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Despite evidence of health benefits from kefir administration, a systematic review with meta-analysis on bioactive compounds
associated with these benefits is still absent in the literature. Kefir is fermented milk resulting from the metabolism of a
complex microbiota in symbiosis. Recent researches have investigated the bioactive compounds responsible for the preventive
and therapeutic effects attributed to kefir. However, differences in functional potential between industrial and artisanal kefir are
still controversial. Firstly, we identified differences in the microbial composition among both types of kefir. Available evidence
concerning the action of different bioactive compounds from kefir on health, both from in vitro and in vivo studies, was
subsequently summarized to draw a primary conclusion of the dose and the intervention time for effect, the producer
microorganisms, the precursor in the milk, and the action mechanism. Meta-analysis was performed to investigate the
statistically significant differences (P < 0.05) between intervention and control and between both types of kefir for each health
effect studied. In summary, the bioactive compounds more commonly reported were exopolysaccharides, including kefiran,
bioactive peptides, and organic acids, especially lactic acid. Kefir bioactive compounds presented antimicrobial, anticancer, and
immune-modulatory activities corroborated by the meta-analysis. However, clinical evidence is urgently needed to strengthen
the practical applicability of these bioactive compounds. The mechanisms of their action were diverse, indicating that they can
act by different signaling pathways. Still, industrial and artisanal kefir may differ regarding functional potential—OR of 8.56
(95% CI: 2.27-32.21, P <.001)—according to the observed health effect, which can be associated with differences in the
microbial composition between both types of kefir.

1. Introduction fermentation by microorganisms that live in symbiosis in kefir

grains. Kefir differs from other fermented milk because it is a
Fermentation of a matrix produces kefir. Milk is the matrix =~ metabolic result of a diversity of microorganisms. Lactose fer-
generally used, resulting in a beverage acidic, slightly alco-  menting and nonfermenting yeast species (Kluyveromyces,
holic, and with a creamy consistency [1]. It results from milk  Pichia, and Saccharomyces), with a predominance of lactic
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acid bacteria (Lactobacillus, Lactococcus, Leuconostoc, and
Streptococcus), besides acetic acid bacteria [2] make up the
grain’s microbiota.

In recent years, there has been an increase in scientific
research on kefir motivated by the association of beverage
consumption with therapeutic effects [3]. Regular consump-
tion of kefir has been associated to the reduction of severity
of inflammatory bowel disease [4], antihypertensive effect
[5], anticarcinogenic effect [6], increased insulin sensitivity
[7], improved lipid profile [8], therapeutic effects on osteo-
porosis [9], and neurodegenerative disease [10]. The positive
health effects have been related to the antioxidant capacity
[11] and modulation of the intestinal microbiota [12] by
the kefir drink. Bioactive compounds present in kefir, pro-
duced by microorganisms during fermentation and storage
of beverage, have been attributed to these benefits; kefiran,
exopolysaccharides, bioactive peptides, and organic acids
are the bioactive compounds commonly implicated with
the therapeutic potential of kefir [13-17]. However, there is
still a need for a deeper discussion about the bioactive com-
pounds present in the kefir drink [13] to distinguish them
according to their therapeutic potential for each disease.

In addition, the possible difference in the functional poten-
tial between artisanal and industrial kefir is controversial in
the literature. The use of kefir grains results in artisanal kefir
[18], while previously selected starter culture of bacteria and
yeast species leads to commercial or industrial kefir [19]. Some
studies have reported artisanal kefir with greater therapeutic
potential due to its greater microbiological diversity [20, 21].
In contrast, other studies have described industrial kefir as
promising in treating diseases [22], while Ebner et al. [23] have
found no significant difference between both. In this context, a
meta-analysis could be helpful to elucidate the inconsistencies
observed between studies.

Thus, there have been some reports on bioactive com-
pounds from kefir and health benefits in recent years. However,
there is still a lack of an overview and in-depth approach in this
research field, so a systematic review with meta-analysis will be
relevant for this purpose. Therefore, it is necessary to summa-
rize the bioactive compounds from kefir produced by different
microorganisms that make up its microbiota, their beneficial
effects, action mechanisms, and their precursors in the milk.
Based on this knowledge, it will be possible to provide a theo-
retical basis for developing functional formulations by the food
industry to prevent specific diseases. In addition, the pharma-
ceutical industry may prepare formulations with therapeutic
potential from bioactive compounds isolated from kefir. In this
scenario, this review summarized the antimicrobial, antioxi-
dant, immune-modulatory, gut microbiota-modulatory, anti-
cancer, antiosteoporosis, antihypertensive, antidiabetic, and
lipid profile-modulatory role of the bioactive compounds from
milk’s kefir. Prevention and treatment of neurodegenerative
diseases also were covered. The functional differences between
both types of kefir finished this review.

2. Methods

2.1. Focus Questions. The development of the question was
according to the population, intervention, comparison, and
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outcome (PICO) method. The questions formulated were
as follows: What are the bioactive compounds in milk kefir
and their producing microorganisms? What are the precur-
sors of these bioactive compounds in milk? What are the
mechanisms of action of the main bioactive compounds in
kefir? Do bioactive compounds differ in terms of concentra-
tion and intervention time to obtain the same effect on
health? Is artisanal kefir drink more functional than the
one produced industrially?

2.2. Data Collection Process and Eligibility Criteria. Two
authors (C.P.V and A.P.A.C) independently conducted the
preliminary selection of identified abstracts and titles of
research articles published in English; we removed the time
filter not to limit the number of manuscript resulting. Thus,
the initial screening publications covered the period from
1986 to 2021. Abstracts were then removed in this initial
screening if the papers did not investigate any of the follow-
ing health aspects: antimicrobial activity, antioxidant activ-
ity, effect on cancer, neurodegenerative diseases, lipid
profile, blood pressure, plasma glucose, gut microbiota mod-
ulation, inflammation, and osteoporosis both in vitro, in situ,
in vivo animal, and human clinical trials. The criterion used
to choose these specific health benefits was that they had
been the most investigated in the scientific literature in the
last two decades [24-26]. Papers about nonmilk kefir were
excluded, including editorials, letters, reviews, commentar-
ies, monographs, preprints, and Ph.D. thesis. Based on the
entire reading of the paper, all studies included in the pres-
ent work were controlled experiments and with a quantita-
tive approach for data analysis. Only studies in which it
was possible to determine the bioactive compounds respon-
sible for the observed health effect were included. Studies
addressing the microbial composition of kefir grains or
starter culture of milk kefir were also included. Some studies
considered essential to compose the present work such as
those that address conventional therapies, recent reviews
on the effect of kefir, and pathology of the diseases studied
that was not included in any of the research bases were
added to compose our introduction and discussion.

Finally, we summarized information about the type of
kefir (artisanal or industrial) from which the bioactive com-
pound was derived, the study model, the definition of the
bioactive compound, and its effects compared to the control
treatment. The results were reported in agreement with the
Preferred Reporting Items for Systematic Review and
Meta-Analyses (PRISMA) statement.

2.3. Information Sources. Our search protocol strategy used
search strings constructed and adapted for five electronic
databases: Science Direct, Pubmed, Embase, Web of Science,
and Scopus. The initial screening process was conducted
from February 2021 to March 2021. Also, directed searching
was carried out by checking the reference lists of relevant
articles. The research questions were used to summarize
the search strings through which the manuscripts were
recovered. The string was based on predetermined groups
of keywords related to microbial composition of artisanal
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and industrial milk kefir, bioactive compounds in the milk
kefir, and their effect on health, as follows:

(i) Search Component 1. microorganisms OR “microbial
composition” OR “kefir grains” OR “starter culture”
AND “milk kefir”

(ii) Search Component 2. “bioactive compounds” OR
“functional compounds” AND “milk kefir”

(iii) Search Component 3. “health benefits” OR “health
effects” OR “functional effects” AND “milk kefir”

2.4. Risk of Bias Assessment. Possible sources of bias include
eligibility criteria, the impact of missing data, missing pri-
mary results, chosen database, chosen language (English),
and article type selected for our review.

2.5. Meta-Analysis. Two authors (A.LL.S.R and D.K.A.R) to
conduct the meta-analysis extracted data from the included
articles. Any inconsistency in retrieved data was solved by
discussion. In vitro, in situ, and in vivo papers were pooled
for examination. From every publication, each different out-
come point was extracted as an independent study. Then, we
investigated a statistically significant difference between
intervention and control. However, only health effects with
an appropriate number of studies were included in the
meta-analysis: antimicrobial (including eight groups of
microorganisms, totalizing 182 in vitro and in situ studies
from 15 papers), antioxidant (149 in vitro and in situ studies
included in 7 articles), anticancer (44 in vitro studies
comprising five publications), immune modulation (271
in vitro and in vivo studies from 11 papers), and microbiota
modulation (40 in vitro and in vivo studies retrieved from 5
publications) effects.

The analyses were conducted evaluating the presence or
absence of health benefits for the different outcomes. The
definitions of presence/lack of action varied across publica-
tions, as different methodologies were used on the selected
studies. In this case, the resolution was directed by three
authors based on the specific outcome. For example, consid-
ering antimicrobial research, if a result was expressed in log
UFC, decreasing log UFC by kefir treatment was deemed
“presence of action.” Similarly, if a study result was defined
as an inhibition zone, reducing zone size (mm) by kefir
treatment was considered a “lack of action”.

In addition, to measure the heterogeneity among studies,
I? test was used. The I assumes the null hypothesis that all
the studies are homogeneous or that each study is measuring
an identical effect so that a P value tests this hypothesis. In
this scenario, the I* statistic describes the percentage of var-
iation across studies due to inconsistency (heterogeneity)
rather than sampling error (chance). A significance level of
0.05 was used herein. Studies with I* < 50% were considered
homogenous. The I? was quantified as follows [27]:

I (%) = (Q_Tdf)loo, (1)

where I? is the inconsistency across studies, Q is the Cochran’s
heterogeneity statistic, and d; is the degrees of freedom.

Subsequently, functional differences between artisanal
and industrial kefir were investigated for health effects. Both
types of kefir were tested: antimicrobial (182 in vitro and in
situ studies) and antioxidant activity (149 in vitro and in situ
studies). Then, studies were analyzed to compare the health
effects of consuming artisanal kefir drinks rather than the
industrial variety, evaluated by odds ratio (OR) and corre-
sponding 95% confidence intervals (CIs). All analyses were
performed using Review Manager 5.4 (Cochrane Collabora-
tion, London, UK).

3. Results

3.1. Literature Search. There were 451 articles identified at
Web of Science, 242 at Embase, 180 at Scopus, 107 at
Pubmed, and 37 at Science Direct. Still, 8 articles were man-
ually identified by other sources for addition of effect on
neurodegenerative disease. Of these, 333 were duplicates or
triplicates and were excluded, with 692 papers remaining.
After reading the titles and abstracts, 263 papers were
selected for the full read, but only 88 met the eligibility cri-
teria (Figure 1). Among the articles read in full, the main
reasons for exclusion were as follows: nonidentification of
the bioactive compound (n =112) and uncontrolled experi-
ments (n=23). This highlights the need for experiments
with a more elaborate experimental design, as well as that
identify the bioactive compound responsible for the health
effects observed due to the use of kefir.

3.2. Meta-Analysis: Study Selection and Characteristics. Data
extraction for meta-analysis consisted of 45 papers. Studies
were conducted in Argentina, Brazil, Canada, China, Egypt,
Iran, Italy, Japan, Malaysia, South Korea, Thailand, Taiwan,
Turkey, the United Kingdom, and the United States of
America. The publication year of studies ranged from 2005
to 2021. The concentration of kefir used in the studies varied
between 0.01 and 1000 mg/mL. The interventions lasted
between 0.5 and 1344 hours.

3.3. Structure and Microorganisms of the Kefir Grains. Kefir
is a beverage commonly produced from milk and involves
a complex fermentative process from the microbiological
diversity in “kefir grains” [28]. Typically, kefir grains are
inoculated into milk in proportions of 5% to 10% [29],
which gives characteristics such as a creamy fermented milk
with a slightly acidic taste depending on the starter culture
and mixture of the inoculated microorganisms [1].

The diversity of the “kefir grains” embraces numerous
symbiotic interactions between lactic acid bacteria (LAB),
acetic acid bacteria, mycelial fungi, and yeasts [2], resulting
in an acidic and alcoholic fermentation [30]. These microor-
ganisms present in kefir are interspersed in a matrix composed
of proteins and polysaccharides [31]. Macroscopically, this
matrix can be characterized as solid, cauliflower-like grains
viscous and firm consistency, with a color that varies from
white to yellowish [32, 33].
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® Review article (n = 2)

Studies included in qualitative synthesis (n = 88)

|
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Fi1GURE 1: PRISMA flow diagram with results of the systematic search.

According to Khokhlacheva et al. [34], the consortium
between microorganisms that evolves an adaptive capacity
and enzymatic activity is the key mechanism for their
development and survival in milk kefir. In kefir grains, the
lactic acid bacteria (LAB) usually present greater levels when
compared with acetic acid bacteria. This composition pre-
sents itself dynamically and generally changes according to
the fermentation time, where the dominance of Lactobacillus
kefiranofaciens can be observed in the early stages of fermen-
tation, giving rise to the most prominent growth of Leuconos-
toc mesenteroides in the final stages of the process [35]. Several
studies around the world are aimed at determining the com-
position of kefir microbiota (Table 1) since it varies according
to geographic, climatic, and cultural factors [33, 36].

The inoculated kefir grains ferment the artisanal kefir [18],
while a previously selected starter culture of bacteria and yeast
species results in commercial or industrial kefir [19]. Accord-
ing to Table 1, although the Lactobacillus and Lactococcus gen-
era predominate in both types of kefir, Enterococcus was not
reported in industrial kefir. Another important aspect can be

pointed out in industrial kefir by commercial species not
commonly found in artisanal kefir: Saccharomyces boulardii,
Lactobacillus lactis, Bifidobacterium lactis, Bifidobacterium
longum, Bifidobacterium breve, and Lactobacillus reuteri.
Korsak et al. [29] corroborated these findings, reporting that
industrial kefir is typically composed of selected cultures and
conventionally used in dairy products.

Concerning fungal composition, although both types of
kefir have presented common species, such as Saccharomy-
ces cerevisiae, Kluyveromyces marxianus, and Kazachstania
unispora, the fungal diversity in artisanal kefir was dramati-
cally greater. In addition, Kazachstania exigua, Kazachstania
turicensis, and Saccharomyces florentinus were reported only
in industrial kefir (Table 1). Other differences between both
kefirs include differences in efficiency under conditions of
nutrient competition [41], location and adhesion of micro-
organisms in the structure of kefir grains, or even different
abilities of species to grow in milk [18].

However, more microbiota characterization from arti-
sanal and industrial kefir is necessary to define the microbial
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TaBLE 1: Microbiological diversity in artisanal and industrial milk kefir.

Type of kefir Microbial diversity Source of kefir culture

References

A. syzygii K03D05, Lb. plantarum K03D08 Chile

Lb. plantarum CIDCA 83114, KI. marxianus CIDCA
8154, Streptococcus thermophilus CIDCA 321

Kz. unispora, Kodamaea ohmeri, Sc. boulardii, Sc.
cerevisiae

Argentina

Malaysia

A. fabarum, A. orientalis, D. anomalus, KI.
marxianus, Kz. exigua, Kz. turicensis, Kz. unispora,
Industrial Lb. kefiranofaciens ssp. kefiranofaciens, Lb.
kefiranofaciens ssp. kefirgranum, Lb. kefiri, Lb. Germany
helveticus, Lb. paracasei, Lb. parakefiri, Lb. reutrei,
Lc. lactis ssp. cremoris, Lc. lactis ssp. lactis, Ln.
mesenteroides, Sc. cerevisiae

Lb. lactis, Lb. rhamnosus, Lb. plantarum, Lb. casei, Sc.
florentinus, Ln. mesenteroides subsp. cremoris, Bif.
lactis, Bif. longum, Bif. Breve, Lb. acidophilus, Lb.
reuteri, Streptococcus diacetylactis

Canada

Dinamarca et al., 2021

Kakisu et al., 2011

Azhar et al, 2019

Nejati et al., 2020

Bourrie et al., 2021

Aspergillus amstelodam, Cordyceps bassiana,
Fusarium solani, Lb. casei, Lb. kefiranofaciens, Lb.
kefiri, Lb. mali, Lb. paracasei, Lb. satsumensis, Lc. Brazil
lactis, Lc. lactis ssp. cremoris, Lc. lactis ssp. lactis, Ln.
mesenteroides
Enterococcus durans, Lb. kefiri, Lc. lactis, Ln.
mesenteroides subsp. dextranicum
Lactobacillus sp., Lb. delbrueckii, Lb. kefiri, Lb.
paracasei, Lb. plantarum, Lb. sakei, Lc. lactis, Ln. Russia
gelidum, Ln. mesenteroides, Pediococcus pentosaceus

Taiwan

Cryptococcus sp. vega, Cyberlindnera jadinii,
Davidiella tassiana, Dekkera bruxellensis, Dioszegia
hungarica, Eurotium amstelodami, Ganoderma
lucidum, Heterobasidion annosum, Kz. barnettii, Kz.
Unispora, Kl. marxianus, Malassezia pachydermatis,
Microdochium nivale, Naumovozyma Castelli,
Penicillium sp. vega, Peziza campestres, Pichia
fermentans, Pichia kudriavzevii, Sc. cerevisiae,
Teratosphaeria knoxdaviesii, Wallemia sebi,
Zygosaccharomyces lentus

Artisanal Italy, Canada, Germany

A. fabarum, A. okinawensis, A. orientalis,
Enterococcus durans, Kz. unispora, Kl. marxianus, Turke
Lb. diolivorans, Lb. kefiri, Lb. kefirofaciens, Lb. Y
otakiensis, Lb. paracasei, Lc. lactis, Sc. cerevisiae

A. orleanensis, A. pasteurianus, Acidocella
aluminiidurans, Gluconobacter morbifer, Lb.

acidophilus, Lb. apis, Lb. casei, Lb. crispatus, Lb. South Korea, Ireland,
delbrueckii, Lb. gigeriorum, Lb. helveticus, Lb. Lithuania, Britain, the
kefiranofaciens, Lb. paracasei, Lb. rhamnosus, Lb. Caucuses

ultunensis, Lc. lactis, Lent. Kefiri, Ln. mesenteroides,
Streptococcus thermophilus

Lactobacillus helveticus Indonesia

Ireland, United Kingdom,
United States, Spain, France,

Brasiel et al., 2021 [37]; Leite et al.,
2015 [32]; Vieira et al., 2017 [38];
Zanirati et al., 2015 [36]

Chang-Liao et al., 2020

Khokhlacheva et al. 2015 [34];
Mantzourani et al., 2019 [39]

Marsh et al., 2013 [33]

Purutoglu et al., 2020

Sindi et al., 2020 [40]

Raras et al. 2019
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TaBLE 1: Continued.

Type of kefir Microbial diversity

Source of kefir culture References

A. syzygii, Alternaria tenuissima, Bacillus
sporothermodurans, Cladosporium cladosporioides,
Didymella negriana, Filobasidium magnus,
Hanseniaspora thailandica, KI. Marxianus, Kz.
unispora, Lb. Kefiranofaciens, Lb. parakefiri, Lb.
plantarum Lc. lactis, Ln. pseudomesenteroides, Sc

Ar(t;sanal cerevisiae, Pichia manshurica, Pichia orientalis,
an . Pichia fermentans, Torulaspora delbrueckii
industrial

Wickerhamiella pararugosa

A. lovaniensis, A. orientalis, Enterobacter amnigenus,

Gluconobacter frateurii, Gluconobacter cerinus, Kz.
khefir, KI. marxianus, Lb. kefiranofaciens, Lb.
parakefiri, Lb. kefiri, Lc. lactis, Ln. mesenteroids,
Naumovozyma sp.

Bosnia and Herzegovina Garofalo et al., 2020 [18]

Belgium Korsak et al., 2015 [29]

A.: Acetobacter; Bif.: Bifidobacterium; KI.: Kluyveromyces; Kz.: Kazachstania; Lb.: Lactobacillus; Lc.: Lactococcus; Ln.: Leuconostoc; Sc.: Saccharomyces.

similarities and particularities between these two types of
milk kefir. This characterization is highly relevant since the
beverage’s bioactive compound profile is closely related to
the producing microorganisms present [42, 43]. The use of
kefir grains in the artisanal beverage is correlated to higher
counts in the final product and remarkable survival during
passage through the gastrointestinal tract, proving signifi-
cant probiotic properties compared to industrial cultures
[42]. Thus, the analysis proposed here may justify possible
functional differences between both types of kefir.

Kefir grain’s microorganisms can present the ability to
produce bioactive compounds during the fermentation and
storage of kefir beverages. Consistently, from 48 strains iso-
lated from Russian kefir grains, ten species of Lactobacillus
sp. were recognized with probiotic potential [39]. Some yeast
strains, such as Saccharomyces cerevisiae KU200284, present
double importance: a starter culture and a probiotic [44]. In
Korean kefir, the acetic acid bacterial strain Acetobacter
fabarum DHI1801 had viability as a functional starter with
food preservative mechanisms and the potential as a probi-
otic agent [45]. In addition, the species of LAB has a funda-
mental role in the formation of exopolysaccharide (EPS),
which is a significant bioactive compound in kefir [37]. In
this scenario, the Lactobacillus kefiranofaciens is considered
the main piece in the formation of kefir grains [18] since
its genes demonstrate a great capacity to produce exopoly-
saccharides (such as kefiran) which make up the structure
of the kefir grain [43]. Similarly, Lactococcus lactis ssp. cre-
moris MRS 47 does found for Vieira et al. [38] to be capable
of producing conjugated linoleic acid (CLA), a bioactive
compound, from milk fat.

3.4. Bioactive Compounds from Kefir and Their Effects
on Health

3.4.1. Antimicrobial Activity. The antimicrobial activity of
kefir was mainly attributed to exopolysaccharides (EPSs),
specially kefiran, and organic acids, especially lactic acid.
However, bioactive peptides with antimicrobial activity have
also been identified (Table 2).

Regarding the producing microorganisms, kefiran and
EPS were produced by Lactobacillus kefiranofaciens, while
bioactive peptides were synthesized by Lactobacillus paraca-
sei, species belonging to the Lactococcus genus and yeast.
Biofilms and S-layer proteins, turn on, were produced by
Lactobacillus plantarum and Lactobacillus kefir, respectively
(Table 2). It demonstrates that microorganisms of the Lacto-
bacillus genus are relevant for the production of bioactive
compounds with antimicrobial activity in kefir. In addition,
among the 18 articles selected from the systematic review
addressing the antimicrobial effect of the compounds, only
1 of them investigated the precursor of the compound in
milk; thus, the investigation of the precursors of antimicro-
bial compounds in kefir is currently necessary. In vitro
antimicrobial activity against Escherichia coli, Klebsiella
pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis,
Bacillus cereus, Bacillus subtilis, and Staphylococcus aureus
was attributed to bioactive peptides produced from f-casein,
k-casein, as1-casein, and as2-casein present in the milk [64].

Kefiran has demonstrated an antimicrobial effect for
Streptococcus faecalis, Pseudomonas aeruginosa, Salmonella
typhi, Bacillus subtilis, Bacillus cereus, Escherichia coli,
Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus
faecalis, and Fusarium graminearum [61, 69, 71]. In addi-
tion, kefiran also had action on fungi (Aspergillus flavus
AH3) producing aflatoxins; a decrease from 100% to 33.3%
of aflatoxin Bl production accompanied a decline in the
mycelial dry weights [71]. Still, kefiran presented a more
dramatic antimicrobial effect on E. coli than S. aureus, which
can be attributed to the peptidoglycan in the cell wall of the
latter. Peptidoglycan, in turn, hinders the diffusion of the
antimicrobial through the cell. In addition, reports suggest
that kefiran can reduce the concentration of antibiotics
needed to obtain the antimicrobial effect, as illustrated by
its synergism with ciprofloxacin [69]. It is interesting since
extended administration of ciprofloxacin results in gastric
and intestinal side effects [69].

Still, given the promising results of kefiran as a natural
antimicrobial potential, its extraction methods from kefir
have also been studied to maximize its antimicrobial effects.
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The ultrasound combined with hot water in the kefiran
extraction process showed synergistic results about the anti-
microbial activity compared to the kefiran extracted by the
isolated methods [61]. Lactobacillus kefiranofaciens DN1
produced an EPS—composed of mannose, arabinose, glucose,
galactose, and rhamnose—which at 0.3% demonstrated a
bacteriostatic effect against Listeria monocytogenes and
Salmonella enteritidis. In higher concentrations (1% and
2.5%), the bactericidal effect was obtained by completely
inhibiting the growth of both microorganisms, being consid-
ered a new bioactive compound that can be used as a natural
antimicrobial [65].

Organic acids are other antimicrobial compounds pro-
duced by kefir microorganisms. In this context, lactic acid
was a bioactive compound associated with the antimicrobial
effect of cow milk kefir and donkey milk kefir. Donkey milk
kefir reduced Kiebsiella pneumoniae, Bacillus cereus, and
Proteus mirabilis by 8%, 37%, and 58% compared to the
kanamycin antibiotic. In contrast, cow milk kefir decreased
B. cereus by 12.9% while had the same impact on Proteus
mirabilis compared to kanamycin, demonstrating the tre-
mendous antimicrobial potential associated with lactic acid
[60, 66]. However, there was no antimicrobial effect against
Pseudomonas aeruginosa [17, 60]. Other organic acids pres-
ent in kefir, such as acetic and pyruvic acid, also demon-
strated an antimicrobial effect when administered together
with lactic acid [14, 31, 70]. Kakisu et al. [31] identified that
organic acids act against the germination of B. cereus spores
in a dose-dependent manner. Using a higher concentration
of kefir grains (5%) for the fermentation of milk reduced
the pH value more significantly and more quickly, inhibiting
the germination of the spores. This more significant lower-
ing of the pH may be associated with more outstanding
organic acid production in the medium and, consequently,
a more significant antimicrobial effect. Moreover, kefir
grains at 5% reduced in a range of 33.3% to 61.8% the output
of NheA toxin by B. cereus [31].

Bacteriocin, a bioactive protein produced by microorgan-
isms in kefir, demonstrated antimicrobial effects against several
microorganisms. In this context, Lactobacillus plantarum,
Micrococcus luteus, Listeria monocytogenes, Salmonella enterica
serovar Enteritidis, Staphylococcus aureus, and Bacillus cereus
were sensible when compared to the negative control (sterile
deionized water). In contrast, E. coli proved resistant to the
antimicrobial action of the bacteriocin. However, it is essential
to note that E. coli was also resistant to the positive controls,
nisin, and polylysine, which are natural antimicrobial peptides
commonly employed as preservatives by the food industry.
For S. enterica, antimicrobial effects similar to nisin were
observed [40].

Some microorganisms in kefir produced fractions with
antimicrobial activity against Clostridium difficile, Pseudo-
monas putida, Pseudomonas aeruginosa, and methicillin-
resistant Staphylococcus aureus [59, 62, 63]. FK-1000 at
25 mg/mL inhibited the growth of Pseudomonas aeruginosa
by 91%. However, even when in a lower concentration
(0.25mg/mL), FK-1000 presented a synergistic effect with
streptomycin, potentiating five times the outcome of this
antibiotic. It demonstrates the potential of FK-1000 for use

Oxidative Medicine and Cellular Longevity

in combination therapy. Another important aspect is that a
50 mg/mL concentration of FK-1000 was not toxic to human
epithelial cells, increasing the relevance of this compound’s
use as a treatment [62].

In addition, thermolabile fraction greater than 10kDa
produced by Lactococcus lactis subsp. lactis CIDCA 8221
showed to inhibit the toxigenic effect of C. difficile; the frac-
tion inhibited the interruption of the actin network and
displacement of Vero cells caused by C. difficile. Also, a
reduction in the formation of TcdA and TcdB toxins by
Clostridium has been observed [59].

The proteolysis in the milk by kefir's microorganisms
during fermentation leads to bioactive peptides with antimi-
crobial activity. F1 bioactive peptides reduced E. coli growth
in a range of 33% to 57%. Consistently, a mixture of bioac-
tive peptides from kefir had antimicrobial activity against
several microorganisms such as Klebsiella pneumoniae,
Pseudomonas aeruginosa, Enterococcus faecalis, Bacillus
cereus, Bacillus subtilis, and Staphylococcus aureus [64, 68].

However, it is essential to note that the bioactive com-
pounds from kefir appear to have different antimicrobial
potencies. In general, when comparing interventions with
similar target microorganisms (E. coli, S. typhimurium, and
S. aureus), the concentration and time of intervention with
organic acids were substantially higher (40 and 2 times,
respectively) than for interventions with kefiran or bioactive
peptides (Table 2). Therefore, kefiran and bioactive peptides
may have more potent effects than organic acids, requiring
lower concentrations for similar antimicrobial results. How-
ever, this premise needs further investigation.

Lactobacillus plantarum, a microorganism present in kefir
grains, produces a biofilm that acts as an antimicrobial, inhi-
biting the growth of methicillin-resistant Staphylococcus
aureus in the range of 1.4 to 30%. Medium’s time, tempera-
ture, and aeration influenced the biofilm production by the
kefir's microorganism, which may be related to cell matura-
tion, enzymatic reactions, and activation expression of specific
genes. Thus, external factors and factors related to the strain
used can influence the antimicrobial activity associated with
the production of biofilms by Lactobacillus plantarum [67].

Finally, the inhibitory effect of some microorganisms
present in the kefir about pathogens may be associated with
the presence of S-layer proteins on the outer surface of their
cell membrane. Thus, the preincubation of Lactobacillus
kefir with S. enteritidis allowed direct interaction between
them through the S-layer proteins of L. kefir, reducing then
the sites binding to enterocytes on the pathogen’s cell mem-
brane. In addition, S-layer proteins from Lactobacillus kefir
strains also decreased the viability of Salmonella enteritidis.
Interestingly, even S-layer proteins obtained from noncoag-
gregation strains, which do not interact with Salmonella,
could interact with S. enteritidis. The conformation and the
active groups present in the S-layer may differ between the
protein isolated in the solution and the one present on the
bacterium’s surface (Lactobacillus kefir). Therefore, S-layer
proteins have the potential to be used as a natural antimicro-
bial [72].

The meta-analysis for the antimicrobial category corrob-
orates with the systematic review findings herein, as results
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of cell death.

show a statistically significant overall effect of kefir bioactive
compounds against bacteria and fungi (Supplementary
Figure S1). As the distinct outcomes’ measurements differed
between trials, we used the standardized mean differences
(SMDs) to estimate the effects, whereas a negative SMD
value indicates microbial reduction. Therefore, the standard
mean differences (SMDs) were estimated for the overall
antimicrobial effect (SMD (-1.35) (95% CIL -1.79--0.91,
P<.001)) and separately for fungi (SMD (-7.18) (95%
CI: -9.08--5.28, P<.001)), Bacillus cereus (SMD (-0.25)
(95% CI. -1.06-0.56, P=0.54)), Escherichia coli (SMD
(-0.67) (95% CI: -2.26-0.92, P = 0.41)), Klebsiella pneumoniae
(SMD (-1.79), (95% CI: -4.22-0.63, P =0.15)), Pseudomonas
spp. (SMD  (-1.98), (95% CI -348--049, P=0.009)),
Salmonella spp. (SMD (-0.53), (95% CI: -1.12-0.06, P = 0.08)),
and Staphylococcus spp. (SMD (-0.88), (95% CI: -1.81-0.06,
P=0.07)) as showed in the Supplementary Figure S1. In
this context, kefir demonstrated a statistical significance
concerning the overall antimicrobial effect, although the
bioactive compounds from kefir only had significant effects
against fungi and Pseudomonas spp. However, we can see a
tendency to favor kefir treatments for all the studied
microorganisms, although not statistically significant.

To assess the heterogeneity of the data, I* tests for all
nine analyses showed statistically significant considerable
heterogeneity for fungi (I* = 83%, P <.001) and statistically

significant moderate heterogeneity for overall antimicrobial
effect (I? =72%, P <.001), Bacillus cereus (I*>=63%, P <
.001), Escherichia coli (I = 67%, P < .001), Klebsiella pneu—
moniae (I* = 64%, P =0.004), Pseudomonas spp. (I* = 61%,
P =0.0003), and Salmonella spp. (I* = 68%, P < .00001).

Despite the scarcity of studies investigating antimicro-
bials’ mechanisms, these mechanisms appear diverse, pre-
senting singularity for each type of bioactive compound.
For bioactive peptides, the action occurs on the cell mem-
brane and the pathogen’s DNA, while organic acids reduce
biological activity. Biofilms, in turn, inhibit the production
of biofilm by the pathogenic microorganism (Figure 2). In
this context, bioactive compounds form pores in the patho-
gen’s membrane, which damages the integrity of the plasma
membrane, increasing its permeability with consequent
efflux of potassium ions, leakage of proteins, and nucleic
acids. These compounds also were described bind to the
genomic DNA of the pathogen [64, 68].

It is essential to highlight that although the in vitro and
in situ studies imply an antimicrobial role of bioactive com-
pounds from kefir, the absence of controlled in vivo studies
is a gap in the literature that limits the assessment of the
extent of this effect in physiological systems.

3.4.2. Antioxidant Activity. The intervention with antioxi-
dant molecules is crucial since they interact with free
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radicals, ending the chain chemical reaction and reducing
the attack on proteins [28] and DNA [49] that would cause
cell damage [84].

The main bioactive compounds identified with antioxi-
dant activity from kefir were the EPS, including kefiran,
although bioactive peptides and phenolic compounds were
also described (Table 2). In addition, there have been few
studies identifying the producing microorganisms of the
compounds with antioxidant properties. However, the
Acetobacter, Leuconostoc, Bacillus, and Kazachstania genera
strains were reported (Table 2). Concerning the precursors
in milk, there was an evident scarcity of their investigation;
only one study identified the precursors of bioactive peptides
as being fB-casein, k-casein, asl-casein, and as2-casein [64].

The antioxidant activity of kefiran in vitro was
8.47 pg/mL and 4.44 pug/mL, for 1% and 0.5% concentra-
tions, respectively, as measured by reducing power activity
in ascorbic acid equivalent capacity (AAEC). Interestingly,
the hyaluronic acid used in gold standard viscosupplementa-
tion treatment did not demonstrate reducing power at simi-
lar concentrations to those employed for kefiran. It shows
the antioxidant potential of the compound isolated from
kefir [54]. The scavenging of free radicals and ferric ion
reduction represented 25% to 85% and 37% to 84%, respec-
tively, of vitamin C activity, which is considered a positive
control for these activities. The relatively low concentrations
(0.005% to 0.08%) tested of kefiran can justify its inferior
effect compared to vitamin C [61].

The antitoxic activity of the EPS produced by microorgan-
isms in the kefir promoted the protection of biological
molecules from oxidation. Inline, low concentrations of EPS
(0.05% to 0.25%) could protect BSA protein from oxidation
induced by APPH (2,20-azobis(2-methypropionamidine)
dihydrochloride). The protein oxidation-decrease ranged
from 31% to 96%. Interestingly, this protection was higher
than observed in the negative control (protein without
induced oxidation) [28]. In addition, the antioxidant capacity
in situ related to EPS was higher 8.43% after 24 hours of fer-
mentation [74]. The ability to eliminate the DPPH (1,1-diphe-
nyl-2-picrilhidrazil) free radical, turn in, increased from 10%
to 20%. This fact can be attributed to the metabolic activity
of kefir microorganisms during fermentation, leading to the
production and accumulation of EPS. Thus, studies have
found that the EPS present in kefir demonstrates potential as
an antioxidant agent [73]. The EPS also confers resistance to
hydrogen peroxide, completely reversing the detrimental
effect of this compound on the cell growth of microorganisms
present in the kefir. Consistent, cells without EPS significantly
lose resistance to hydrogen peroxide [73].

Smaller fractions present in kefir, such as bioactive
peptides, also demonstrated an antioxidant effect. An
enhancement in scavenging ability of oxidized 2,2 -zino-bis
(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) ranged
from 2% to 25.6% for sheep’s milk kefir and 35.8% for cow’s
milk kefir both compared to control [14, 64]. A significant
improvement (111.6%) in oxygen radical absorbance capac-
ity (ORAC) for cow’s milk kefir confirmed the antioxidant
activity of bioactive peptides [14]. We believe that the
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observed difference between the antioxidant activity of
sheep’s milk kefir and cow’s milk kefir may be associated
with the difference in composition between milk, especially
about the protein content and its design which are precur-
sors of bioactive peptides. This finding highlights the rele-
vance of identifying the precursors of bioactive compounds
in milk to increase its functional potential.

The fermentative process of milk by kefir grains showed
to elevate its antioxidant activity by synthesizing phenolic
compounds. In artisanal kefir, the antioxidant capacity was
increased up to 120% when measured by ABTS and up to
40% by ORAC [75]. In contrast, for commercial kefir, the
antioxidant capacity by ABTS reduced, while that by
FRAP—ferric antioxidant power—increased [85]. Thus,
phenolic compounds produced by starter culture appear to
exert antioxidant action through their reducing power but
are ineffective as to the scavenging ability of oxidized com-
pounds. Still, the DPPH scavenging varied according to the
type of kefir, reducing in ewe kefir and increasing in cow
kefir compared to control [85]. Therefore, according to the
matrix, the profile of phenolic compounds can influence
the in situ radical scavenging ability. Indeed, Satir and
Guzel-Seydim [75] observed increased antioxidant activity
in the presence of gallic acid, catechin, epicatechin, caffeic
acid, p-coumaric acid, chlorogenic acid, ferulic acid, and
photocatechuic acid. Phenolic compounds resulting from
the metabolic activity of kefir microorganisms can improve
up to 120% of the in situ antioxidant capacity during fer-
mentation [85].

The intervention times were more remarkable for bioac-
tive peptides than EPS and phenolic compounds for similar
methodologies (Table 2). This finding suggests that the pep-
tides need a longer time to exert significant antioxidant
activity. On the other hand, phenolic compounds required
concentrations up to 3 times higher than other bioactive
compounds (Table 2).

Consistent with the described findings, the meta-analysis
showed an antioxidant tendency of the kefir bioactive
compounds. However, it was not considered statistically
significant compared to control treatments, even though we
observed a narrow confidence interval. It resulted in a standard
mean difference (SMD) of (SMD (-0.83) (95% CI: -1.65-0.00,
P =0.05)) (Supplementary Figure S2). Besides, the outcomes
of the studies showed a significant substantial heterogeneity
(I* = 84%, P < .001), which may have contributed to the lack
of significance.

Although there is a scarcity of description of the mecha-
nisms of action in the literature, EPS seems to exercise effect
through metal chelating activity and sequestering activity of
hydroxyl and superoxide radicals, with consequent resis-
tance to the hydrogen peroxide. In contrast, the antioxidant
activity of bioactive peptides cannot be attributed to the ion
chelating ability [14].

As reported previously for antimicrobial effect, the
absence of controlled in vivo experiments evaluating the
antioxidant potential of bioactive compounds from kefir is
a gap in the literature that limits assessing the extent of this
effect in physiological systems.
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3.4.3. Modulation of the Intestinal Microbiota. Maintaining
the intestinal microbiota in symbiosis with the host is
essential for human health since it favors the integrity of
the intestinal barrier, the balance of the immune system,
and controlling inflammatory processes. Therefore, the
search for probiotics or bioactive compounds which favor
the modulation of the intestinal microbiota has been exten-
sively studied in the recent literature.

Exopolysaccharides (EPSs), including kefiran, were the pre-
dominant described bioactive compounds capable of modulat-
ing the intestinal microbiota in vitro and in vivo models
(Table 2). However, there is a lack of studies identifying the
precursors of these bioactive compounds. In addition, the scar-
city of studies determining the microorganisms that produce
them in milk highlights a gap in the literature. Interestingly,
the concentration and intervention time using bioactive pep-
tides was considerably higher than those with EPS for in vivo
animal models; the concentration employed of peptides was
up to 2.5-fold greater. The intervention time was up to 2.6-fold
longer compared to EPS use (Table 2). It suggests that EPS can
be a bioactive compound more potent for gut modulation.
However, this premise needs further investigation.

EPS produced by L. paracasei CIDCA 8339 and CIDCA
83124 in kefir demonstrated modifying the microbiota pres-
ent in infant fecal samples and, consequently, changing the
short-chain fatty acid profile (SCFA). The butyric and pro-
pionic acids produced are compounds with biological activ-
ity associated with health benefits. Among these benefits
stand out are as follows: strengthening the intestinal epithe-
lial barrier and inhibiting the cholesterol synthesis at the
liver. Still, the expression of leptin, YY polypeptide (PYY),
and glucagon-like peptide 1 (GLP-1) promoted by them reg-
ulate the lipogenesis in adipose tissue and the appetite [79].

Considering the phylum level, the use of EPS and bioactive
peptides commonly improved Firmicutes to the detriment of
Bacteroidetes, as demonstrated in Table 2. Regarding the genus
level, a reduction in microorganisms associated with pathoge-
nicities, such as Klebsiella and Escherichia, has been reported,
demonstrating the potential of EPS in contributing to a
healthy intestinal microbiota [79]. The concomitant decrease
in Rikenellaceae is also a promoter of the health of colon
epithelial tissue [81]. In contrast, EPS favored Victivallis,
Acidaminococcus, Comamonas, and the Ruminococcaceae
family [79, 81]. Selecting certain species of the Acidaminococ-
cus genus may be responsible for increasing organic acids
such as propionate and butyrate, which are beneficial in
intestinal levels.

On the other hand, the modulation of other genera also
considered beneficial to health, such as Lactobacillus and
Bifidobacterium, depended on the bioactive compound used
during the intervention (Table 2). Thus, Lactobacillus and
Bifidobacterium were not favored by EPSs 8339 and 83124
in Bengoa et al. [79]. In contrast, in the study of Xing et al.
[81], using adult male mice, EPS produced by Lactobacillus
kefiranofaciens XL10 provided growth of 14.59% for Lacto-
bacillaceae and up to 0.59% for Bifidobacteriaceae. Growth
of up to 17% in Bifidobacterium in adult female mice was
also observed when using kefiran, although no change was
observed in the Lactobacillus population [82]. In vitro,
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0.3% kefiran elevated a Bifidobacterium bifidum PRL2010
population up to 5.8 x 108 CFU/mL. In contrast, there was
not Bifidobacteria population growth in the control
(medium without carbon source). This fact indicates that
the target microorganisms should be considered in deciding
the most appropriate bioactive compound for intestinal
modulation in each intervention.

Interestingly, EPS was more potent in promoting intesti-
nal microbiota diversity than inulin, a prebiotic commonly
used by the food industry. Still, EPS led to a different
short-chain fatty acid profile, increasing the butyrate content
and benefiting the gut microbial population more than inu-
lin [79]. Kefiran also proved to be a better source of carbon
than glucose for the growth of Bifidobacterium bifidum
PRL2010; kefiran increased the development of the strain
by 20 to 700% compared to the use of glucose [41].

Bioactive peptides, other bioactive compounds present in
kefir, were also related to changes in the intestinal microbiota.
The oral administration of peptides to female mice partially
reversed the detrimental effect on the intestinal microbiota
caused by oophorectomy; the peptides from kefir reduced
46% of Parasutterella and 39% of Streptococcus. Bacteria
potentially pathogenic belonging to genera Klebsiella and
Escherichia were also decreased. Romboutsia, together with
Streptococcus, has been linked to obesity and presented an
86% reduction (Table 2). Bioactive peptides from kefir
elevated the Alloprevotella population by more than 30% by
reducing oophorectomy-induced renal fat accumulation.
Ruminococcus-1, SCFA producer bacteria, increased in
ovariectomized mice, subsequently decreasing with bioactive
peptides’ administration. It is essential to highlight that the
growth of butyrate-producing bacteria after estrogen defi-
ciency in ovariectomized mice can negatively lead to a
detrimental accumulation of SCFAs in the intestine. In
contrast, bioactive peptides have not been able to restore the
reduction in the Deferribacteres phylum caused by oophorec-
tomy; the decrease of Deferribacteres is related to the
detriment of vitamins and amino acid metabolism [80].

Thus, bioactive peptides can enrich beneficial bacteria
and decreasing potentially harmful pathogens in the gut of
ovariectomized females [80]. Still, these findings reveal that
turther studies, analyzing the relationship between intestinal
microbiota and estrogen deficiency and the role of the bioac-
tive peptides from kefir in this relationship, are necessary for
a better understanding.

Concerning the richness and diversity of microbiota,
interestingly, it is not affected by bioactive peptides in ovari-
ectomized mice. However, peptides significantly improve
intestinal microbiota diversity compared to control without
ovariectomized procedure [80].

Regarding meta-analysis, treatments with bioactive
compounds did not present statistically significant effects
on gut microbiota modulation compared to control
treatments (SMD (-0.39) (95% CI: -1.32-0.54, P =0.41))
(Supplementary Figure S3). However, we can notice a
tendency that favors bioactive efficacy, consistent with our
findings. This analysis presented a statistically significant
moderate heterogeneity (I> =58%, P <.001), which may
have contributed at least partially to the lack of significance.
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Finally, most studies failed to evaluate the mechanisms
of action of the bioactive compounds on gut microbiota
modulation, representing a gap in the literature. However,
enhanced transcription of genes involved in the microbe-
host interaction was proposed for the kefiran action.

3.4.4. Immune Response Modulation. Bioactive compounds
from kefir exerted an anti- or proinflammatory impact depend-
ing on the model’s presence or absence of inflammatory insult.
Thus, they exerted an inhibitory effect in inflammatory dis-
eases’ models, while they had an immunostimulatory effect
for models without inflammatory insult (Table 2).

The predominantly studied inflammatory disease model
was that of acute colitis, both in vitro and in vivo. For colitis,
mainly EPS and extracellular vesicles, but also lactate, they
have been described to have an anti-inflammatory role
against a variety of acute inflammatory insults: DSS (dextran
sulfate sodium), TNFa, FliC (flagellin), IL-1/3, and TNBS
(2,4,6-trinitrobenzene sulfonic acid). For chronic colitis,
extracellular vesicles presented an anti-inflammatory effect
against piroxicam. Kefiran, in turn, had an inhibitory
effect on cotton-induced granuloma in rats (Table 2).
The L. kefirgranum, L. kefir, L. kefiranofaciens, and L.
paracasei species were responsible for producing these
bioactive compounds. Therefore, the Lactobacillus genus
seems relevant for making anti-inflammatory compounds
in the kefir [13, 50, 53]. Galactose and glucose, and to a
lesser extent, mannose, arabinose, and rhamnose, were
the significant precursors of the polysaccharide component
of the bioactive compounds [55].

Extracellular vesicles at 100 yg/mL from L. kefirgranum
reduced the gene expression of IL-2, IL-8, and TNF«
proinflammatory cytokines by 58, 64, and 67%, respectively,
in Caco-2 cells for DSS-induced acute colitis model [50].
Extracellular vesicles (1 x 10° particles/mL) also inhibited
TNFa-induced colitis. They reduced the expression and
secretion of IL-8 by 65 and 96%, respectively, in the Caco-
2 cell line. Interestingly, the extracellular vesicles were just
as effective as budesonide [53], a glucocorticoid steroid
commonly used to treat Crohn’s disease (inflammatory
bowel disease) [86]. Still, treatment of Caco-2 cells with
extracellular vesicles showed a longer intervention time than
treatments with EPS or lactate. In addition, the effect
observed with preincubation of cells with EPS or lactate
(Table 2) indicates the potential of these compounds as pre-
ventive agents of intestinal inflammation. However, further
studies exploring pre- and postincubation concerning the
inflammatory insult must be conducted to elucidate these
bioactive agents’ preventive and therapeutic potentials.

In mice, oral administration of extracellular vesicles
could mitigate acute and chronic colitis, corroborating the
previous findings in vitro. For DSS-induced acute colitis,
both high and low dosages of vesicles prevented weight loss
in mice by up to 16% and reduced damage to colon tissue by
up to 63%. However, only the highest dosage (3 mg/kg bw)
reduced colon atrophy by 29.6%. Similarly, only the high-
est dosage mitigated colon atrophy by 14.3% for chronic
colitis aggravated by piroxicam. Nevertheless, both dosages
reduced colon histological damage by up to 85%.
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In contrast to acute colitis, ingestion of extracellular vesicles
was ineffective in preventing weight loss in chronic colitis [50].
Therefore, due to the broader effects obtained for 3 mg/kg bw,
the high dosage seemed more effective for chronic and acute
colitis treatment. Vesicles’ administration against TNBS-
induced acute colitis also effectively prevented the mouse
weight loss by up to 12.5% at 3 x 10 and 3 x 10 vesicles/-
head. Moreover, the administration reduced rectal bleeding
and diarrheal condition severity by 75 and 91%, respectively.
Damage to colon tissue, in turn, was decreased by up to 85%
[53]. Therapy with vesicles from Lactobacillus of kefir was
more effective than the prednisolone drug (2 mg/kg) in pre-
venting weight loss, the severity of rectal bleeding, and diar-
rheal conditions well as in mitigating colon histological
damage [53]. Prednisolone is an anti-inflammatory steroid
used to treat inflammation in colitis and Crohn’s disease; how-
ever, it does not prevent recurrence of the disease, in addition
to having several side effects [87, 88]. Therefore, treatment with
bioactive compounds from kefir would be promising both for
effectiveness and reduced side effects.

Suspensions of EPS-producer Lactobacillus paracasei
(ODsy = 0.25) inhibited by up to 55% the induction of the
CCL20 proinflammatory promoter in Caco-2 cells for
flagellin-induced acute colitis model. Lactobacillus paracasei
CIDCA 8339 strain showed more dramatic anti-inflammatory
potential than the other tested strains [13], which indicates that
the functional potential of the EPS is strain-dependent. Simi-
larly, lactate at 100mM inhibited by 78, 80, and 42% the
CCL20 promoter induction by flagellin, IL-1f3, and TNFa,
respectively, in Caco-2 cells. Inline, human intestinal epithelial
cells express the lactate receptor. Still, lactate solution and
supernatant from kefir with corresponding lactate concentra-
tion showed similar inhibitory effects on Caco-2 cells [56],
indicating that the kefir matrix does not reduce the impact
of this bioactive compound. In vivo, oral administration of
kefiran-rich kefir supernatant (1 mL/day) was responsible for
reducing the weight of cotton-induced abdominal granulomas
by 44% in rats. Kefir was as effective as dexamethasone
(0.2mg/kg) in reducing these granulomas [16]. Dexametha-
sone is a corticosteroid medication used as a primary option
in the treatment of granulomas [89]. This evidence reinforces
the anti-inflammatory potential of bioactive compounds
from kefir.

Therefore, in general, bioactive agents inhibited the
expression of proinflammatory cytokines and the activation
of the CCL20 promoter for in vitro inflammatory models with
Caco-2 cells. In in vivo colitis models, bioactive compounds
reduced weight loss, atrophy, and colon histological damage.

The compounds displayed anti-inflammatory action
mechanisms by inhibiting the NF-«B pathway in the Caco-
2 cells and the colon mucosa due to the expression of the
IxBa inhibitor [50, 53, 56]. In addition, bioactive agents pro-
moted the integrity of the intestinal barrier, increasing the
expression of occludin, ZO-1, and claudin-1 occlusion pro-
teins [50]. Additional anti-inflammatory mechanisms pro-
posed for EPS were nitric oxide radical scavenging ability
[54] and inhibition of hyaluronidase activity in cell-free
in vitro systems [55]. Hydrolysis of the extracellular matrix
by hyaluronidase releases compounds, like hyaluronan,
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throughout inflammatory pathologies [90]. For extracellular
vesicles, blocking myeloperoxidase activation in the mouse
plasma has also been reported [53]. Oxidative stress in
inflammatory bowel disease activates inflammatory cells,
such as neutrophils, whose myeloperoxidase catalyzes the
production of reactive oxygen species [91]. In this scenario,
extracellular vesicles were as effective as the prednisolone
drug in inhibiting myeloperoxidase [53]. Thus, the evidence
suggests that bioactive compounds from kefir may play a
decisive anti-inflammatory role.

However, EPS, including kefiran, can also have the
opposite effect, acting as immunostimulants, in cases where
there is no inflammatory insult (Table 2); this role was also
corroborated in an in vivo model [58]. Their precursors in
milk were glucose and galactose [51, 52]. In a minority
way, bioactive peptides have also been reported as immunos-
timulants [57]. The Lactobacillus genus was relevant to pro-
duce these immunostimulants, especially the L. helveticus, L.
pentosus, and L. kefiranofaciens species.

For EPS, although the intervention time has been similar
for both a pro- and anti-inflammatory effect assay, the EPS
concentration employed was dramatically higher; in vitro,
the concentration for immunostimulating varied from 50
to 5000 pug/mL [4, 46, 51], while for inhibition, it reached
the maximum of 100 yug/mL [50]. In vivo, 100 mg/kg bw
was administered orally for immunostimulating [58], while
to inhibit the immune response, the concentration ranged
from 0.03 to 3 mg/kg bw [50]. This fact suggests that the
concentration of EPS is a significant factor in determining
the role that it will play on the immune system. In line,
EPS has been reported to stimulate or inhibit the secretion
of TNFa, IL-10, and IL-6 by in vitro murine macrophages,
depending on the concentration tested [51, 52]. Thus, it
appears that EPS can act by different cell signaling pathways,
according to its concentration. However, the immunostimu-
latory mechanisms of action still need to be studied.

In vitro, the immunostimulatory role of EPS and bioactive
peptides has been demonstrated in the macrophage’s cell line
and primary culture, in addition to human peripheral blood
mononuclear cells (PBMCs) (Table 2). R-5-EPS and R-17-
EPS at 50-400 ug/mL stimulated proliferation, phagocytosis,
phosphatase activity, IL-6 secretion, and NO production by
RAW264.7 murine macrophage cells. Still, in the concentra-
tion range of 100 to 200 ug/mL, they stimulated the secretion
of TNFa, IL-13, and IL-10. EPSs were as efficient as lipopoly-
saccharides in promoting cell proliferation, phagocytosis, and
cytokine secretion by macrophages [51, 52]. Kefiran at 1000 to
5000 pg/mL increased IL-6 secretion, and concentrations from
2000 to 4000 ug/mL stimulated cell proliferation of human
PBMC culture by up to 200% after 24 h [46]. Bioactive peptide
from L. kefiranofaciens, turn on, improved secretion of TNFa,
IL-1p, IL-6, and IL-12 by 1000, 700, 1300, and 3000% by
murine peritoneal macrophage culture. However, peptides
from different microbial strains showed differences in immu-
nostimulatory capacity [57], suggesting that the functional
potential of the peptide is strain-dependent. In addition,
bioactive peptide acted via the TLR2 receptor [57]; Toll-like
receptor 2 enables macrophages to recognize microbial
ligands, thereby promoting inflammation [92].
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Consistently, oral administration of kefiran (100 mg/kg bw)
to healthy mice for up to 7 days enhanced IgA, IL-10, IL-6, and
IL-12 in the mucosa of the small intestine, as well as IL-4 and
IL-12 in the fluid of the small intestine. In serum, kefiran
increased IL-4, IL-6, IL-10, and IFN. However, broader immu-
nostimulation occurred in the large intestine, increasing IgA,
IgG, IL-4, IL-10, IL-6, INF, and TNF content. The most
evident stimulatory activity in the large intestine has been
attributed to the kefiran fermentation by intestinal microbiota
[58]. Therefore, it appears that bioactivity may vary according
to the biochemical transformations that these molecules
undergo throughout the digestive process.

Finally, it is essential to highlight that immune stimula-
tion can be interesting for a better prognosis of infectious
conditions [93] and stimulating immunoglobulin produc-
tion after vaccination [94]. Thus, the concentration and
environmental context (presence or absence of inflamma-
tory insult) are relevant factors to be considered according
to the purpose of administering the bioactive compound.

Meta-analysis results corroborated the benefits of kefir bio-
active compounds on immune modulation since the findings
indicated that treatments had significant immune-modulatory
activity compared to control (Supplementary Figure S4). The
estimated (SMD) was (SMD (-1.17) (95% CI: -1.47--0.87,
and P <.001)). Heterogeneity was statistically significant
moderate for this analysis (I* = 67%, P < .001).

3.4.5. Anticancer Effect. Cancer is a term that encompasses
more than 100 different types of malignancies that have in
typical disordered cell growth, which can metastasize [95].
However, although human in vitro models have reported
anticancer effects of bioactive compounds from kefir on
breast, colon, cervical and hepatocellular cancers, the lack
of in vivo studies limits the understanding of the extent of
their anticancer effect in organisms. Among the bioactive
ones, EPS, including kefiran, had a broader impact, covering
different types of cancer: breast, colon, cervical, and hepato-
cellular cancers (Table 2). The main precursors of EPS in the
milk were glucose and galactose [47]. The Lactobacillus
genus seemed relevant for EPS production with an antican-
cer effect on kefir (Table 2).

Kefiran reduced up to 45% of MCF7 breast cancer cell
viability after 48h of intervention, losing effect under the
highest tested concentration of 4mg/mL. However, effi-
ciency decreased to 15.6% after 72h, without effect at the
lowest tested concentration of 0.5mg/mL [46]. For HepG2
hepatocellular carcinoma cells, kefiran reduced their viability
by up to 82% from the minimum concentration of
250 pg/mL. In contrast, for HeLa cervical carcinoma cells,
kefiran reduced the viability by up to 72% in a dose-
dependent manner [48]. Similarly, EPS MRS101 presented
a dose-dependent effect on the viability of HT-29 colon can-
cer cells, reducing the number of viable cells by up to 55.9%
after 24h [47]. Therefore, the EPS concentration and the
intervention time seem to be decisive for obtaining or not
the anticarcinogenic effect. However, it is essential to note
that developmental toxicity was observed in zebrafish
embryos for kefiran concentrations above 100 ug/mL so
that kefiran at 1000 yg/mL reaches 80% mortality [48].
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Inline, 10” to 3ug/mL of EPS showed no toxicity on
typical Vero cell culture [55]. Therefore, EPS can affect
the growth of normal tissues depending on the concentra-
tion used, so this factor should be considered in future
clinical applications.

The proposed mechanism of action for EPS was the upreg-
ulation of the apoptotic genes Cyto-c (cytochrome c), BAD
(BCL2-associated agonist of cell death), BAX (BCL2-associ-
ated X protein), and caspases 3, 8, and 9; the increase in the
expression of these genes ranged from 15 to 120%. In contrast,
EPS downregulated by 70% the BCL2 gene, which is involved
with the oxidative stability of the mitochondria [47]. Such
changes in gene expression may be related to the adverse
effects on the morphology of cancer cells. Loss of adherence
capacity and formation of intracellular vacuoles were the more
common changes resulting in cell death [48].

On the other hand, bioactive peptides have been
reported only in an estrogen-sensitive breast cancer model.
In addition, they showed a longer intervention time than
other bioactive compounds described (Table 2). However,
peptides appear to have lower toxicity as an advantage to
EPS since peptides from kefir did not exert an antiprolifera-
tive effect on normal human mammary epithelial cells at
doses of 0.31 to 10% (v/v). On the other hand, on those exact
dosages, peptides reduced dose-dependent manner by up to
88% the MCF7-E3 human breast cancer estrogen-sensitive
cell number [15], which indicates the specificity of this bio-
active compound. Still, yogurt extracts showed dramatically
lower efficiency than kefir extracts, in addition to presenting
toxicity on normal human epithelial cells from a 5% (v/v)
concentration. Nonfermented milk, unlike, had a negative
effect, stimulating the proliferation of MCF7-E3 cancer cells
[15]. These findings corroborate the anticarcinogenic speci-
ficity of peptides from kefir.

Although the anticancer effect of organic acids has not been
directly tested, lactic and acetic acids present in kefir reduced
fecal water-induced-DNA damage in HT-29 cells. Cultivation
with fecal water for 30 min increased by 36% the DNA damage
in HT-29 cells, being this effect more toxic than that caused by
hydrogen peroxide [49]. However, fecal water-induced-DNA
damage was inhibited with kefir supernatant by 20%. Thus,
organic acids can have a preventive effect against colon cancer,
attributed to their antioxidant activity. Inline, kefir presented
antioxidant capacity (Trolox equivalent) 78.6% greater than
unfermented milk [49], corroborating the role of organic acids
produced during fermentation in protecting DNA.

Finally, the HT-29 colon cancer cell line [47, 49]
appeared to be more sensitive to EPS than the MCF7 breast
cancer cell line [46]. For the latter, the concentration
reported for the assay was ten times greater (Table 2). Thus,
sensitivity to the bioactive compounds from kefir appears to
be dependent on cell type.

Validating our findings, treatments with bioactive
compounds presented a significant anticarcinogenic effect,
as the estimated (SMD) for overall anticancer effect was
(SMD (-2.44) (95% CI: -3.41--1.47, P <.001)) (Supplemen-
tary Figure S5). The data were homogeneous (I =46%,
P <0.0006), which means good consistency among studies.
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3.4.6. Plasma Glucose. Diabetes mellitus is a chronic glucose
metabolism disorder with severe clinical consequences, such
as retinopathy, nephropathy, and stroke [96]. Type 2 diabe-
tes mellitus is a metabolic disorder marked by the rise in
blood glucose due to a decrease in insulin secretion by
pancreatic f-cells and insulin resistance. Additionally, the
increase in the prevalence of diabetes mellitus worldwide
in recent decades is associated with the rise in the prevalence
of obesity in the population [96].

In this scenario, bioactive compounds in kefir were
tested on glucose metabolism in obesity and diabetes murine
models in vivo (Table 2). Oral administration (10 mL/kg bw)
of a mixture of EPS-producer Leuconostoc mesenteroides
LMDH4 and Lactobacillus kefiri LKDH5 during eight weeks
did not affect the plasma glucose level in diet-induced obese
mice. However, this treatment effectively reduced adipocyte
tissue weight by 36%, in addition to downregulating the pro-
inflammatory and fatty acid synthesis gene expression in the
adipocytes [76]. This fact indicates that the regulation of
fatty acid metabolism in adipose tissue is not a determining
factor in promoting a significant change in plasma glucose.

In contrast, administration of a mixture of 5 to 20 mL of
kefir with black rice extract—1: 1/kg bw—during four weeks
enhanced by up to 199% and 2330% of the Langerhans islet
in the pancreas and insulin-positive f3-cells, respectively, in
diabetic rats. The concentration from 10mL/kg bw
completely reversed the pancreatic damage induced by
STZ-NA (Streptozotocin-nicotinamide), achieving a similar
effect to the glibenclamide [78]. It is an antidiabetic drug
of the second-generation sulfonylureas class that reduces
blood glucose by increasing insulin secretion from
pancreatic fS-cells [97]. The effect was attributed to the
proton-radical scavenging activity from alcohol and pheno-
lic compounds present in the beverage [78]. This finding
demonstrates that the antioxidative capacity must be a
significant factor in promoting the homeostasis of insulin
production by the pancreas. However, as the study did not
test a formulation without adding black rice extract, it is
impossible to determine how much of this positive effect
on f-cells can be attributed to the kefir alone. Indeed, the
addition of black rice extract increased by 56.8% the antiox-
idant capacity of the beverage compared to the kefir alone, as
measured by DPPH [78].

Therefore, the current findings in the literature on the
effect of bioactive compounds of kefir on glucose metabo-
lism are inconclusive, so further preclinical studies with pure
kefir drink or with bioactive compounds isolated from it are
urgently needed.

3.4.7. Effect on Serum Cholesterol and Accumulation of Fat in
the Adipose Tissue. Cardiovascular disease (CVD) is one of
the major leading causes of morbidity and mortality world-
wide. However, deaths by CVD are attributable to manage-
able risk factors, the main ones being high total serum
cholesterol, high blood pressure, and smoking [98]. In addi-
tion, hypercholesterolemia is one of the risk conditions
related to obesity [99]. In this scenario, reducing total serum
cholesterol and fat accumulation in adipocytes is one of the
strategies used to prevent CVD. However, pharmacological
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drugs to treat obesity reportedly cause several side effects
related to blood pressure, hepatic failure, pancreatitis, and
headaches [100]. Therefore, research on natural compounds
for the treatment of obesity has been encouraged.

Among the bioactive compounds from kefir, only EPS
has been associated with lowering adipocyte fat and reduc-
ing in vitro cholesterol. Lactococcus lactis WH-C1, Lactoba-
cillus kefiri, and Leuconostoc mesenteroides were the
microorganisms identified as producers of these EPSs in
the kefir [77]. However, the lack of investigation of their pre-
cursors in the milk shows a gap in the literature (Table 2).

EPS-producer Lactococcus lactis WH-C1 (4%, v/v) isolated
from Tiber kefir grain could remove up to 31.23% of choles-
terol from culture medium, demonstrating a potential hypo-
cholesterolemic property in vitro [77]. In contrast, EPS was
ineffective on an in vivo experimental model; supplementation
for eight weeks with a mixture of EPS-producer heat-killed
lactic acid bacteria (HLAB) isolated from kefir did not change
the lipid profile in obese mice. Thus, serum HDL, LDL, total
cholesterol, and triglycerides were not affected in diet-
induced obese mice [76]. The lack of effect on serum choles-
terol indicates that the concentration of EPS-producing micro-
organisms employed (1.1x 10'°CFU/mL) may have been
insufficient to achieve significant changes in the cholesterol
level in vivo. It must be taken into account that microorganisms
became unable to continue the EPS production when they died
from heating. Indeed, the greater the growth of the EPS-
producing microorganism, the greater the cholesterol removal
rate from the medium was demonstrated in vitro [77].

Similarly, kefir supplementation, which did not lead to a
modulation of gut microbiota, is associated with low propio-
nic acid production in the colon, which is insufficient to pro-
mote changes in the serum cholesterol level [101]. Also, the
diet’s inclusion of extract rich in polyphenol (wine grape
seed flour -2.5%, v/v) did not alter the serum cholesterol
levels [76]. Thus, antioxidative capacity may not be a signif-
icant factor in reducing blood cholesterol levels.

On the other hand, the EPS ability to reduce the fat accu-
mulation in the adipocytes was confirmed in vitro and in vivo
animal models (Table 2). EPS isolated from strains of Lactoba-
cillus kefiri and Leuconostoc mesenteroides showed inhibition
(up to 28%) of lipid accumulation in 3T3-L1 adipocytes
in vitro; this inhibition, in general, occurred in a dose-
dependent manner [76]. In addition, the minimum concentra-
tion of EPS to obtain the effect appeared to be strain-dependent
since only EPS from L. mesenteroides LMDH4 presented an
effect at 0.01 mg/mL. At the same time, those from L. kefiri
LKDH3 and L. mesenteroides LMDHS affected the fat accumu-
lation only at the highest concentration tested (0.2 mg/mL). In
contrast, EPS from L. mesenteroides LMDH8 and LMDHO9 did
not act even at the highest concentration tried (Table 2). This
finding implies that the functional potential of EPS on fat accu-
mulation varies according to its microbial origin.

About in vivo animal experiment, a diet supplemented
with EPS-producer HLAB during eight weeks reduced by
36% the adipose tissue weight in C57BL/6] mice fed a
high-fat and high-fructose diet [76]. This way, it suggests
that EPS from kefir's microorganisms can be a functional
ingredient capable of being used in obesity cases. EPS perfor-
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mance occurred through action on adipose tissue;
expression of Wdfc21 and Hp proinflammatory genes was
lowered by 56% and 57%, respectively, in the adipose tissue
compared to the control group. Also, the expression of genes
related to the synthesis of fatty acids (Fabp4 and Fsan) was
downregulated by 55% and 43%, respectively, in the adipose
tissue of the HLAB group. Fabp4 encodes fatty acid-binding
protein 4 (Fabp4), while Fsan encodes fatty acid synthase. It
demonstrates that EPS has roles in anti-inflammation and
inhibiting the fatty acid synthesis in adipocytes. However,
these effects on the Wdfc21, Hp, Fabp4, and Fsan genes did
not result in serum cholesterol changes, as its level has not
been altered by treatment with HLAB.

Interestingly, supplementation of the diet with HLAB in
conjunction with wine grape seed flour (2.5%), which is rich
in polyphenol, potentiated the effect of reducing fat accumu-
lation by 25% [76]. Therefore, antioxidant activity may be a
relevant factor for reducing fat accumulation and can
enhance the impact of EPS on adipocytes. Consequently,
the synergistic treatment was the only one capable of signif-
icantly reducing the serum triglyceride.

3.4.8. Antihypertensive Effect. Hypertension is a chronic dis-
ease that leads to an increase in blood pressure [102].
Angiotensin-converting enzyme (ACE) is a key component
of the renin-angiotensin system as part of the homeostatic
mechanism to maintain adequate blood pressure levels in
mammals. Conversion of ACE 1 to ACE 2 (an enzyme with
a vasoconstrictor effect) is a common mechanism to regulate
blood pressure [103]. But in abnormal conditions, this con-
striction can cause high blood pressure and increase the
work required for the heart to pump blood into the body’s
main arteries [104]. In this way, inhibition in the conversion
of ACE 1 to ACE 2 plays a role in managing hypertension.

As the systematic review selected only one article, it was
the major limitation to a consistent understanding of the
effect of bioactive compounds from kefir on blood pressure.
Still, this study did not investigate the microorganism that
produces the bioactive compound, its mechanism of action,
nor the precursor of this bioactive compound in milk. In
addition, the model studied was in situ. The absence of an
investigation in vivo limits the understanding of the func-
tional potential of bioactive compounds from kefir on blood
pressure in physiological systems (Table 2).

In situ, the ACE activity was reduced by 98.4% in the
milk after fermentation with kefir grains for 24 h. The effect
observed was attributed to bioactive peptides released by
kefir’s microorganisms during the fermentation [14]. It
suggests that bioactive peptides from kefir can have the
potential to be used in the treatment of hypertension;
however, further investigations are urgently needed to reach
more consistent conclusions in the future.

3.4.9. Antioxidant Effect in Aging Models Related to
Neurodegenerative Diseases. Alzheimer’s disease, Parkin-
son’s disease, and amyotrophic lateral sclerosis are neurode-
generative diseases characterized by progressive loss of
neuron cells, detriment of motor or cognitive functions,
and accumulation of abnormal protein aggregates [105].
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Aging is the primary risk factor for most neurodegenerative
diseases, including Alzheimer’s and Parkinson’s disease. One
in 10 individuals aged >65 has Alzheimer’s disease, and the
prevalence of the disease continues to increase as age
advances [106]. Mitochondrial dysfunction and consequent
oxidative stress during aging are well-established factors that
significantly influence the progress of neurodegenerative dis-
eases [106]. The reactive oxygen species (ROS) production
in aged mitochondria increases, the membrane potential
becomes smaller, the ATP synthesis reduces, and the activity
of respiratory enzyme complexes declines.

Consequently, oxidation and aggregation of proteins
occur, in addition to the oxidation of mitochondrial DNA,
which starts to present mutations and deletions [105]. Few
or no effective treatments for age-related neurodegenerative
diseases are available, so they tend to progress irreversibly.
In this context, stem cell therapy is one of the alternative
methods studied for the treatment of neurodegenerative dis-
eases to regenerate the neuronal population [107].

The present systematic review selected only two properly
controlled studies testing bioactive compounds from kefir as
a therapeutic strategy in neurodegenerative diseases. In both,
the potential of EPS was assessed (Table 2). The effect of
kefiran on the proliferation of neural stem cell culture
(PC12 cell culture) was investigated by Jenab et al. [46] for
5 and 10% kefiran concentrations associated with pure
poly-acrylonitrile (PAN) to form nanofibers. When compar-
ing with the control (PAN alone), however, both kefiran
concentrations tested reduced up to 26.7% of the PC12 via-
bility after one-day incubation, showing no significant effect
after two days. On the fourth and sixth days, 10% kefiran
reduced by 15.4% and 21.2%, respectively, the viability of
the PC12 cell line. Thus, kefiran was not a suitable com-
pound for promoting neuronal regeneration; unlike, it
showed toxicity from 10% concentration.

On the other hand, oral administration of EPS (20 mL
EPS solution/kg bw) during 12 weeks had a beneficial effect
on the aging mouse model induced with D-galactose since
EPS could mitigate the resulting oxidative stress. At a low
dose (1 mg/mL), EPS enhanced by 27.7% the total antioxi-
dant capacity in the serum. However, in addition to increas-
ing the total antioxidant capacity, EPS increased serum
glutathione peroxidase, superoxide dismutase, and catalase
by 21.55, 33.14, and 61.09%, respectively. A 49.6% reduction
in serum malondialdehyde accompanied the increased activ-
ity of the antioxidant enzymes reported [83]. Malondialde-
hyde, in turn, has been proposed as a biological marker of
the progression of neurodegenerative diseases, including
Parkinson’s disease, amyotrophic lateral sclerosis, and Alz-
heimer’s disease. It is because the elevation of peripheral
malondialdehyde levels occurs in these diseases [108]. Thus,
the reduction of serum malondialdehyde suggests that EPS
can mitigate the progression of neurodegenerative diseases.

Lactobacillus plantarum YW11 was identified as the
EPS-producing microorganism with antioxidant activity
(Table 2). The antioxidant effect of EPS at the peripheral
level was attributed to its ability to modulate intestinal
microbiota positively. This modulatory effect was associated
with a reduction of oxidative stress in the intestinal tract; the
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decrease in NOx with a simultaneous increase in acetic and
butyric acids in feces illustrates the potential of EPS in
improving the oxidative conditions of the host’s intestinal
tract (Figure 2). Interestingly, EPS was more efficient than
ascorbic acid in reducing the level of NOx and just as efficient
in raising the content of short-chain fatty acids in the intestine.
The antioxidant capacity of EPS can be attributed to its scav-
enging ability on hydroxyl radicals, DPPH radicals, and super-
oxide anion, in addition to Fe** chelating ability [83].

Therefore, EPSs from kefir seem more promising in
terms of preventive effects than for therapeutic purposes.
Indeed, the aging mouse model exhibits similar characteris-
tics to those presented in the early stage of neurodegenera-
tive diseases, such as oxidative stress. Therefore, this model
is well-established for studying the earliest neurodegenera-
tive changes associated with these diseases [109]. However,
human clinical trials and more preclinical assays must be
performed to corroborate this hypothesis.

3.4.10. Effect on Osteoporosis. The systematic review here
selected only 1 study on the effect of the bioactive compounds
on osteoporosis [80]. However, the in vivo animal study did
not investigate the microorganisms that produce the bioactive
compound in kefir, nor its precursor in milk. The mechanisms
of action have also not been described. Therefore, further stud-
ies are urgently needed better to understand the effect of kefir
bioactive compounds on osteoporosis.

The ovariectomized procedure in female mice resulted in
osteoporosis associated with the fall of the estrogen hormone
due to the removal of the ovaries. These are the main glands
that produce estrogen, which caused an imbalance between
osteoblastic and osteoclastic activities in the bone. Conse-
quently, there was a reduction of approximately 16%, 70%,
and 70% of the bone mineral density, trabecular bone vol-
ume, and trabecular number in mice. However, the supple-
mentation with bioactive peptides from kefir (100 mg/kg
body weight) to ovariectomized mice could inhibit bone loss.
Thus, the peptides increased the bone mineral density,
trabecular bone volume, trabecular number, and the
mechanical properties of the elastic modulus and hardness
of the bones by 41%, 264%, 235%, 42%, and 36%, respec-
tively. Consequently, a reduction of 36.5% and 33% in the
trabecular separation and nanoindentation areas on the
femur was obtained. It is important to note that peptide
supplementation could ultimately reverse the condition of
osteoporosis since the bone mineral density, trabecular
number, trabecular separation, elastic modulus, hardness,
and nanoindentation areas were similar to those of the neg-
ative control (nonovariectomized female).

Administration of calcium carbonate, standard proce-
dure for osteoporosis treatment, also could enhance the tra-
becular bone volume and trabecular number. However,
these values were about 0.7 times lower than those obtained
by supplementation with bioactive peptides, demonstrating
the potential of the peptides from kefir as a therapeutic agent
in osteoporosis. Finally, no significant difference in the
effects of calcium and bioactive peptides’ combined action
concerning isolated bioactive peptides revealed no synergism
between these two treatments [80].
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FIGURE 3: Frequency of significant satisfactory and unsatisfactory outcomes from artisanal and industrial kefir trials included in the meta-
analysis. (a) Antimicrobial potential outcomes. (b) Antioxidant potential outcomes.

3.5. Do Bioactive Compounds from Artisanal and Industrial
Kefir Differ in Terms of Their Functional Potential? Two
groups were assessed for comparing artisanal (kefir grain)
and industrial (starter culture) kefir trials regarding their
functional properties (Figure 3). First, we target effects
related to antibacterial/antifungal potential resulting in an
estimated OR of 2.96 (95% CI: 0.87-10.05, P = 0.07). There-
fore, the type of kefir was not significantly associated with its
antimicrobial potential. This result agrees with our findings
(Table 2), which reported the organic acids (especially lactic
acid) as one of the main responsible bioactive compounds
for the antimicrobial effect in both types of kefir.

After aiming to evaluate artisanal and industrial kefir
outcomes concerning antioxidant potential, another group
analysis was carried out, resulting in an estimated OR of
8.56 (95% CI: 2.27-32.21, P <.001). Therefore, the utiliza-
tion of artisanal kefir may provide 756% higher chances of
having antioxidant effects than kefir from the industrial pro-
cess. As stated before, phenolic compounds were the bioac-
tive compounds responsible for industrial kefir antioxidant
activity. In contrast, artisanal kefir presented a greater
diversity of bioactive antioxidant compounds; in addition
to phenolic compounds, artisanal kefir also contained
bioactive peptides and EPS, including kefiran (artisanal
kefir-exclusive structure) (Table 2). Although the phenolic
compounds in industrial kefir have reducing power, they
were ineffective in terms of the radical scavenging ability
[85], unlike the phenolics present in artisanal kefir [75].
These findings suggest a different profile of phenolic com-
pounds between both kefirs that can affect the antioxidant
potential. In addition, the greater diversity of bioactive com-
pounds in artisanal kefir may have contributed to potentiate
the antioxidant capacity of this type of kefir (Table 2).

The difference in the antioxidant potential may be
related to the different microbial profiles between the types
of kefir since the microorganisms reported as producers of
the antioxidant compounds present in artisanal kefir [28,
73] are not commonly found in industrial kefir (Table 1).
Indeed, artisanal kefir's more diverse microbial profile has
been suggested as responsible for granting better functional

benefits than industrial kefir [20]. Consistently, as discussed
earlier, we observed a dramatically greater fungal diversity in
artisanal kefir. In addition, the bacterial composition
between both kefirs presented particularities (Table 1).
Therefore, the microbial profile of artisanal kefir seems to
be related to producing a greater diversity of bioactive com-
pounds with antioxidant potential.

However, it is essential to report that because artisanal
kefir is often primarily selected for kefir studies, only a few
studies reporting industrial kefir findings were included in
the meta-analysis, which was a limiting factor for compari-
son between kefir types.

4. Conclusion and Prospect

This review highlights the potential of bioactive compounds
from kefir as preventive and therapeutic agents. There is an
abundance of studies addressing the health benefits of kefir
administration. However, a literature limitation is uncon-
trolled experiments or not identifying the bioactive com-
pounds responsible for the observed health benefits. In
addition, the relative scarcity of studies investigating the bio-
active compounds-producer microorganisms and their sub-
strates in milk constitutes a gap in the literature. The
meta-analysis corroborated the antimicrobial, anticancer,
and immune-modulatory activities. Kefiran and lactic acid
were the main components with global antimicrobial action.
However, kefiran presented a concentration threshold from
which it exerted a bactericidal rather than a bacteriostatic
effect. At the same time, lactic acid inhibited the germination
of bacterial spores in a dose-dependent manner. Still, EPSs,
including kefiran, were primarily responsible for the activity
against colon and breast cancer. Nevertheless, the EPS concen-
tration and intervention time were decisive for obtaining or not
the anticancer effect, with EPS presenting a dose-dependent
inhibitory effect for cervical carcinoma and colon cancer.
Regarding the anti-inflammatory effect, EPS, extracellular
vesicles, and lactate were the main bioactive agents involved.
However, EPS can also have an immunostimulatory effect,
depending on its concentration and environmental conditions
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(absence or presence of inflammatory insult). To immunosti-
mulate, the EPS concentration had to be dramatically higher,
despite the intervention time similar to that used for the
anti-inflammatory effect. A high dosage of extracellular vesi-
cles seemed more effective against colitis than low dosages.
Therefore, these factors must be carefully considered in future
clinical applications. It is noteworthy that the studies were lim-
ited to in vitro and in vivo experiments, so clinical evidence is
urgently needed to help advance the practical application of
bioactive compounds from kefir. The mechanisms of action
of bioactive compounds were diverse, indicating that they
can act by different signaling pathways. Although antioxidant
activity and gut modulation have shown a trend that favors
kefir efficacy, they did not reach statistical significance, possi-
bly due to the high heterogeneity of the data. Thus, standard-
ization of the methodologies used to evaluate these effects will
help compare different studies in the future. Bioactive com-
pounds on plasma glucose level, neurodegenerative disease,
lipid profile, blood pressure, and osteoporosis were inconclu-
sive, and further studies are needed for consistent conclusions.
Finally, artisanal and industrial kefir can have different func-
tional potential depending on the health effect, which can be
associated with differences in the microbial composition
between both types of kefir.
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