE 

with the least encoding error. We further compared encoding performance of all 400 β-VAE 

models to that of the 2D morphable model (Figure S2A). Close inspection revealed that 

some of the latent units have much smaller variance than other units in response to 2100 

faces, thus we removed those units with variance <0.01. We found for both β-VAE and 

2D Morphable Model explained variances increased and encoding errors decreased when 

the dimensionality increased, as one might expect, since more dimensions are available for 

capturing the information present in the neural responses, and the 2D Morphable Model 

performed better than β-VAE models at matched feature dimensions (Figure S2A and C, 

p<0.05 in all cases, p<0.01 except from dimension=16 for encoding error). However, among 

the 400 β-VAEs reported in Figure S2, many models did not learn a well disentangled 

representation, hence failing at one of the optimisation objectives. Therefore, we also 

compared the 2D Morphable Model to a subset of β-VAEs where the units were well 

disentangled (based on the unsupervised disentangled ranking (UDR) score for each β-VAE, 

see STAR Methods), and found that the encoding performance difference was not significant 

at low dimensions, but the 2D Morphable Model performed better for feature dimensions=6, 

10 and 12 (Figure S2A and C, inset). Thus we conclude that by the metric of explained 

variance and neural encoding performance, the 2D Morphable Model outperforms other 

generative models, including both β-VAE and Eigenface models, and performs similarly to 

disentangled β-VAEs at lower dimensions.

Next, we asked the complementary question: how well could we predict the model 

features by linear combinations of neural responses of face cells? The same procedure 

as the encoding analysis was followed, except that the respective roles played by model 
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features and neural responses were reversed. The results for this decoding analysis were 

largely consistent with encoding analysis (Figure 3). For the original images and images 

without the background, the 2D Morphable Model performed better than all other models 

except CORnet-Z (p=0.08 for original images, p=0.03 after background removal with 2D 

Morphable Model performing slightly better). For images generated by the 3D Morphable 

model, the 2D Morphable Model outperformed all other models except the 3D Morphable 

model (p=0.42 for 50-d model, p<0.001 for 110-d model). Comparing the 2D Morphable 

Model with β-VAEs at matched dimensions, we found that the two models were comparable 

at dimensions≤16 (Figure S2E), but the 2D Morphable Model performed better at higher 

dimensions. The fact that the performance of the two models were more comparable in 

both decoding and encoding at low dimensions (Figures S2A, C and E) suggests that 

with certain training parameters, β-VAE was efficient at extracting a small number of 

meaningful features, but the number of disentangled features discovered in this way may not 

be sufficient to achieve a good performance in decoding/encoding. To better illustrate the 

relationship between feature dimensionality, encoding/decoding errors and disentanglement, 

we quantified the quality of disentanglement achieved by β-VAE models by the UDR score 

as before. We found positive correlations between the encoding/decoding errors and UDR 

(Figure S2D and F), and negative correlations between the explained variance, the number 

of informative features and UDR (Figure S2B and G). These results support the idea that 

the objective of disentanglement encourages the model to converge to a small number of 

informative features, at the expense of the overall explanatory power of the face code in the 

brain.

So far, for our deep network comparisons, we have focused on comparing how well units 

in the penultimate layer of each deep network explain AM neural responses [26, 27]. 

We also examined how well each individual layer of AlexNet and CORnets explained 

neural responses (Figure S3). Surprisingly, we found intermediate layers of those models 

performed the best (layer L2 of AlexNet and the V4 layer of CORnet-Z) (Figure S3A-D). 

However, when we examined the relationship between different layers of AlexNet and AM 

responses using a second stimulus set containing facial images at 8 head orientations, we 

found that AlexNet L2 lost its advantage, with L5/6 performing the best (Figure S3E and F). 

Given that AlexNet L2 cannot explain neural responses to a stimulus set with different head 

orientations, it is clearly not a viable candidate for explaining face patch activity.

Overall, our results suggest that linear combinations of features of the 2D Morphable 

Model were closely related to the responses of face cells, achieving encoding and decoding 

performance comparable to even the best neural network models developed recently 

(Figures 2 and 3), while at the same time using a simple and transparent representation 

that does not involve hundreds of thousands of “black box“ parameters. This result also 

extends our previous finding from synthetic faces to real faces [4]. The similar performance 

of several of the models to the 2D Morphable Model (e.g., AlexNet and CORnet-Z in Figure 

2A and 3A) raises the question whether these other models are simply linear transformations 

of the 2D Morphable Model, or whether they provide “additional” features that could help 

explain neural responses.
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To address this question, we concatenated features from two different models, and asked 

how much more variance in neural responses could be explained by two models in 

comparison to a single model (see STAR Methods) (Figure 4A). This quantified the neural 

variance uniquely explained by a model (i.e., unique explained variance by model A = 

explained variance by models A and B - explained variance by model B). Overall, we 

found unique variances explained by various models compared to the 2D Morphable Model 

to be much smaller than that by full models (compare Figure 4A to the upper panel 

of Figure 2B), suggesting other models provide limited “additional” features to explain 

neural responses. For facial images without background, AlexNet accounted for the most 

unique variance across all models, followed by CORnet-Z, CORnet-R, CORnet-S, VGG-19, 

VGG-face, 3D Morphable Model and Eigenface (Figure 4A). For hair-free reconstructions, 

CORnet-Z accounted for the most unique variance across all models, followed by CORnet­

S, AlexNet, CORnet-R, VGG-19, 3D Morphable Model, VGG-face and Eigenface (Figure 

4C). Furthermore, we asked the opposite question: what happens when the 2D Morphable 

Model is combined with other models? Again, we found unique variances explained by the 

2D Morphable Model to be much smaller than the full 2D Morphable Model, indicating 

that the 2D Morphable Model features significantly overlap those of other models. However, 

a significant extent of non-overlap was also found (Figure 4B). For facial images without 

background, the most unique variance was explained by comparing the 2D Morphable 

Model to VGG-face, followed by VGG-19, 3D Morphable Model, CORnet-R, CORnet-S, 

Eigenface, AlexNet and CORnet-Z (Figure 4B). For hair-free reconstructions, the most 

unique variance was explained by comparing the 2D Morphable Model to VGG-face, 

followed by CORnet-R, Eigenface, VGG-19, CORnet-S, AlexNet, CORnet-Z and 3D 

Morphable Model (Figure 4D). Finally, we asked how much unique variance each layer 

of AlexNet explained compared to the 2D Morphable Model by repeating the analysis of 

Figure 4A on individual layers of AlexNet. We found that the amount of unique variance 

was similar across layers L2 to L6 (Figure S3G). However, the unique variance explained by 

the 2D Morphable Model compared to each of the layers of AlexNet was not equal across 

layers, but was minimal for layer L2 (Figure S3H). This may partially explain why AlexNet 

layer L2 could explain more variance than other layers for the 2100 frontal face set (Figure 

S3A-D).

In the above analysis, models were compared with respect to the amount of variance they 

could explain in the neural responses. We also asked how well each model could explain 

features of other models through linear regression, independent of neural responses. To 

address this, we repeated the analysis of Figure 4, but instead of using real neurons, we 

directly quantified how much variance of features in one model could be explained by 

features of the 2D Morphable Model (Figure S4A and B). Features of the 2D Morphable 

Model only partially explain features of the other models (Figure S4A, blue bar), suggesting 

the models do provide additional features beyond those of the 2D Morphable Model. 

However, not all of these features help to explain neural responses. For example, the 

Eigenface model contains a sizable component unexplained by the 2D Morphable Model 

(Figure S4A), but the amount of neural variance explained by the adding the Eigenface 

model to the 2D Morphable Model was only marginal (Figure 4A). We also asked how well 

each of the other models explain 2D Morphable features (Figure S4B). The most variance 
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was explained by Eigenface, while the least variance was explained by Vgg-face. Finally, 

to compare all model pairs on equal footing, Figure S4C plots the amount of variance in 

each 50-feature face model explained by each of the other models. Interestingly, the 2D 

Morphable Model explained as much variance in CORnet-Z features as AlexNet. This shows 

that for the subspace of faces, an explicit generative model of face representation, the 2D 

Morphable Model, can do as good a job at explaining CORnet-Z features as a deep network 

explicitly built with similar architectural principles and training procedure (AlexNet).

Overall, the 2D Morphable Model is composed of two components: a shape component 

defined by positions of facial landmarks, and a shape-free appearance (or texture) 

component defined by the intensity distribution of the facial image after shape 

normalization. Similarity between neural network models (esp. CORnets) and the 2D 

Morphable Model indicates the networks may implement similar computation to the 2D 

Morphable Model, by first localizing the landmarks, then morphing the face to remove 

shape-related information. We investigated how these two components were related to 

different stages of neural network models (Figure S4D-G). We found that one intermediate 

layer, layer V4, in CORnets best explains the shape component, consistent with the 

interpretation that the intermediate stage may perform the computation of finding landmarks. 

When examining the shape-free appearance component, however, we were surprised to find 

the input to the networks (i.e., pixel intensities of the images) performed the best across 

all layers of CORnets (Figure S4D). Inspection of the spatial profile of decoding suggests 

the input layer well captured global features such as the intensity of the skin (Figure S4F), 

rather than local features, such as the eyes and the mouth, which is quite different from the 

neural data (Figure S4G, left). Indeed, the correlation between decoding maps reveals an 

increase in similarity with neurons across different layers of CORnets (Figure S4G, right). 

This analysis suggests different stages of CORnets are performing something similar to 

different stages of the 2D Morphable Model, at least for the purpose of explaining neural 

responses.

Finally, we wanted to gain some insight into why AlexNet outperforms VGG-face in 

explaining neural responses, demonstrated by both the encoding and the decoding analyses 

(Figures 2, 3). This is surprising since AlexNet is not trained to classify any face images 

(albeit some images within the different training classes do contain faces), while Vgg-face 

is trained exclusively to identify face images. We started by computing similarity matrices 

[11, 28] for neural population responses from face patch AM (Figure 5A1). Here each entry 

of the matrix represents the similarity between a pair of faces, quantified as correlation 

between population responses to the face pair. The same analysis was repeated with the 

top 50 PCs of deep features from AlexNet or VGG-face (Figure 5A2, A3). There is a 

clear difference between the similarity matrix for VGG face compared to those for AM and 

Alexnet features. Similarity matrices for both AM and AlexNet features show a dark cross 

with a bright center, but this is not the case for VGG face. We computed the difference 

between the Vgg-face and AlexNet matrices (Figure 5A4), and then shuffled the rows and 

columns according to the first principle component of the difference matrix (Figure 5A5). 

After sorting, positive entries tended to be located at the bottom-left and the upper-right 

corner (square outlines in Figure 5A5): here a positive difference indicates the two faces are 

more similar under features of VGG-face than AlexNet; therefore the faces at the opposite 
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ends of PC1 are more likely to be confused by VGG-face. What do the faces at the two 

extremities look like? To examine the difference, we picked the first 100 faces and last 

100 faces along the direction of PC1, and divided them into 20 groups of 10 faces. An 

average face after shape normalization was generated for each group (Figure 5B). We see an 

interesting difference: The first 10 groups of faces show inhomogeneous illumination--some 

parts of faces, such as cheeks and hair, are brighter than other parts of the face, such as the 

mouth, while the last 10 groups of faces appear more homogeneously illuminated.

In the analyses of Figure 5, we used a database, CAS-PEAL, which contains only Chinese 

faces. Is this observation unique to Chinese faces? We repeated the same analysis for 748 

Caucasian faces. Similar to CAS-PEAL faces, we found that the face groups eliciting a 

much more similar representation by Vgg-face compared to AlexNet consisted of faces with 

unbalanced versus homogeneous illumination (Figure S5). In sum, we found that VGG-face 

is much less sensitive to illumination differences than both AM cells as well as AlexNet, and 

this likely contributes to the inferior ability of Vgg-face to predict AM responses compared 

to AlexNet.

Discussion

Face processing has been a subject of intense research effort in both visual neuroscience 

and computer vision, naturally raising the question, what, if any, computer vision model of 

face representation best matches that used by the primate brain. A recent paper found the 

2D Morphable Model, a classic model of face representation from computer vision, could 

explain neural activity in face patches remarkably well [4]. At the same time, a number of 

groups have found that activity in deep layers of convolutional neural networks can explain 

significant variance of neural responses in ventral temporal cortex [26, 29–32]. Here, we 

extend those results by comparing the efficacy of a large number of different computational 

models of face representation to account for neural activity in face patch AM. We were 

especially interested in how the 2D morphable model, a simple and explicit graphical model, 

would compare to Vgg-face, a black box deep neural network dedicated to face recognition 

containing hundreds of thousands of parameters and trained on nearly a million (982,803) 

facial images. Our findings suggest that the 2D Morphable Model is better than most 

other models in explaining the neuronal representation of real faces including Vgg-face. 

For faces without background, the 2D Morphable Model allowed better linear coding of 

neural responses by model features than every model except CORnet-Z, whose performance 

it matched, with differences depending on presence of background and hair (specifically, 

the 2D Morphable Model performed worse than CORnet-Z for faces with both hair and 

backgrounds, comparably to CORnet-Z for faces with no backgrounds, and better than 

CORnet-Z for faces without hair reconstructed by 3D Morphable Model). This is surprising, 

since the 2D Morphable Model is one of the oldest models for face representation (next to 

the Eigenface model). Furthermore, the 2D Morphable Model matched AlexNet in its ability 

to explain CORnet-Z features (Figure S4C, row 7). Since AlexNet is a deep network whose 

architectural principles and training procedure CORnet-Z explicitly emulates, these results 

suggest that the face subspace portion of the representation learned by CORnet-Z may be 

interpreted in simpler and more explicit terms, as a shape appearance model. The results 

provide an important counter-example to the increasingly popular view that only distributed 
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representations learned by multi-layer networks can well explain IT activity [33–35]. Why a 

network trained on object classification should learn an approximation to a generative model 

of faces is an interesting question for future research.

A recent theoretical study found that a deep neural network, when trained on certain tasks, 

gradually abandons information about the input unrelated to the task in its deep layers [36]. 

Thus artificial neural networks are unlikely to be fully identical to the brain, since the tasks 

both systems are trained on are unlikely to be identical. It makes sense that VGG-face is 

not able to distinguish illumination, since the identity of an individual does not depend on 

illumination. Why does AlexNet still contain information about illumination? It is possible 

this occurs because AlexNet has not been trained specifically on face identification, and 

illumination-related features are useful for more general object classification tasks (e.g., 

distinguishing a concave hole from a convex bump [37]). In contrast, it appears that VGG­

face is so specialized that any information unrelated to identity is filtered out in the end. 

The representation of illumination in AlexNet and its superior performance in predicting 

neural is in line with the observation that our recognition of unfamiliar faces is susceptible to 

changes in lighting conditions [38].

The fact that object-general Cornet-Z model largely did as well as the face-specific 

2DMorphable model in explaining face cell responses, much better than VGG-face, 

suggests that macaque face cells may not be entirely “domain-specific,” but have a more 

“generalist” function than previously understood. Within the face domain, face cells are 

not over-specialized for facial identification, but rather may provide an array of high-level 

information related to different aspects of faces in the visual field. Because the 2D 

Morphable Model retains all information needed to reconstruct a face, it should be able 

to perform well on any face-related task.

The finding that CORnet-Z was the best model among CORnet-Z, -R, and -S for encoding 

face cell responses was somewhat surprising, as CORnet-Z is the simplest model, with a 

purely feed-forward structure, while CORnet-R and CORnet-S are recurrent models [13]. 

This could be a result of stimulus selection: the recurrent layers could help establish 

invariance in complex/difficult situations, but may not be an advantage in our case, since 

our stimuli are well aligned. This suggests the results of model comparison depend on 

the stimuli being used in the study. This also indicates the relatively narrow range of our 

stimulus space (mostly single faces with simple background) may limit the generality of our 

results. Further studies will require extending the comparison to more complex situations.

Overall, our analyses comparing a large number of models in terms of their ability to 

explain responses of cells in face patch AM show that a simple and explicit generative face 

model, the 2D Morphable Model, performs surprisingly well—rivaling or surpassing the 

deep network classifiers considered. This result supports the hypothesis that deep networks 

may be generally understood as inverting generative models [39, 40]. Several other lines of 

research investigating the representation of non-categorical variables in IT neurons have also 

converged on the same idea [41, 42]. This raises the possibility the generative models, such 

as 2D Morphable Model, could help us reveal the mechanisms underlying face recognition 

in both the primate brain and the “black box” neural networks. Furthermore, the extremely 
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poor performance of a deep network trained for face recognition in explaining face cell 

responses may give insight into the constraints shaping face patch development, raising the 

possibility that face patches may be optimized not for face recognition per se but instead for 

face reconstruction supporting arbitrary face-related behaviors.

STAR Methods

Resource Availability

Lead Contact—Further information and requests for reagents and resources should be 

directed to an d will be fulfilled by Dr. Doris Tsao (dortsao@caltech.edu).

Materials availability—This study did not generate new unique reagents.

Data and code Availability—The raw data supporting the current study have not been 

deposited in a public repository because of the complexity of the customized data structure 

and the size of the data but are available from the Lead contact on request.

Experimental Model and Subject Details

Monkey—Two male rhesus macaques (Macaca mulatta) of 7–10 years old were used in 

this study. Both animals were pair-housed and kept on a 14 hr/10hr light/dark cycle. All 

procedures conformed to local and US National Institutes of Health guidelines, including 

the US National Institutes of Health Guide for Care and Use of Laboratory Animals. All 

experiments were performed with the approval of the Caltech Institutional Animal Care and 

Use Committee (IACUC).

Method Details

Face Patch Localization—Two male rhesus macaques were trained to maintain fixation 

on a small spot for juice reward. Monkeys were scanned in a 3T TIM (Siemens, Munich, 

Germany) magnet while passively viewing images on a screen. Feraheme contrast agent was 

injected to improve signal/noise ratio. Face patches were determined by identifying regions 

responding significantly more to faces than to bodies, fruits, gadgets, hands, and scrambled 

patterns, and were confirmed across multiple independent scan sessions. Additional details 

are available in previous publications [1, 43, 44].

Single-unit Recording—Tungsten electrodes (18–20 Mohm at 1 kHz, FHC) were 

back loaded into plastic guide tubes. Guide tubes length was set to reach approximately 

3–5 mm below the dura surface. The electrode was advanced slowly with a manual 

advancer (Narishige Scientific Instrument, Tokyo, Japan). Neural signals were amplified 

and extracellular action potentials were isolated using the box method in an on-line spike 

sorting system (Plexon, Dallas, TX, USA). Spikes were sampled at 40 kHz. All spike data 

were re-sorted with offline spike sorting clustering algorithms (Plexon). Only well-isolated 

units were considered for further analysis.

Behavioral Task and Visual Stimuli—Monkeys were head fixed and passively viewed 

the screen in a dark room. Stimuli were presented on a CRT monitor (DELL P1130). 
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The intensity of the screen was measured using a colorimeter (PR650, Photo Research) 

and linearized for visual stimulation. Screen size covered 27.7*36.9 visual degrees and 

stimulus size spanned 5.7 degrees. The fixation spot size was 0.2 degrees in diameter and 

the fixation window was a square with the diameter of 2.5 degrees. Images were presented 

in random order using custom software. Eye position was monitored using an infrared eye 

tracking system (ISCAN). Juice reward was delivered every 2–4 s if fixation was properly 

maintained. For visual stimulation, all images were presented for 150 ms interleaved by 

180 ms of a gray screen. Each image was presented 3–5 times to obtain reliable firing rate 

statistics. In this study, two different stimulus sets were used:

a. A set of 16 real face images, and 80 images of objects from nonface categories 

(fruits, bodies, gadgets, hands, and scrambled images) [1, 43, 44].

b. A set of 2100 images of real faces from multiple face databases, FERET face 

database [16, 17], CVL face database [18], MR2 face database [19], PEAL face 

database [20], AR face database [21], Chicago face database [22] and CelebA 

database [23]. 17 online photos of celebrities were also included.

c. A set of 220 real face images, with 28 identities at 6–8 head orientations [1].

Quantification and Statistical Analysis

Selection of face selective cells—To quantify the face selectivity of individual cells, 

we defined a face-selectivity index as:

FSI = mean responseface − mean responsenonface objects
mean responseface + mean responsenonface objects

(1)

The number of spikes in a time window of 50–350 ms after stimulus onset was counted 

for each stimulus. Units with high face selectivity (FSI > 0.33) were selected for further 

recordings.

Extraction of facial feature from images—Each facial image was fed into the 

following models to extract corresponding features:

1) 2D Morphable Model: This is the same model as used in our previous paper [4] and 

feature extraction followed the procedure of previous papers on active appearance modeling 

[2, 3]. First, a set of 80 landmarks were labeled on each of the 2100 facial images. Out 

of the 80 landmarks, 68 were automatically labeled using an online package (“menpo”, 

http://www.menpo.org) and the remaining 12 were manually labeled. The positions of 

landmarks were normalized for mean and variance for each of the 2100 faces, and an 

average shape template was calculated. Then each face was smoothly warped so that the 

landmarks matched this shape template, using a technique based on spline interpolation [45]. 

This warped image was then normalized for mean and variance and reshaped to a 1-d vector. 

Principal component analysis was carried out on positions of landmarks and vectors of 

shape-free intensity independently. Equal numbers of shape PCs and shape-free appearance 

PCs were extracted to compare with other models (25 shape/25 appearance PCs vs. 50 

features of other models; 55 shape/55 appearance PCs vs. 110 features of other models). 
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This model was also used to generate images without background used in Figure 2B. In this 

case, we first morphed all 2100 faces to the shape template, defined a mask for the standard 

shape to remove the background, and then morphed the masked facial image back to the 

original shape.

2) 3D Morphable Model: We built a grayscale variant of the Basel Face Model [10] from 

the original 200 face scans. The ill-posed 3D reconstruction from a 2D image was solved 

using [46] and the publicly available code from [47]. The first 50 principal components for 

the shape and color model respectively were adapted during the model adaptation process. 

The sampling-based method was initialized with the same landmarks as provided to the 

2D Morphable Model. The pose was fixed to a frontal pose and the spherical harmonic 

illumination parameters were estimated robustly using [48] and the average illumination 

condition was fixed for the whole dataset. Note that the full complexity and flexibility of the 

3DMM is not explored when analyzing frontal images only. Besides the model adaptation 

novel views where generated using the standard 3DMM pipeline by changing the head 

orientation and camera parameters. The images with varying head orientations were used to 

construct the Hebbian learning model (see below).

3) Eigenface model: PCA was performed on the original image intensities of 2100 faces 

and top 50/110PCs were extracted to compare with other models.

4) Pre-trained neural network models: We loaded 2100 facial images into the following 

pre-trained neural networks: (1) a MATLAB implementation of AlexNet: This network 

contains 8 layers: 5 convolutional layers and 3 fully connected layers, and has been pre­

trained to identify a thousand classes of non-face objects. (2) a MATLAB implementation 

of Vgg-face neural network [5]. This network contains 16 layers: 13 convolutional layers+3 

fully connected layers, and has been pre-trained to recognize faces of 2622 identities. (3) 

a MATLAB implementation of Vgg-19 neural network [12]. This network contains 19 

layers: 16 convolutional layers and 3 fully connected layers, and has been pre-trained to 

identify a thousand objects. (4) a PyTorch implementation of CORnet [13]. The CORnet 

family includes three networks: CORnet-Z, CORnet-R, and CORnet-S. All three models 

have four areas that are identified with cortical areas V1, V2, V4, and IT. CORnet-Z is the 

simplest model of the three, involving only feedforward connections, CORnet-R introduces 

recurrent dynamics within each area into the otherwise purely feed-forward network, 

and CORnet-S is the most complicated (containing the most convolutional layers and 

including skip connections), aiming to match neural and behavioral data. The three CORnet 

models have been pre-trained to identify a thousand classes of objects. Parameters of the 

first three pretrained networks were downloaded from: http://www.vlfeat.org/matconvnet/

pretrained/. CORnets were downloaded from: https://github.com/dicarlolab/CORnet. PCA 

was performed on activation of units in the penultimate layers (IT area in the case of 

CORnet), and top 50/110PCs were extracted to compare with other models.

5) β-VAE model: We used the standard architecture and optimisation parameters 

introduced in [14] for training the β-VAE. The encoder consisted of four convolutional 

layers (32×4×4 stride 2, 32×4×4 stride 2, 64×4×4 stride 2), followed by a 256-d fully 
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connected layer and a 50-d latent representation. The decoder architecture was the reverse 

of the encoder. We used ReLU activations throughout. The decoder parametrized a Bernoulli 

distribution. We used Adam optimizer with 1e-4 learning rate and trained the models for 1 

mln iterations using batch size of 16, which was enough to achieve convergence. The models 

were trained to optimize the following disentangling objective:

Lβ − V AE = Ep(x) Eqφ(z ∣ x) log pθ(x ∣ z) − βKL qφ(z ∣ x) ∥ p(z) (2)

where p(x) is the probability of the image data, q(z|x) is the learnt posterior over the latent 

units given the data, and p(z) is the unit Gaussian prior with a diagonal covariance matrix.

For the β-VAE model the main hyperparameter of interest that affects the quality of 

the learnt latent units is the value of β. The β hyperparameter controls the degree of 

disentangling achieved during training, as well as the intrinsic dimensionality of the learnt 

latent representation [14]. Typically a β>1 is necessary to achieve good disentangling, 

however the exact value differs for different datasets. Hence, we trained 400 models with 

different values of β by uniformly sampling 40 values of β in the [0.5, 20] range. Another 

factor that affects the quality of disentangled representation is the random initialization 

seed for training the models. Hence, for each β value, we trained 10 models from different 

random initialization seeds, resulting in the total pool of 400 trained β-VAE.

The recently proposed Unsupervised Disentanglement Ranking (UDR) score [49] was used 

to select 51 model instances with the most disentangled representations (within the top 

15% of UDR scores). The UDR score measures the quality of disentanglement achieved by 

trained β-VAE models [49]. A set of models were trained using the same hyperparameter 

setting but with different seeds, and pairwise similarity between the model representations 

were computed (higher similarity=better disentanglement).

6) Hebbian learning model: This is a biologically plausible model recently proposed to 

explain view invariance in face cells [15]. V1-like features (C1-layer of HMAX model) were 

extracted from the facial images. PCA was performed on V1-like encodings of a single 

identity at different head orientations: the ith PC of the kth identity is denoted as wik. The 

activation of the kth unit to a given face is μk(x) = ∑i = 1
r x, wik

2
, where x is the V1-like 

encoding of that face, and r is the number of PCs being used. In our experiment, we used 

rotated versions of the fitted 3D Morphable Models (from −90° to 90° in 5°increments) as 

inputs to this model (Figure 2C, 3C), resulting in 2100 such units. PCA was performed on 

activation of the 2100 units, and the top 50/110PCs were extracted. Since the 3D Morphable 

Model only fits part of the face and may not provide a satisfactory explanation of neural 

responses to full faces, we only implemented the Hebbian model on 3D-fits of the original 

images and compared it to other models under the same condition (Figure 2C, 2D, 3C, 3D).

Quantification of explained variance, encoding and decoding errors

To quantify explained variance, a 50-fold cross-validation paradigm was performed: 2100 

faces were split into 10 groups of 42 faces. Responses of each neuron to 49 groups of 

faces were fit by a linear regression model using PCs of a set of features, and the responses 
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of this neuron to the remaining group of 42 faces were predicted using the same linear 

transform. This process was repeated for all 50 groups, so every single face had a predicted 

response. Coefficient of determination (R2) was used to quantify the percentage of variance 

explained by the features. Due to noise in the neural data, even the perfect model could 

not achieve 100% explained variance, therefore the value was further divided by the noise 

ceiling, which was estimated as 1 − noise variance
variance of the signal . The noise variance was quantified 

by the mean squared error of neural responses for multiple repetitions of the same stimuli, 

averaged across all stimuli. Eleven neurons with noisy responses (noise ceiling<10%) were 

excluded from further analyses, resulting in a population of 148 AM neurons.

For encoding analysis, responses of each neuron were first normalized to zero mean and unit 

variance. The same procedure was followed to obtain a predicted response for every single 

face. To quantify prediction accuracy, we examined the predicted responses to individual 

faces in the space of population responses, and compared this to either the actual response 

to the face (target) or that to a distractor face. If the angle between the predicted response 

and distractor response was smaller than that between the predicted response and target 

response, this was considered as a mistake. Encoding error was quantified as the frequency 

of mistakes across all pairs of target and distractor faces. Wilcoxon signed rank test was used 

to determine statistical significance of difference between two models.

For decoding analysis, features of each model dimension were first normalized to zero mean 

and unit variance. The same procedure used in the encoding analysis was employed, except 

that the respective roles played by neural responses and model features were reversed.

To quantify the efficacy of the non-overlapping components of two models in predicting 

neural responses, model features were concatenated together. Explained variance was 

computed for the combined model, and unique explained variance of a single model was 

computed by subtracting the explained variance of the other model. Since the combined 

model has more features, direct comparison will be compromised by an unequal number 

of parameters. One way to deal with this issue is to use cross validation as in previous 

analyses--as a higher number of features will be compensated with higher likelihood of 

overfitting, however, we found the cross-validated explained variances for the combined 

models were often lower than that for single models, suggesting an overcompensation 

by overfitting. Therefore we took a different approach: the features of one model were 

randomly shuffled 50 times and concatenated with the original features of the other model to 

serve as the baseline, which was compared directly to the combined model. In each shuffle, 

50-d features of 2100 faces were randomly permuted across all faces, and the results were 

averaged across all shuffles.

Similarity matrix—Based on the normalized population response, a similarity matrix of 

correlation coefficients was computed between the population response vectors to each of 

the n faces. For neural network models, top 50 PCs of activation of units in the penultimate 

layers of the networks were used to represent faces.
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Figure 1. Stimulus and analysis paradigm.
A, 2100 facial photos from multiple face databases were used in this experiment. Three 

examples are shown. B, Images were presented to the animal while recording from the most 

anterior face patch AM (anterior medial face patch). The electrode track targeting AM is 

shown in coronal MRI slices from two animals. C, Each facial image was analyzed using 

9 different models. The same number of features were extracted from units of different 

models using principal component analysis (PCA) for comparison. D, Different models 

were compared with respect to how well they could predict neuronal responses to faces. 

A 10-fold cross-validation paradigm was employed for quantification: 2100 faces were 

evenly distributed into 10 groups. Responses of each neuron to 9 groups were fit by linear 

regression using features of a particular face model, and the responses of this neuron 

to the remaining 210 faces were predicted using the same linear transform. To quantify 

prediction accuracy, we compared predicted responses to individual faces in the space of 

population responses to either the actual response to that face or that to a distractor face. 

If the angle between predicted response and target response was smaller than that between 

predicted response and distractor response, the prediction was considered correct. All pairs 

of faces were used as both target and distractor and the proportion of correct predictions was 

computed.
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Figure 2. Comparing how well different models of face coding can explain AM neuronal 
responses to facial images.
A, For each model, 50 features were extracted using PCA and used to predict responses 

of AM neurons. Upper: Explained variances are plotted for each model. For each neuron, 

explained variance was normalized by the noise ceiling of that neuron (see STAR Methods). 

Error-bars represent s.e.m. for 148 cells. CORnet-Z performed significantly better than 

the other models (p<0.001 in all cases except from the 2D Morphable Model, p<0.01 

between CORnet-Z and the 2D Morphable Model, Wilcoxon signed-rank test), and the 

2D Morphable Model performed significantly better than the remaining models (p<0.01). 

Lower: Encoding errors are plotted for each model. Error-bars represent s.e.m. for 2100 

target faces (i.e., error was computed for each target face when comparing to 2099 

distractors, and s.e.m was computed for the 2100 errors). CORnet-Z performed significantly 

better than the other models (p<0.001 in all cases except from the 2D Morphable Model, 

p<0.01 between CORnet-Z and the 2D Morphable Model, Wilcoxon signed-rank test), 
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and the 2D Morphable Model performed significantly better than the remaining models 

(p<0.001). B, To remove differences between models arising from differential encoding 

of image background, face images with uniform background were presented to different 

models (see STAR Methods). CORnet-Z and 2D Morphable Model performed significantly 

better than the other models (p<0.001), with no significant difference between the two 

models (p=0.30 for explained variance; p=0.79 for encoding error). C, To create facial 

images without hair, each facial image in the database was fit using a 3D Morphable Model 

(left). The fits were used as inputs to each model. For example, a new 2D Morphable 

Model was constructed by morphing the fitted images to an average shape. 50 features were 

extracted from each of the models using PCA for comparison. D, Same as C, but for 110 

features. For 50 features, the 2D Morphable Model performed significantly better than the 

other models (p<0.001), while there was no significant difference between 3D Morphable 

Model and CORnetZ (p=0.19 for explained variance; p=0.21 for encoding error) or between 

3D Morphable Model and AlexNet (p=0.56 for explained variance; p=0.06 for encoding 

error). For 110 features, the 3D Morphable Model outperformed all other models (p<0.01 

between 2D Morphable Model and 3D Morphable Model for explained variance; p<0.001 in 

all other cases). Also see Figures S1, S2, and S3.
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Figure 3. Comparing how well AM neuronal responses to facial images can explain different 
models of face coding.
A, For each model, 50 features were extracted using PCA and responses of AM neurons 

were used to predict the model features. Decoding errors are plotted for each model. 

Error-bars represent s.e.m for 2100 target faces (i.e., error was computed for each target 

face when comparing to 2099 distractors, and s.e.m was computed for the 2100 errors). 

CORnet-Z performed significantly better than the other models (p<0.001) except from the 

2D Morphable Model (p=0.08, Wilcoxon signed-rank test), and the 2D Morphable Model 

performed significantly better than the remaining models (p<0.01). B, To remove differences 

between models arising from differential encoding of image background, face images with 

uniform background were presented to different models (see STAR Methods). CORnet-Z 

and 2D Morphable Model performed significantly better than the other models (p<0.001), 

with only a small difference between the two models (p=0.03). C, To create facial images 

without hair, each facial image in the database was fit using a 3D Morphable Model (left). 

The fits were used as inputs to each model. For example, a new 2-D Morphable Model was 

constructed by morphing the fitted images to an average shape. 50 features were extracted 

from each of the models using PCA for comparison. D, Same as C, but for 110 features. 

For 50 features, the 2D Morphable Model and 3D Morphable model performed significantly 

better than the other models (p<0.001), with no significant difference between the two 

models (p=0.42). For 110 features, the 3D Morphable Model outperformed all other models 

(p<0.001). Also see Figures S1, S2, and S3.
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Figure 4. Measuring neural variance uniquely explained by the 2D Morphable Model and other 
models
Fifty model features from the 2D Morphable Model and a different model were 

concatenated, and neural responses were fit using all 100 features as regressors. The 

explained variance was then subtracted by the contribution from each individual model, 

to quantify the efficacy of the non-overlapping components of the two models in predicting 

neural responses.

A, Percentage of neural variance uniquely explained by various models compared to the 

2D Morphable Model, for images after background removal (cf. Figure 2B). B, Percentage 

of neural variance uniquely explained by the 2D Morphable Model compared to other 

models. C and D, same as A and B, but for images fit by the 3D Morphable Model (cf. 

Figure 2C). Error-bars represent s.e.m. for 148 cells. See Figure S3G-H for a layer-wise 

analysis of neural variance uniquely explained by AlexNet and CORnets compared to the 2D 

Morphable Model and vice versa. Also see Figure S4.
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Figure 5. Vgg-face features and AlexNet features show a marked difference in coding 
illumination levels.
A, Similarity matrices were computed for 913 faces from CAS-PEAL database using AM 

population responses (A1) and features of two network models, AlexNet (A2) and Vgg­

face (A3). Each entry indicates the correlation between representations of two faces. The 

difference between the two matrices derived from the network models was computed (A4). 

Rows and columns of the differential matrix were shuffled according to the first principal 

component of the difference matrix (A5). The red squares outline face pairs taken from 

the first and last 100 faces: these face pairs showed a significantly higher representational 

similarity by Vgg-face compared to AlexNet. B, First 100 faces and last 100 faces along 

the direction of PC1 were divided into 20 groups of 10 faces. An average face after shape 

normalization was generated for each group. Also see Figure S5.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Rhesus macaques (Macaca mulatta) UC Davis primate research center N/A

Software and Algorithms

MATLAB MathWorks http://mathworks.com/

MatConvNet VLFeat http://www.vlfeat.org/matconvnet

Basel face model Gravis Research Group, University of Basel https://github.com/unibas-gravis/basel-face­
pipeline

Menpo Intelligent Behaviour Understanding Group, 
Imperial College London

http://www.menpo.org

Other

Tungsten Microelectrode FHC Lot #:221355
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