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A B S T R A C T   

Series of piperidone-salicylate conjugates were synthesized through the reaction of 3E,5E-bis(arylidene)-4- 
piperidones with the appropriate acid chloride of acetylsalicylate in the presence of triethylamine. All the 
synthesized conjugates reveal antiproliferative properties against A431 (squamous skin) cancer cell line with 
potency higher than that of 5-fluorouracil. Many of the synthesized agents also exhibit promising anti-
proliferative properties against HCT116 (colon) cancer cell line, of which 5o and 5c are the most effective with 
12.9, 9.8 folds potency compared with Sunitinib. Promising activity is also shown against MCF7 (breast) cancer 
cell line with 1.19, 1.12 folds relative to 5-fluorouracil. PI-flow cytometry of compound 5c supports the arrest of 
cell cycle at G1-phase. However, compound 5o and Sunitinib arrest the cell cycle at S-phase. The synthesized 
conjugates can be considered as multi-targeted tyrosine kinase inhibitors due to the promising properties against 
VEGFR-2 and EGFR in MCF7 and HCT116. CDOCKER studies support the EGFR inhibitory properties. Com-
pounds 5p and 5i possessing thienylidene heterocycle are anti-SARS-CoV-2 with high therapeutic indices. Many 
of the synthesized agents show enhanced COX-1/2 properties than aspirin with better selectivity index towards 
COX-2 relative to COX-1. The possible applicability of the potent candidates discovered as antitumor and anti- 
SARS-CoV-2 is supported by the safe profile against normal (non-cancer, RPE1 and VERO-E6) cells.   

1. Introduction 

Natural products are still the main resources of human needs. Many 
therapeutics were designed due to inspiration of the biologically active 
natural compounds [1]. Curcumin is a natural compound (isolated from 
Curcuma longa) [2] gained interest due to its broad range biological 
properties as anti-inflammatory [3], anticancer [4-6] and antimicrobial 
[7]. Although its safety profile, the clinical applications are hindered 
due to its bioavailability (low aqueous or plasma solubility and stability 
at physiological pH) [8,9]. This is why curcumin mimics were alterna-
tively considered by many researchers. It is believed that the active 
methylene connecting the β-diketonic moieties plays a crucial role in 
curcumin stability [10,11]. The diene connected through a carbonyl 

group forming a five-carbon system seems an acceptable approach for 
developing a biologically enhanced scaffold [12-14]. 3,5-Diylidene-4- 
piperidones are curcumin mimics with broad promising biological 
properties of which antitumor against diverse cancer cell lines [15-18] 
and anti-inflammatory [19]. The present study deals with synthesis of 
3,5-bis(arylidene)-4-piperidones as curcumin mimics conjugated with 
acetylsalicylic acid (aspirin) (Fig. 1). 

Since the discovery of aspirin by Felix Hoffman of Bayer industry 
(1897), it became one of the most usable low-cost NSAIDs (non-steroidal 
anti-inflammatory drugs) worldwide, accessible as an analgesic and 
anti-inflammatory therapeutic [20,21]. It has been also reported that, 
daily low dose aspirin reduces heart attack risks [22]. Gastrointestinal 
ulcer is the most serious drawback of aspirin similar to many other 
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NSAIDs [23]. This is attributable to the irritation formed due to direct 
contact of the NSAID carboxylic group with the tissue(s) producing 
prostaglandin [24]. Enteric-coated aspirin was considered to overcome 
the gastrointestinal ulceration side effects but the reduced efficacy 
especially in chronic administration and coronary heart disease hin-
dered the applicability [25,26]. Many reports mentioned that aspirin 
can reduce the risk of cancer [27-33] and inhibit NFκβ signal which may 
assist in cancer growth and metastasis [34,35]. This is why many re-
searchers adopted investigation of aspirin based-analogues as potential 
antitumor candidates [36-39]. Others considered conjugation of aspirin 
with antitumor chemotherapeutics [40] because inflammation initiated 
by cancer may lead to metastasis [41]. Furthermore, the reported anti-
tumor properties of salicylamide-containing compounds [42-44] 
prompted the current study due to the targeted salicylamide derivative 
formed through conjugation of the carboxylic group of aspirin with the 
nitrogen atom of piperidinyl heterocycle. Recent reports describing the 
pathophysiological role of COX-1/2 inhibitors in cancer disease and the 
discovered COX-2 inhibitors as antitumor also supported the rational of 
the current study [45,46]. 

Although the continuous advances/efforts in diagnosis and treat-
ment in cancer research, it is still one of the most serious challenges for 
human health. It is the second cause of death globally after cardiovas-
cular diseases [47]. It is expected the number of deaths will exceed those 
of any other disease and be the first cause of human mortality within few 
years [48]. Needs for more therapeutic approaches especially, new 
chemotherapies with higher efficacies and fewer drawbacks are still in 
demand. The designed agents of the current study will be considered for 
antitumor evaluation against HCT116 (colon), MCF7 (breast) and A431 
(squamous skin) cancer cell lines. Selection of the mentioned cancer cell 
lines among many other types are due to promising properties reported 
by the piperidone-containing compounds [15,16,49]. Colorectal 
(including colon and rectum) cancer is the third leading cause of death 
globally among all cancer types. The five year survival due to colon 
cancer is still high (30%) due to the recurrence and metastasis [50]. 
Many factors are overlapped in colon cancer including heredity, colon 
polyps, and ulcerative colitis. Colon cancer usually arises from colon 
polyps [49]. Surgery is the most accepted optional approach for local-
ized colon cancer. However, chemotherapy is the most successful for 
metastasis [51]. Breast cancer is the fifth cause of human cancer death 
and the second for women [52,53]. Surgery, chemotherapy, radio-
therapy, immunotherapy and hormone therapy, are still the main op-
tions for breast cancer [53,54]. Skin cancer incidence and mortality are 
increased in the last few years [55]. This is attributed to many factors 
including exposure to sunlight (ultraviolet radiation) [56] and genetic 
predisposition [57]. Skin cancers are of two main types, melanoma and 
non-melanoma (basal and squamous) cell carcinoma. Although the non- 
melanoma cancers are the more prevalent, melanoma skin cancer is 
more aggressive with a higher number of deaths [58]. 

By the end of 2019 a new disease was started in Wuhan, China [59] 
by an unknown infectious virus “SARS-CoV-2 (respiratory syndrome 
coronavirus 2)”, which was identified as single stranded RNA virus 

coronavirus (family Betacoronavirus) [60]. It is speedy spread to all 
continents of the world (about 230.4 million affected patients with 4.7 
million deaths [61]) exhibiting great challenge to the global health 
system due to lack of powerful clinical treatments. This is why WHO 
(World Health Organization) declared a pandemic COVID-19 (corona 
virus disease 2019) on March 11, 2020 [62]. Although previous coro-
naviral diseases were declared (SARS-CoV, Foshan, China, Nov. 2002 
and MERS-CoV “Middle East Respiratory Syndrome”, Jeddah, Saudi 
Arabia, June 2012) the current pandemic seems more aggressive due to 
the wide spreading and great number of deaths [63]. The scientific so-
ciety with the pharmaceutical companies did their best for developing 
vaccine(s) that may control the viral prophylactic action and identi-
fying/developing therapeutic agent(s) for infected patients. For opti-
mizing an effective medication computational technique or drug re- 
proposing were utilized to accelerate the identification of the urgent 
needs [59,64,65]. Many drugs were re-proposed/adopted for COVID-19 
of which Lopinavir/Ritonavir, Chloroquine, Hydroxychloroquine, 
Arbidol, Remdesivir and Favipiravir (Fig. 2) but none of them seems of 
high efficacy especially for advanced infection [60,66-68]. This is why 
new effective agents are still in demand. Due to the reports mentioned 
for the anti-SARS-CoV-2 properties of diverse antitumor active agents 
[69-71], the targeted conjugates within the current study will be 
intended for anti-SARS-CoV-2 properties investigation. The successful 
clinical reports for treating the colon cancer patients with antiviral drugs 
alone or with antitumor drugs [72] also add good support for the aim of 
the present study directed towards optimizing new hits of dual functions 
as antitumor and anti-SARS-CoV-2 with safety properties against normal 
cells. Recent reports describing aspirin as anti-SARS-CoV-2 with mild 
properties and safe applicability also prompted the current study [73]. 

2. Results and discussion 

2.1. Chemistry 

The acid chlorides 3a,b [74,75] were obtained from the corre-
sponding acetylsalicylic acids 2a,b [76] by the reported procedure 
[oxalyl chloride in dichloromethane containing a catalytic amount of 
N,–N–dimethylformamide (DMF)]. Reaction of the 3E, 5E-bis(aryli-
dene)-4-piperidones 4a–i [15,16,19,77,78] with the appropriate 3a,b in 
DMF in presence of sufficient amount of triethylamine in an ice-cold 
water bath afforded the targeted conjugates 5a–p in acceptable yields 
(60–88 %) (Scheme 1). IR spectrum of 5a (an example of the targeted 
family) reveals the piperidinyl ketonic and salicylate amidic carbonyls at 
ν = 1767, 1643 cm− 1, respectively. 1H NMR spectrum of 5a shows the 
piperidinyl methylene protons as singlet signals at δH = 4.58, 5.01 and 
the salicylate singlet acetyl protons at δH = 2.14. However, the exocyclic 
olefinic methine protons are hidden under the aromatic protons. 13C 
NMR spectrum of 5a exhibits the piperidinyl methylene carbons at δC =

42.6, 47.2 and the acetyl carbon at δC = 20.4. The piperinyl carbonyl 
carbon is viewed at δC = 185.7 and the salicylate carbonyls at δC =

165.6, 168.4 (Supplementary Figs. S1-S48). 
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2.2. Biological studies 

2.2.1. Antiproliferative properties 
The standard MTT bioassay technique was considered for anti-

proliferation properties determination of the synthesized agents 5a–p 
[79]. Table 1 displays the IC50 (concentration capable for 50% growth 

inhibition of the tested cell line) of the synthesized agents 5a–p and 
reference standards (5-fluorouracil and sunitinib) which are clinically 
approved drugs against the considered cancer cell lines (Supplementary 
Figs. S49-S52). FDA approved 5-fluorouracil for treatment colon, breast 
and skin cancers [80,81]. Sunitinib was approved for treatment of 
gastrointestinal, renal and pancreatic cancers [82,83]. 

O

HN O
OH

H
N

O

N

NH

O

Lopinavir

NCl

HN
N

Chloroquine

NCl

HN
N

OH

Hydroxychloroquine

N

N

HO

Br

O
O

S

Arbidol

O
P

HN

O

O

O

O

HO OH

O

N

N
N

N

NH2

Remdesivir

N

NF

OH

O

NH2

Favipiravir

Fig. 2. Proposed drugs for COVID-19.  

OH

OH

O

OH

O

O

O

Cl

O

O

O

R R R N
H

O
R' R'

DMF, TEA

N

O

R' R'

O
R

O

O

1
2

3

4

5
1a, 2a, 3a; R = H
1b, 2b, 3b; R = Cl

4a; R = Ph
4b; R = 4-FC6H4
4c; R = 4-ClC6H4
4d; R = 4-BrC6H4
4e; R = 4-H3CC6H4
4f; R = 4-H3COC6H4
4g; R = 3,4-(H3CO)2C6H3
4h; R = 3,4,5-(H3CO)3C6H2
4i; R = 2-thienyl

5a; R = H, R' = Ph (72%)
5b; R = H, R' = 4-FC6H4 (68%)
5c; R = H, R' = 4-ClC6H4 (69%)
5d; R = H, R' = 4-BrC6H4 (61%)
5e; R = H, R' = 4-H3CC6H4 (67%)
5f; R = H, R' = 4-H3COC6H4 (81%)
5g; R = H, R' = 3,4-(H3CO)2C6H3 (71%)
5h; R = H, R' = 3,4,5-(H3CO)3C6H2 (73%)
5i; R = H, R' = 2-thienyl (76%)
5j; R = Cl, R' = Ph (67%)
5k; R = Cl, R' = 4-ClC6H4 (88%)
5l; R = Cl, R' = 4-BrC6H4 (84%)
5m; R = Cl, R' = 4-H3COC6H4 (87%)
5n; R = Cl, R' = 3,4-(H3CO)2C6H3 (61%)
5o; R = Cl, R' = 3,4,5-(H3CO)3C6H2 (60%)
5p; R = Cl, R' = 2-thienyl (75%)

Ac2O
H2SO4 DCM, DMF

(COCl)2
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2.2.1.1. A431 (squamous skin) cancer cell line. All the synthesized 
agents 5a–p reveal antiproliferative properties against A431 cell line 
with potency higher than that of 5-fluorouracil. Compounds 5k is the 
most effective agent synthesized against A431 with 56.2 folds relative to 
5-fluorouracil (IC50 = 0.417, 23.44 μM for 5k and 5-fluorouracil, 
respectively). Compounds 5h, 5n and 5o also reveal high efficacy 
against the tested cell line with potency close to that of 5k (IC50 =

0.431–0.472 μM). Additionally, compounds 5d, 5e, 5g and 5l show 
considerable properties with sub-micromolar potencies (IC50 =

0.639–0.986 μM). 
Based on the antiproliferative properties notable SARs (structure- 

activity relationships) could be attained. Attachment of the salicylate 
ring with a chlorine atom/substituent enhances the observed anti-
proliferation properties (compound 5i is an exception). The number of 
methoxy groups attached to the exocyclic benzylidene system is also a 
controlling factor for the exhibited bio-properties. The high number of 
methoxy groups, the higher potency of the tested agent as revealed by 
compounds 5f/5g/5h (IC50 = 6.042, 0.973, 0.472 μM for 5f, 5g and 5h, 
respectively) and 5m/5n/5o (IC50 = 3.811, 0.444, 0.431 μM for 5m, 5n 
and 5o, respectively). 

2.2.1.2. MCF7 (breast) cancer cell line. Compounds 5o and 5c are the 
most potent agents synthesized against MCF7 cell line with 1.19, 1.12 
folds relative to the standard reference, 5-fluorouracil (IC50 = 2.653, 
2.806, 3.15 μM for 5o, 5c and 5-fluorouracil, respectively). SAR can be 
concluded due to the antiproliferative bio-observations. It is noticed that 
the 5-chlorosalicylate-containing compounds show better 

antiproliferative properties than the unsubstituted analogues (com-
pounds 5c and 5i are exceptions). It is also noticed that, increment the 
number of methoxy groups attached to the benzylidene ring is associ-
ated with enhancement of the shown bio-efficacies as shown by com-
pounds 5f/5g/5h and 5m/5n/5o. 

2.2.1.3. HCT116 (colon) cancer cell line. Many of the synthesized 
piperidone-salicylate conjugates show remarkable antiproliferative 
properties against HCT116 (colon) cancer cell line. Compounds 5o and 
5c are the most effective agents with sub-micromolar values (IC50 =

0.750, 0.986 μM for 5o and 5c, respectively) and 12.9, 9.8 folds relative 
to Sunitinib (IC50 = 9.67 μM), the clinically approved drug against 
gastrointestinal cancer. Compounds 5h, 5l and 5n also reveal high po-
tency against HCT116 cell line (IC50 = 1.153–1.486 μM i.e. 8.4–6.5 folds 
of Sunitinb). Also, conjugates 5d, 5e, 5g, 5j and 5k show promising 
activity against the tested cell line (IC50 = 1.972–3.597 μM). 

SAR due to the exhibited bio-properties strengthens the role of 
chloro-substituted salicylate over the unsubstituted analogues for the 
antiproliferation enhancement (compound 5p is an exception). Incre-
ment in the number of methoxy group attached to the exocyclic ben-
zylidenes of the piperidinyl heterocycle at the 3- and 5-positions are also 
associated in the enhancement of the antiproliferation properties as 
shown by compounds 5f/5g/5h (IC50 = 6.083, 2.389, 1.333 μM for 5f, 
5g and 5h, respectively) and 5m/5n/5o (IC50 = 5.944, 1.486, 0.750 μM 
for 5m, 5n and 5o, respectively). Surprisingly, high compatibility was 
noticed due to the SARs of all the tested cell lines. 

Safe profile of the potent agents was established upon testing against 
RPE1 (non-cancer, retinal pigment epithelium) cell line (Table 1). 

2.2.2. Cell cycle analysis 
Flow cytometric analysis is an accessible and rapid technique used 

intensively in medicinal chemical studies for assigning the cell cycle 
progress of living cells. The detected fluorescence levels estimate 
quantitatively the DNA content hence; determine the progress of cell 
cycle [79,84]. Compounds 5c and 5o (the most promising agents syn-
thesized with high potency against HCT116) were selected for flow 
cytometric analysis studies applying the IC50 value of each respective 
agent observed through MTT bio-assay, to identify their impact on the 
progress of cell cycle and accessibility for induction of apoptosis and/or 
necrosis. 

From the results obtained (Table 2, Figs. 3, 4) it is noticeable that 
compound 5c arrests the cell cycle progression at G1-phase due to 
accumulation of DNA content at G0-G1 phase (55.28 %). Meanwhile, 
compound 5o and Sunitinib (standard reference) are noticed to arrest 
the proliferative cells at S-phase (% DNA content = 53.11, 46.23 for 5o 
and Sunitinib, respectively). Additionally, high increment in Pre-G1 
phase is observed by all the tested compounds and standard reference 
relative to the control (% DNA content = 1.66, 44.28, 35.75, 31.69 for 
control, 5c, 5o and Sunitinib, respectively). However, decrease in G2/M 
phase is noticed by the synthesized agents and Sunitinib compared with 
control (% DNA content = 9.91, 3.59, 4.14, 7.59 for control, 5c, 5o and 
Sunitinib, respectively). 

It has also been noticed that compound 5c is a highly inducer of 
apoptosis and affording necrosis (% apoptosis and necrosis = 44.28, 
13.41, respectively). Compound 5o and Sunitinib are also apoptosis 

Table 1 
Antiproliferative properties of the synthesized agents, curcumin, 5-fluorouracil 
and Sunitinib.  

Entry Compd. IC50 ± SE, μM (SI)a 

A431 MCF7 HCT116 RPE1 

1 5a 4.486 ± 0.41 
(2.4) 

4.736 ± 0.38 
(2.25) 

4.722 ± 0.42 
(2.25) 

10.64 ±
1.04 

2 5b 2.125 ± 0.19 
(3.9) 

5.764 ± 0.47 
(1.44) 

5.097 ± 0.51 
(1.63) 

8.30 ±
0.71 

3 5c 1.208 ± 0.11 
(7.3) 

2.806 ± 0.26 
(3.15) 

0.986 ± 0.08 
(8.96) 

8.83 ±
0.68 

4 5d 0.986 ± 0.08 
(9.8) 

4.583 ± 0.39 
(2.11) 

3.597 ± 0.29 
(2.69) 

9.68 ±
0.57 

5 5e 0.639 ± 0.07 
(15.5) 

6.000 ± 0.50 
(1.65) 

2.556 ± 0.18 
(3.87) 

9.89 ±
0.75 

6 5f 6.042 ± 0.62 
(1.6) 

5.375 ± 0.51 
(1.84) 

6.083 ± 0.49 
(1.63) 

9.89 ±
0.66 

7 5 g 0.973 ± 0.07 
(10.6) 

4.972 ± 0.42 
(2.08) 

2.389 ± 0.21 
(4.32) 

10.32 ±
1.10 

8 5 h 0.472 ± 0.02 
(18.3) 

3.986 ± 0.36 
(2.16) 

1.333 ± 0.09 
(6.47) 

8.62 ±
0.72 

9 5i 2.153 ± 0.15 
(8.8) 

5.583 ± 0.52 
(3.41) 

9.255 ± 0.61 
(2.06) 

19.04 ±
0.99 

10 5j 2.514 ± 0.18 
(3.7) 

4.500 ± 0.39 
(2.06) 

2.625 ± 0.19 
(3.53) 

9.26 ±
0.75 

11 5 k 0.417 ± 0.03 
(18.6) 

4.069 ± 0.33 
(1.91) 

1.972 ± 0.17 
(3.94) 

7.77 ±
0.56 

12 5 l 0.667 ± 0.07 
(10.8) 

4.153 ± 0.37 
(1.74) 

1.153 ± 0.13 
(6.27) 

7.23 ±
0.49 

13 5 m 3.811 ± 0.29 
(1.9) 

5.056 ± 0.45 
(1.43) 

5.944 ± 0.46 
(1.22) 

7.23 ±
0.51 

14 5n 0.444 ± 0.04 
(17.7) 

4.389 ± 0.40 
(1.79) 

1.486 ± 0.17 
(5.30) 

7.87 ±
0.62 

15 5o 0.431 ± 0.03 
(16.3) 

2.653 ± 0.22 
(2.65) 

0.750 ± 0.06 
(9.36) 

7.02 ±
0.45 

16 5p 6.250 ± 0.49 
(3.2) 

6.250 ± 0.61 
(3.18) 

6.383 ± 0.44 
(3.12) 

19.89 ±
1.21 

17 Curb NTd 16.00 ± 2.04 38.25 ± 2.36 NTd 

18 5-FUc 23.44 ± 2.09 3.15 ± 0.44 20.43 ± 1.99 — 
19 Sunitinib — 3.97 ± 0.32 9.67 ± 0.22 — 

aSI (selectivity index) = IC50 of the normal cell line (RPE1) relative to that of the 
cancer cell, bCur = curcumin [15,16], c5-FU = 5-flurouracil [15,16], dNT = not 
tested. 

Table 2 
% Cell distribution of compounds 5c, 5o and Sunitinib for HCT116 (colon cancer 
cell line) by PI-flow cytometry.  

Entry Compd. DNA content (%) 

G0-G1 S G2/M Pre-G1 

1 Control  51.38  38.71  9.91  1.66 
2 5c  55.28  41.13  3.59  44.28 
3 5o  42.75  53.11  4.14  35.75 
4 Sunitinib  46.18  46.23  7.59  31.69  
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inducers and necrosis producers however, with lower efficiencies than 
compound 5c (% apoptosis and necrosis = 35.75, 9.44; 31.69, 7.46 by 
compound 5o and Sunitinib, respectively). Late stage of apoptosis is also 
shown by compound 5c higher than that of compound 5o and Sunitinib 
(% late stage apoptosis = 28.58, 24.59, 21.69 by compounds 5c, 5o and 

Sunitinib, respectively) (Table 3, Fig. 5). 

2.2.3. Anti-SARS-CoV-2 properties 
The anti-SARS-CoV-2 properties of the synthesized aspirin-curcumin 

mimic conjugates were determined by the standard technique (Table 4, 

Fig. 3. Cell cycle analysis of compounds 5c, 5o, Sunitinib and control experiment for HCT116 (colon cancer cell line).  
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Fig. 6) [79,85,86]. Generally, all the synthesized agents (compounds 5c, 
5f and 5j are exceptions) show potent anti-SARS-CoV-2 properties (IC50 
= 1.659–8.828 µM) relative to the standard references used (IC50 =

36.92, 24.98 µM for hydroxychloroquine and chloroquine, respectively). 
Compounds 5d, 5e and 5o are the most effective agents synthesized with 
promising selectivity/therapeutic index (SI) (IC50 = 1.659–1.765 µM, SI 
= 34.0–54.7). Compounds 5p and 5i which contain thienylidene het-
erocycle exhibit remarkable therapeutic index due to high CC50 relative 
to their IC50 values (IC50 = 8.828, 3.316 µM; CC50 = 206.2, 416.5 µM; SI 
= 233.6, 125.6, for compounds 5p and 5i, respectively). Compound 5m 
is also with high selectivity index (SI = 138.7). It has also been noticed 
that the increment of methoxy group(s) attached to the exocyclic ben-
zylidenes at the 3- and 5-positions of the piperidone heyerocycle is 
associated with higher anti-SARS-CoV-2 potency (compound 5n is an 
exception) as shown by compounds 5f/5g/5h (IC50 = 149.3, 4.079, 
2.236 µM) and compounds 5m/5o (IC50 = 4.173, 1.690 µM). 

2.2.4. Tyrosine kinase inhibitory properties 
Targeted cancer chemotherapy is an important approach for 

competing cancer adopted intensively for reducing the side effects of 
other agents that many interfere with crucial cellular processes/targets 
or mistargeting the aimed protein/receptor [87,88]. Tyrosine kinases 
are classes of proteins participate in many biochemical activities con-
trolling diverse cellular processes of which cell proliferation, differen-
tiation and death [89]. Overexpression of protein kinases may lead to 
tumor invasion or metastasis. This explains the interest in tyrosine ki-
nase inhibitors as chemotherapeutical agents. Tyrosine kinases usually 
classify to receptor and non-receptor tyrosine kinases. The receptor 
tyrosine kinases include many growth factors of which vascular endo-
thelial growth factor (VEGF) and epidermal growth factor (EGF) that 
constitute important targets for developing antitumor drugs [89]. 

Multi-targeted tyrosine kinase inhibitors can be more potent, wider 
applicable agents against different cancer types and achieve satisfactory 
therapeutic effects [90]. Since, cancer initiation and progression usually 
depends on several receptor or singling pathways, the multi-targeted 
agents seem more appropriate with several advantages over the mono- 
targeted therapies [91]. 

2.2.4.1. VEGR-2 inhibitory properties. Angiogenesis (formation of new 
blood vessels from the pre-existing ones) is a physiological key for many 
solid tumor proliferation and metastasis. VEGF which is secreted by the 
malignant tumor plays an important role in the angiogenic process [92]. 
Three main types have been identified for vascular endothelial growth 
factor receptors; VEGFR-1, VEGFR-2, and VEGFR-3 which are cell sur-
face protein modulating angiogenesis tyrosine kinase receptors [93–95]. 
VEGFR-2 is identified as the main receptor suppressing angiogenesis and 
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Table 3 
% Apoptosis and necrosis of HCT116 (colon cancer cell line) for compounds 5c, 
5o, Sunitinib and control.  

Entry Compd. Apoptosis (%) Necrosis (%) 

Total Early Late 

1 Control  1.66  0.46  0.12  1.08 
2 5c  44.28  2.29  28.58  13.41 
3 5o  35.75  1.72  24.59  9.44 
4 Sunitinib  31.69  2.54  21.69  7.46  
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inhibiting solid tumor proliferation [96]. 
The VEGFR-2 inhibitory properties of the synthesized aspirin- 

curcumin mimic conjugates are represented in Table 5 utilizing the 
standard Western blot technique [97] at the MTT-IC50 values of each 
prepared analogue (Supplementary Fig. S53). Generally, It has been 
noticed that all the synthesized agents show considerable inhibitory 
properties against VEGFR-2 (% inhibition = 37.2–70.5, 37.2–79.0 for 
MCF7 and HCT116 cell lines, respectively). Compound 5l (R = Cl, Rˈ =
4-BrC6H4) reveals the highest VEGFR-2 inhibitory properties relative to 
the other synthesized agents for MCF7 cell line (% inhibition = 70.5). 
However, compound 5j (R = Cl, Rˈ = Ph) is the most potent inhibitor for 
HCT116 cell line (% inhibition = 79.0). Compounds 5a (R = H, Rˈ = Ph) 
and 5o [R = Cl, Rˈ = 3,4,5-(H3CO)3C6H2] also show promising inhibi-
tory properties against VEGFR-2 for MCF7 cell line (% inhibition = 64.6, 
63.0 for compounds 5a and 5o, respectively). Additionally, compounds 
5b (R = H, Rˈ = 4-FC6H4), 5c (R = H, Rˈ = 4-ClC6H4), 5l (R = Cl, Rˈ = 4- 
BrC6H4) and 5m (R = Cl, Rˈ = 4-H3COC6H4) exhibit good affinity against 
VEGFR-2 for HCT116 cell line (% inhibition = 70.4–76.4). 

2.2.4.2. EGFR inhibitory properties. EGFR (epidermal growth factor re-
ceptor) is an important family of the trans-membrane tyrosine kinase 
receptors necessary for proliferation and development of many solid 
tumors including colon, breast, lung and ovarian cancers [98,99]. Small 
molecule EGFR inhibitors were developed clinically and approved 
against many cancer types [100]. 

Western blot technique was employed for EGFR inhibitory properties 
determination [101] utilizing the IC50 values of the synthesized agents 
against MCF7 and HCT116 cell lines. From the exhibited properties it is 
noticeable that, most of the synthesized agents reveal EGFR inhibition 
properties with higher potencies that that of VEGFR-2 (% inhibition =
56.8–90.3, 56.3–72.8 for MCF7 and HCT116 cell lines, respectively) 
(Table 5, Supplementary Fig. S54). Compound 5a (R = H, Rˈ = Ph) is 
superior with high potency for MCF7 cell line (% inhibition = 90.3). 
However, compound 5b (R = H, Rˈ = 4-FC6H4) is the highest EGFR 
inhibitor for HCT116 cell line (% inhibition = 72.8). Additionally, 
compounds 5b (R = H, Rˈ = 4-FC6H4), 5c (R = H, Rˈ = 4-ClC6H4) and 5f 
(R = H, Rˈ = 4-H3COC6H4) show promising EGFR inhibitory properties 
for MCF7 cell line (% inhibition = 83.7, 85.6, 76.3 for 5b, 5c and 5f, 
respectively). Compounds 5a (R = H, Rˈ = Ph), 5j (R = Cl, Rˈ = Ph) and 
5m (R = Cl, Rˈ = 4 = H3COC6H4) also exhibit high EGFR inhibitory 
properties for HCT116 (% inhibition = 68.5–69.3). 

Generally, most of the tyrosine kinase inhibitory properties (VEGFR- 
2 and EGFR) of MCF7 and HCT116 cell lines support the antiprolifera-
tion properties discovered of the synthesized conjugates (Table 1). The 
slight differences due to the antiproliferation properties and tyrosine 
kinase inhibitory properties can be attributed to the applied conditions 
due to the standard techniques. 

2.2.5. COX-1/2 inhibitory properties 
Inflammation is a natural response due to any harmful stimuli, 

infection or injury to human body [102]. It is usually associated with 
many serious diseases of which, rheumatoid arthritis [103], asthma 
[104], carcinoma [105], bacterial/viral infections [106]. Biochemical 
oxidation of arachidonic acid leads to the formation of prostaglandins 
and leukotrienes. Excessive formation of the latters is associated with 
inflammation, fever or pain [107]. Cyclooxygenase (COX) enzymes are 
responsible for biochemical transformation of arachidonic acid to 
prostaglandins. Cyclooxygenases are of three isoforms (COX-1, − 2 and 
− 3). COX-1 is a constitutive enzyme for normal cells producing pros-
taglandins of many important physiological functions such as renal 
blood flow and gastrointestinal mucous production [108] while, COX-2 
is an inducible enzyme in the endothelial cells. COX-3 is another isoform 
mostly present in the cerebral cortex and heart [109]. Many traditional 
NSAIDs such as aspirin express their action through roughly inhibition 
of both COX-1 and COX-2. COX-2 selective drugs are already discovered 
within the last few decades (e.g. Celecoxib, Rofecoxib and Valdecoxib) 
(Fig. 7). However, accessibility as medication is now questionable due to 
their serious cardiovascular side effects discovered [110]. This is why 
new anti-inflammatory agents with high efficacy and limited side effects 
are still in demand. 

The COX-1/2 inhibitory properties of the synthesized agents and 
aspirin (standard reference) are presented in Table 6 which determined 
by the standard technique [111,112]. It is noticeable that all the syn-
thesized agents show enhanced COX-1/2 properties (IC50 =

0.134–0.590, 0.138–2.245 µM for COX-1 and COX-2, respectively) than 
their parent precursor (IC50 = 0.688, 2.448 µM for COX-1 and COX-2 for 
aspirin). Compound 5d (R = H, Rˈ = 4-BrC6H4) is the most potent COX-1 
inhibitor among the entire synthesized agent (IC50 = 0.134 µM). Addi-
tionally, compounds 5b (R = H, Rˈ = 4-FC6H4), 5f (R = H, Rˈ = 4- 
H3COC6H4), 5h (R = H, Rˈ = 3,4,5-(H3CO)3C6H2) and 5m (R = Cl, Rˈ =
4-H3COC6H4) also show promising COX-1 inhibitory properties (IC50 =

0.142–0.147 µM). 
Many of the synthesized agents show enhanced selectivity index (SI) 

towards COX-2 relative to COX-1. Compound 5p (R = Cl, Rˈ = 2-thienyl) 
is the most selective agent synthesized towards COX-2 (SI = 2.065). 
Compounds 5i (R = H, Rˈ = 2-thienyl), 5k (R = Cl, Rˈ = 4-ClC6H4) and 5l 
(R = Cl, Rˈ = 4-BrC6H4) also reveal promising behavior (SI = 0.589, 
0.578, 0.582 for 5i, 5k and 5l, respectively). Similar observations are 
also noticed for compounds 5f (R = H, Rˈ = 4-H3COC6H4), 5m (R = Cl, R 
ˈ = 4-H3COC6H4) and 5n [R = Cl, Rˈ = 3,4-(H3CO)2C6H3] due to SI =
0.452–0.467. It has also been noticed that the chlorosalicylate- 
containing conjugates are of milder COX-1 inhibitory properties than 
the unsubstituted analogues (compounds 5j and 5n are exceptions). 

2.3. Molecular modeling 

Molecular docking studies were undertaken for validation the EGFR 
properties of the synthesized conjugates utilizing Discovery Studio 2.5 
software (CDOCKER standard technique) [79,113]. Adoption of the 
EGFR properties for computational studies, are due to the promising 
observations revealed relative to the exhibited VEGFR-2 properties. The 
PDB ID: 4G5P was considered for the targeted study [114,115]. Afatinib 
is the co-crystallized ligand in the protein active site (clinically approved 
by FDA for non-small cell lung cancer on Jul. 2013) characterized by 
potent EGFR inhibitory properties [116,117]. CDOCKER interactions of 
the synthesized conjugated show that all the tested compounds obey the 
same alignment in the protein active site giving to hydrogen bonding 

Table 4 
Antiviral properties of the synthesized conjugates and standard references 
(hydroxychloroquine and chloroquine) against SARS-CoV-2.  

Entry Compd. IC50 (µM)a CC50 (µM)b SIc 

1 5a  4.729 87.62  18.5 
2 5b  3.406 77.44  22.7 
3 5c  28.37 49.54  1.7 
4 5d  1.659 90.82  54.7 
5 5e  1.765 66.03  37.4 
6 5f  149.3 182.1  1.2 
7 5 g  4.079 234.5  57.5 
8 5 h  2.236 78.19  35.0 
9 5i  3.316 416.5  125.6 
10 5j  32.29 182.6  5.7 
11 5 k  5.868 60.60  10.3 
12 5 l  5.898 65.19  11.1 
13 5 m  4.173 578.6  138.7 
14 5n  6.596 586.2  88.9 
15 5o  1.690 57.50  34.0 
16 5p  8.828 2062  233.6 
17 Hydroxychloroquine  36.92 356.4  9.7 
18 Chloroquine  24.98 377.7  15.1 

aIC50 is the concentration for 50% growth inhibition relative to the control. 
bCC50 is the cytotoxic concentration for 50% cell (VERO-E6) relative to the 

control. cSI =
CC50

IC50 
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interaction between the piperidinyl carbonyl oxygen (C––O) and 
MET793 with variable docking scores (Table 7, Supplementary 
Fig. S55). This behavior is comparable to that of the co-crystallized 
ligand (Afatinib) which exhibits two hydrogen bonding interactions 
taking place between the quinazolinyl N-1 and MET793 beside that of 
dimethylamino N and ASP800. Compound 5n [R = Cl, Rˈ = 3,4- 
(H3CO)2C6H3] shows additionally hydrogen bonding interaction of the 
acetyl carbonyl (C––O) with CYS797 beside methoxy oxygen with 
LYS728, explaining its relative high docking score value (-55.2 kcal 
mol− 1) among the other(s) of structural resemblance. 

It has been noticed that compound 5h [R = H, Rˈ = 3,4,5- 
(H3CO)3C6H2] possess the highest docking score (− 67.2 kcal mol− 1) 
among the entire tested conjugates and equivalent to that of the co- 

crystallized ligand. This computational/binding energy value can sup-
port its % inhibition EGFR values (% inhibition of EGFR = 58.9, 57.9 in 
MCF7 and HCT116 cell lines, respectively) and also antiproliferation 
properties (IC50 = 3.986, 1.333 μM for MCF7 and HCT116 cell lines, 
respectively) (Tables 1, 5). Similar noticeable data are for compound 5o 
(docking score = -65.1 kcal mol− 1) comparable to the EGFR enzymatic 
inhibition (% inhibition of EGFR = 69.2, 68.2 in MCF7 and HCT116 cell 
lines, respectively) and antiproliferation properties (IC50 = 2.653, 0.750 
μM for MCF7 and HCT116 cell lines, respectively). Compounds 5f (R =
H, 4-H3COC6H4) and 5m (R = Cl, 4-H3COC6H4) also characterize by 
promising docking score values (CDOCKER scores = -53.4, − 53.9 kcal 
mol− 1 for 5f and 5m, respectively) supporting their EGFR enzymatic 
inhibitory properties (% inhibition = 76.3, 62.5; 62.4, 68.5 due to 

Fig. 6. Dose-response curves for the synthesized conjugates and standard references (hydroxychloroquine “HCQ”, and chloroquine “CQ”) against SARS-CoV-2.  
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compounds 5f and 5m for MCF7 and HCT116 cell lines, respectively). 
Generally, the computational docking scores are correlated to the 

enzymatic inhibitory properties of the tested compounds. The slight 

differences noticed can be explained in terms of enzymatic experimental 
testing and theoretical/docking study techniques applied. 

3. Conclusion 

A series of piperidone-salicylate conjugates 5a–p were synthesized in 
acceptable yields (60–88 %) through reaction of 3E, 5E-diylidene-4- 

Table 5 
VEGFR-2 and EGFR inhibitory properties of the synthesized conjugates and 5-fluorouracil in MCF7 (breast) and HCT116 (colon) cancer cell lines.  

Entry Compd. VEGFR2 EGFR 

MCF7 HCT116 MCF7 HCT116 

RQ % Inhibition RQ % Inhibition RQ % Inhibition RQ % Inhibition 

1 Control  3.725 —  3.817 — 4.226 —  4.0382 — 
2 5a  1.32 64.6  1.24 67.5 0.41 90.3  1.24 69.3 
3 5b  1.6 57.0  1.11 70.9 0.69 83.7  1.1 72.8 
4 5c  1.51 59.5  1.02 73.3 0.61 85.6  1.5 62.9 
5 5d  1.91 48.7  1.5 60.7 1.52 64.0  1.377 65.9 
6 5e  2.202 40.9  2.209 42.1 1.707 59.6  1.664 58.8 
7 5f  1.56 58.1  1.37 64.1 1 76.3  1.516 62.5 
8 5 g  2.324 37.6  2.393 37.3 1.638 61.2  1.554 61.5 
9 5 h  2.032 45.4  2.398 37.2 1.737 58.9  1.698 57.9 
10 5i  2.000 46.3  2.297 39.8 1.540 63.6  1.564 61.3 
11 5j  1.9 49.0  0.8 79.0 1.45 65.7  1.273 68.5 
12 5 k  1.5 59.7  1.2 68.6 1.31 69.0  1.479 63.4 
13 5 l  1.1 70.5  0.9 76.4 1.4 66.9  1.336 66.9 
14 5 m  1.966 47.2  1.13 70.4 1.59 62.4  1.273 68.5 
15 5n  2.338 37.2  2.389 37.4 1.825 56.8  1.610 60.1 
16 5o  1.38 63.0  1.16 69.6 1.3 69.2  1.283 68.2 
17 5p  2.209 40.7  2.304 39.6 1.731 59.0  1.763 56.3 
18 5-FU  1.22 67.2  0.94 75.4 0.6 85.8  0.76 81.2 

RQ = Relative quantification 
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Fig. 7. Selective COX-2 inhibitors.  

Table 6 
COX-1 and COX-2 inhibitory properties of the synthesized agents and aspirin 
(standard reference).  

Entry Compd. IC50
a, μM 

SI =
IC50(COX− 1)

IC50(COX− 2)COX-1 COX-2 

1 5a  0.249  1.550  0.161 
2 5b  0.146  0.442  0.330 
3 5c  0.271  2.245  0.121 
4 5d  0.134  1.110  0.121 
5 5e  0.249  1.556  0.160 
6 5f  0.147  0.315  0.467 
7 5 g  0.262  2.176  0.120 
8 5 h  0.147  0.438  0.336 
9 5i  0.455  0.772  0.589 
10 5j  0.142  1.185  0.120 
11 5 k  0.391  0.676  0.578 
12 5 l  0.590  1.014  0.582 
13 5 m  0.146  0.319  0.458 
14 5n  0.163  0.361  0.452 
15 5o  0.193  1.600  0.121 
16 5p  0.285  0.138  2.065 
17 Aspirin  0.688  2.448  0.281 

a IC50 is the concentration of a tested agent for the 50% inhibition of COX-1, 
COX-2. 

Table 7 
CDOCKER scores of the synthesized compounds and Afatinib in PDB ID: 4G5P.  

Entry Compd. CDOCKER interaction energy scores (kcal mol− 1) 

1 5a − 41.4 
2 5b − 46.9 
3 5c − 47.2 
4 5d − 48.6 
5 5e − 47.5 
6 5f − 53.4 
7 5 g − 52.7 
8 5 h − 67.2 
9 5i − 38.3 
10 5j − 43.2 
11 5 k − 51.6 
12 5 l − 53.4 
13 5 m − 53.9 
14 5n − 55.2 
15 5o − 65.1 
16 5p − 42.9 
17 Afatinib − 67.2  
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piperidones 4a–i with the appropriate acid chloride of acetylsalicylic 
acids 3a,b in DMF in the presence of triethylamine. All the synthesized 
conjugates reveal antiproliferative properties against A431 (squamous 
skin) cell line with potency higher than that of 5-fluorouracil. Com-
pounds 5k (R = Cl, Rˈ = 4-ClC6H4) is the most effective agent synthe-
sized against A431 with 56.2 folds relative to 5-fluorouracil (clinically 
applicable drug for colon, breast and skin cancers). Additionally, com-
pounds 5o [R = Cl, Rˈ = 3,4,5- (H3CO)3C6H2] and 5c (R = H, Rˈ = 4- 
ClC6H4) are the most potent agents against MCF7 (breast) cell line with 
1.19, 1.12 folds relative to the standard reference (5-fluorouracil). 
Compounds 5o and 5c also reveal remarkable potency against HCT116 
(colon) cancer cell line with 12.9, 9.8 folds, respectively relative to 
Sunitinib (FDA approved drug against gastrointestinal cancer). Flow 
cytometry cell cycle analysis studies exhibit that compound 5c arrests 
the cell cycle progression at G1-phase. Meanwhile, compound 5o and 
Sunitinib (standard reference) are noticed to arrest the cell cycle at S- 
phase. Compound 5c is a highly inducer of apoptosis and affording ne-
crosis. Compound 5o and Sunitinib are also apoptosis inducers and ne-
crosis producers however, with lower efficiencies than compound 5c. 
The synthesized conjugates are multi-targeted tyrosine kinase inhibitors 
due to the promising properties against VEGFR-2 and EGFR in MCF7 and 
HCT116 supporting their antiproliferation properties. Many of the 
synthesized agents reveal promising anti-SARS-CoV-2 properties with 
remarkable therapeutic index especially those containing thienylidene 
heterocycle. Many of the synthesized agents show enhanced COX-1/2 
properties with higher selectivity index towards COX-2 relative to 
COX-1 than aspirin (standard reference). The possible applicability of 
the potent agents discovered as antitumor and anti-SARS-CoV-2 is sup-
ported by the safe profile against normal cells (RPE1 and VERO-E6). 

4. Experimental 

Melting points were determined on a capillary point apparatus 
(Stuart SMP3) equipped with a digital thermometer. IR spectra (KBr) 
were recorded on a Shimadzu FT-IR 8400S spectrophotometer. Re-
actions were monitored using thin layer chromatography (TLC) on 0.2 
mm silica gel F254 plates (Merck) utilizing various solvents for elution. 
The chemical structures of the synthesized compounds were character-
ized by nuclear magnetic resonance spectra (1H NMR, 13C NMR) and 
determined on a Bruker NMR spectrometer (500 MHz, 125 MHz for 1H 
and 13C, respectively). 13C NMR spectra are fully decoupled. Chemical 
shifts were reported in parts per million (ppm) using the deuterated 
solvent peak or tetramethylsilane as an internal standard. 

4.1. Synthesis of aspirin-piperidone conjugates 5a-p (general 
procedure) 

The appropriate acid chloride of aspirin 3a,b (2.5 mmol) in DMF (5 
ml) was added dropwise (within 10 min.) to a stirring solution of the 
corresponding piperidone 4a–i (2.5 mmol) in DMF (15 ml) containing 
triethylamine (3 mmol) in an ice-cold water bath. The reaction mixture 
was stirred at the mentioned conditions for 4 h and stored at room 
temperature (20–25 ◦C) overnight. The separated solid upon poured into 
water (200 ml) containing sodium chloride (1 g) was collected, washed 
with tap water and crystallized from a suitable solvent affording 5a–p. 

4.1.1. 2-[3,5-Di((E)-benzylidene)-4-oxopiperidine-1-carbonyl]phenyl 
acetate (5a) 

It was obtained from the reaction of 3a and 4a as pale yellow mi-
crocrystals from ethanol with mp 171–173 ◦C and yield 72% (0.79 g). IR: 
νmax/cm− 1 1767, 1643, 1612, 1574. 1H NMR (DMSO‑d6) δ (ppm): 2.14 
(s, 3H, COCH3), 4.58 (s, 2H, NCH2), 5.01 (s, 2H, NCH2), 7.01–7.04 (m, 
2H, arom. H), 7.15 (dd, J = 1.5, 8.0 Hz, 1H, arom. H), 7.23–7.32 (m, 6H, 
arom. H), 7.49–7.68 (m, 6H, 5 arom. H + olefinic CH), 7.81 (s, 1H, 
olefinic CH). 13C NMR (DMSO‑d6) δ (ppm): 20.4 (CH3), 42.6 (NCH2), 
47.2 (NCH2), 122.8, 125.7, 127.2, 128.1, 128.5, 128.9, 129.3, 129.7, 

129.9, 130.3, 130.6, 132.1, 134.0, 134.3, 136.2, 136.8, 146.3 (arom. C 
+ olefinic C), 165.6, 168.4 (CO), 185.7 (ketonic CO). Anal. Calcd. for 
C28H23NO4 (437.50): C, 76.87; H, 5.30; N, 3.20. Found: C, 77.18; H, 
5.49; N, 3.42. 

4.1.2. 2-[3,5-Bis((E)-4-fluorobenzylidene)-4-oxopiperidine-1-carbonyl] 
phenyl acetate (5b) 

It was obtained from the reaction of 3a and 4b as colorless micro-
crystals from light petroleum (60–80 ◦C) with mp 141–143 ◦C and yield 
68% (0.80 g). IR: νmax/cm− 1 1767, 1636, 1601, 1578. 1H NMR 
(DMSO‑d6) δ (ppm): 2.15 (s, 3H, COCH3), 4.54 (s, 2H, NCH2), 4.99 (s, 
2H, NCH2), 7.02–7.05 (m, 2H, arom. H), 7.13–7.16 (m, 3H, arom. H), 
7.29–7.39 (m, 5H, arom. H), 7.68–7.71 (m, 3H, 2 arom. H + olefinic 
CH), 7.79 (s, 1H, olefinic CH). 13C NMR (DMSO‑d6) δ (ppm): 20.4 (CH3), 
42.5 (NCH2), 47.0 (NCH2), 115.3, 115.5, 115.8, 116.0, 122.8, 125.7, 
127.1, 128.0, 130.2, 130.48, 130.49, 130.8, 130.82, 131.8, 131.9, 
132.2, 132.3, 133.0, 133.03, 135.1, 135.7, 146.3, 161.3, 161.6, 163.3, 
163.6 (arom. C + olefinic C), 165.6, 168.4 (CO), 185.5 (ketonic CO). 
Anal. Calcd. for C28H21F2NO4 (473.48): C, 71.03; H, 4.47; N, 2.96. 
Found: C, 71.20; H, 4.73; N, 3.14. 

4.1.3. 2-[3,5-Bis((E)-4-chlorobenzylidene)-4-oxopiperidine-1-carbonyl] 
phenyl acetate (5c) 

It was obtained from the reaction of 3a and 4c as yellow micro-
crystals from methanol with mp 173–175 ◦C and yield 69% (0.87 g). IR: 
νmax/cm− 1 1767, 1619, 1612, 1574. 1H NMR (DMSO‑d6) δ (ppm): 1.88 
(s, 3H, COCH3), 4.79 (s, 4H, 2 NCH2), 7.03–7.67 (m, 14H, 12 arom. H +
2 olefinic CH). 13C NMR (DMSO‑d6) δ (ppm): 20.7 (CH3), 42.1 (NCH2), 
46.7 (NCH2), 128.8, 132.1, 132.2, 132.9, 133.0, 133.1, 134.20, 134.24, 
134.7, 134.9 (arom. C + olefinic C), 168.6 (CO), 186.0 (ketonic CO). 
Anal. Calcd. for C28H21Cl2NO4 (506.38): C, 66.41; H, 4.18; N, 2.77. 
Found: C, 66.55; H, 4.27; N, 2.88. 

4.1.4. 2-[3,5-Bis((E)-4-bromobenzylidene)-4-oxopiperidine-1-carbonyl] 
phenyl acetate (5d) 

It was obtained from the reaction of 3a and 4d as colorless micro-
crystals from methanol with mp 204–205 ◦C and yield 61% (0.91 g). IR: 
νmax/cm− 1 1767, 1637, 1609, 1582. 1H NMR (DMSO‑d6) δ (ppm): 2.14 
(s, 3H, COCH3), 4.51 (s, 2H, NCH2), 4.96 (s, 2H, NCH2), 7.02–7.05 (m, 
2H, arom. H), 7.12–7.17 (m, 3H, arom. H), 7.30 (dt, J = 1.4, 8.0 Hz, 1H, 
arom. H), 7.50 (d, J = 8.1 Hz, 2H, arom. H), 7.57 (d, J = 8.1 Hz, 2H, 
arom. H), 7.62 (s, 1H, olefinic CH), 7.73–7.74 (m, 3H, 2 arom. H +
olefinic CH). 13C NMR (DMSO‑d6) δ (ppm): 20.4 (CH3), 42.5 (NCH2), 
46.9 (NCH2), 122.7, 123.2, 125.7, 127.1, 127.9, 130.2, 131.3, 131.7, 
131.8, 132.4, 132.6, 133.1, 133.4, 134.93, 134.94, 135.6, 146.2 (arom. 
C + olefinic C), 165.5, 168.4 (CO), 185.5 (ketonic CO). Anal. Calcd. for 
C28H21Br2NO4 (595.29): C, 56.50; H, 3.56; N, 2.35. Found: C, 56.71; H, 
3.38; N, 2.58. 

4.1.5. 2-[3,5-Bis((E)-4-methylbenzylidene)-4-oxopiperidine-1-carbonyl] 
phenyl acetate (5e) 

It was obtained from the reaction of 3a and 4e as colorless micro-
crystals from ethanol with mp 150–152 ◦C and yield 67% (0.78 g). IR: 
νmax/cm− 1 1767, 1639, 1605, 1578. 1H NMR (DMSO‑d6) δ (ppm): 2.15 
(s, 3H, COCH3), 2.28 (s, 3H, ArCH3), 2.38 (s, 3H, ArCH3), 4.58 (br s, 2H, 
NCH2), 4.99 (s, 2H, NCH2), 7.04–7.07 (m, 2H, arom. H), 7.13–7.17 (m, 
5H, arom. H), 7.29–7.36 (m, 3H, arom. H), 7.51 (d, J = 7.8 Hz, 2H, 
arom. H), 7.63 (s, 1H, olefinic CH), 7.76 (s, 1H, olefinic CH). 13C NMR 
(DMSO‑d6) δ (ppm): 20.4 (COCH3), 20.9 (ArCH3), 42.5 (NCH2), 47.3 
(NCH2), 122.8, 125.7, 127.2, 128.1, 129.1, 129.4, 130.0, 130.2, 130.6, 
131.16, 131.19, 131.3, 131.5, 136.1, 136.6, 139.3, 139.6, 146.3 (arom. 
C + olefinic C), 165.5, 168.4 (CO), 185.5 (ketonic CO). Anal. Calcd. for 
C30H27NO4 (465.55): C, 77.40; H, 5.85; N, 3.01. Found: C, 77.59; H, 
5.71; N, 2.84. 
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4.1.6. 2-[3,5-Bis((E)-4-methoxybenzylidene)-4-oxopiperidine-1-carbonyl] 
phenyl acetate (5f) 

It was obtained from the reaction of 3a and 4f as yellow micro-
crystals from ethanol with mp 162–163 ◦C and yield 81% (1.00 g). IR: 
νmax/cm− 1 1771, 1639, 1601, 1566. 1H NMR (DMSO‑d6) δ (ppm): 2.15 
(s, 3H, COCH3), 3.76 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 4.57 (br s, 2H, 
NCH2), 4.99 (s, 2H, NCH2), 6.88 (d, J = 8.5 Hz, 2H, arom. H), 7.05–7.11 
(m, 4H, arom. H), 7.17 (dd, J = 1.5, 8.0 Hz, 1H, arom. H), 7.22 (d, J =
8.5 Hz, 2H, arom. H), 7.32 (dt, J = 1.7, 8.2 Hz, 1H, arom. H), 7.58 (d, J 
= 8.5 Hz, 2H, arom. H), 7.62 (s, 1H, olefinic CH), 7.75 (s, 1H, olefinic 
CH). 13C NMR (DMSO‑d6) δ (ppm): 20.4 (CH3), 42.5 (NCH2), 47.3 
(NCH2), 55.2, (OCH3), 55.3 (OCH3), 114.0, 114.4, 122.8, 125.7, 126.5, 
127.2, 128.1, 129.9, 130.2, 132.0, 132.6, 135.8, 136.3, 146.3, 160.1, 
160.4 (arom. C + olefinic C), 165.4, 168.4 (CO), 185.3 (ketonic CO). 
Anal. Calcd. for C30H27NO6 (497.55): C, 72.42; H, 5.47; N, 2.82. Found: 
C, 72.53; H, 5.67; N, 3.08. 

4.1.7. 2-[3,5-Bis((E)-3,4-dimethoxybenzylidene)-4-oxopiperidine-1- 
carbonyl]phenyl acetate (5 g) 

It was obtained from the reaction of 3a and 4 g as yellow micro-
crystals from methanol with mp 98–100 ◦C and yield 71% (0.98 g). IR: 
νmax/cm− 1 1767, 1639, 1597, 1582. 1H NMR (DMSO‑d6) δ (ppm): 2.16 
(s, 3H, COCH3), 3.66 (s, 3H, OCH3), 3.77 (s, 3H, OCH3), 3.84 (s, 3H, 
OCH3), 3.843 (s, 3H, OCH3), 4.63 (br s, 2H, NCH2), 5.01 (s, 2H, NCH2), 
6.84–6.92 (m, 3H, arom. H), 7.08–7.12 (m, 3H, arom. H), 7.18–7.23 (m, 
3H, arom. H), 7.35 (dt, J = 1.6, 8.0 Hz, 1H, arom. H), 7.61 (s, 1H, 
olefinic CH), 7.77 (s, 1H, olefinic CH). 13C NMR (DMSO‑d6) δ (ppm): 
20.4 (CH3), 42.2 (NCH2), 47.5 (NCH2), 55.3, (OCH3), 55.5 (OCH3), 
55.53 (OCH3), 55.58 (OCH3), 111.5, 111.7, 113.2, 114.4, 122.8, 123.8, 
124.3, 125.8, 126.8, 127.0, 127.3, 128.4, 129.8, 130.1, 130.3, 136.2, 
136.7, 146.3, 148.4, 148.6, 150.0, 150.2 (arom. C + olefinic C), 165.5, 
168.5 (CO), 185.2 (ketonic CO). Anal. Calcd. for C32H31NO8 (557.60): C, 
68.93; H, 5.60; N, 2.51. Found: C, 68.67; H, 5.42; N, 2.65. 

4.1.8. 2-[4-Oxo-3,5-bis((E)-3,4,5-trimethoxybenzylidene)piperidine-1- 
carbonyl]phenyl acetate (5 h) 

It was obtained from the reaction of 3a and 4 h as colorless micro-
crystals from methanol with mp 169–171 ◦C and yield 73% (1.12 g). IR: 
νmax/cm− 1 1759, 1643, 1616, 1582. 1H NMR (DMSO‑d6) δ (ppm): 2.15 
(s, 3H, COCH3), 3.68 (s, 3H, OCH3), 3.69 (s, 6H, 2 OCH3), 3.75 (s, 3H, 
OCH3), 3.87 (s, 6H, 2 OCH3), 4.65 (br s, 2H, NCH2), 5.02 (s, 2H, NCH2), 
6.58 (s, 2H, arom. H), 6.94 (s, 2H, arom. H), 7.08–7.11 (m, 2H, arom. H), 
7.22 (dd, J = 1.5, 7.9 Hz, 1H, arom. H), 7.35 (dt, J = 1.5, 8.0 Hz, 1H, 
arom. H), 7.60 (s, 1H, olefinic CH), 7.76 (s, 1H, olefinic CH). 13C NMR 
(DMSO‑d6) δ (ppm): 20.4 (CH3), 42.0 (NCH2), 47.4 (NCH2), 55.8, 
(OCH3), 56.1 (OCH3), 60.0 (OCH3), 60.1 (OCH3), 107.9, 108.1, 122.8, 
125.7, 127.2, 128.5, 129.5, 129.8, 130.3, 131.2, 131.3, 136.4, 137.0, 
138.7, 138.9, 146.3, 152.6, 152.9 (arom. C + olefinic C), 165.6, 168.6 
(CO), 185.5 (ketonic CO). Anal. Calcd. for C34H35NO10 (617.65): C, 
66.12; H, 5.71; N, 2.27. Found: C, 66.29; H, 5.85; N, 2.54. 

4.1.9. 2-[(3E,5E)-4-Oxo-3,5-bis(thiophen-2-ylmethylene)piperidine-1- 
carbonyl]phenyl acetate (5i) 

It was obtained from the reaction of 3a and 4i as yellow micro-
crystals from methanol with mp 206–207 ◦C and yield 76% (0.85 g). IR: 
νmax/cm− 1 1767, 1643, 1589, 1562. 1H NMR (DMSO‑d6) δ (ppm): 2.13 
(s, 3H, COCH3), 4.64 (s, 2H, NCH2), 5.07 (br s, 2H, NCH2), 7.16–7.19 (m, 
2H, arom. H), 7.24 (dt, J = 0.7, 7.9 Hz, 1H, arom. H), 7.32 (t, J = 4.3 Hz, 
1H, arom. H), 7.36 (dd, J = 1.5, 7.6 Hz, 1H, arom. H), 7.44 (dt, J = 1.3, 
8.2 Hz, 1H, arom. H), 7.49 (d, J = 3.1 Hz, 1H, arom. H), 7.70 (d, J = 3.2 
Hz, 1H, arom. H), 7.82 (d, J = 4.9 Hz, 1H, arom. H), 7.86 (s, 1H, olefinic 
CH), 7.98 (s, 1H, olefinic CH), 8.01 (d, J = 4.9 Hz, 1H, arom. H). 13C 
NMR (DMSO‑d6) δ (ppm): 20.3 (CH3), 42.0 (NCH2), 47.2 (NCH2), 122.9, 
126.0, 127.5, 128.2, 128.24, 128.3, 128.52, 128.54, 128.8, 130.5, 
132.3, 132.5, 134.8, 137.2, 137.4, 146.4 (arom. C + olefinic C), 165.7, 
168.3 (CO), 184.3 (ketonic CO). Anal. Calcd. for C24H19NO4S2 (449.54): 

C, 64.12; H, 4.26; N, 3.12. Found: C, 63.99; H, 4.11; N, 3.23. 

4.1.10. 4-Chloro-2-[3,5-di((E)-benzylidene)-4-oxopiperidine-1-carbonyl] 
phenyl acetate (5j) 

It was obtained from the reaction of 3b and 4a as pale yellow mi-
crocrystals from n-butanol with mp 182–184 ◦C and yield 67% (0.79 g). 
IR: νmax/cm− 1 1778, 1639, 1612, 1574. 1H NMR (DMSO‑d6) δ (ppm): 
2.15 (s, 3H, COCH3), 4.56 (br s, 2H, NCH2), 5.00 (br s, 2H, NCH2), 7.07 
(d, J = 8.7 Hz, 1H, arom. H), 7.24–7.26 (m, 3H, arom. H), 7.32–7.34 (m, 
4H, arom. H), 7.49 (t, J = 7.2 Hz, 1H, arom. H), 7.55 (t, J = 7.5 Hz, 2H, 
arom. H), 7.61 (d, J = 7.2 Hz, 2H, arom. H), 7.69 (s, 1H, olefinic CH), 
7.80 (s, 1H, olefinic CH). 13C NMR (DMSO‑d6) δ (ppm): 20.3 (CH3), 42.6 
(NCH2), 47.0 (NCH2), 124.7, 126.8, 128.4, 128.8, 129.3, 129.6, 129.78, 
129.82, 129.96, 130.0, 130.5, 131.8, 131.9, 133.8, 134.2, 136.2, 136.8, 
144.9 (arom. C + olefinic C), 164.0, 168.2 (CO), 185.5 (ketonic CO). 
Anal. Calcd. for C28H22ClNO4 (471.94): C, 71.26; H, 4.70; N, 2.97. 
Found: C, 71.06; H, 4.49; N, 2.78. 

4.1.11. 2-[3,5-Bis((E)-4-chlorobenzylidene)-4-oxopiperidine-1-carbonyl]- 
4-chlorophenyl acetate (5 k) 

It was obtained from the reaction of 3b and 4c as yellow micro-
crystals from ethanol with mp 169–170 ◦C and yield 88% (1.19 g). IR: 
νmax/cm− 1 1778, 1643, 1612, 1585. 1H NMR (DMSO‑d6) δ (ppm): 2.15 
(s, 3H, COCH3), 4.51 (br s, 2H, NCH2), 4.97 (br s, 2H, NCH2), 7.09 (d, J 
= 8.7 Hz, 1H, arom. H), 7.23 (d, J = 2.6 Hz, 1H, arom. H), 7.27 (d, J =
8.2 Hz, 2H, arom. H), 7.34 (dd, J = 2.6, 8.8 Hz, 1H, arom. H), 7.38 (d, J 
= 8.2 Hz, 2H, arom. H), 7.59–7.65 (m, 5H, 4 arom. H + olefinic CH), 
7.76 (s, 1H, olefinic CH). 13C NMR (DMSO‑d6) δ (ppm): 20.3 (CH3), 42.6 
(NCH2), 46.8 (NCH2), 124.8, 126.8, 128.4, 128.9, 129.7, 129.96, 
129.99, 131.5, 132.3, 132.4, 132.6, 133.0, 134.0, 134.4, 134.9, 135.6, 
144.9 (arom. C + olefinic C), 164.0, 168.2 (CO), 185.4 (ketonic CO). 
Anal. Calcd. for C28H20Cl3NO4 (540.82): C, 62.18; H, 3.73; N, 2.59. 
Found: C, 62.09; H, 3.62; N, 2.73. 

4.1.12. 2-[3,5-Bis((E)-4-bromobenzylidene)-4-oxopiperidine-1-carbonyl]- 
4-chlorophenyl acetate (5 l) 

It was obtained from the reaction of 3b and 4d as yellow micro-
crystals from n-butanol with mp 172–173 ◦C and yield 84% (1.32 g). IR: 
νmax/cm− 1 1759, 1647, 1612, 1582. 1H NMR (DMSO‑d6) δ (ppm): 2.15 
(s, 3H, COCH3), 4.50 (br s, 2H, NCH2), 4.96 (br s, 2H, NCH2), 7.09 (d, J 
= 8.7 Hz, 1H, arom. H), 7.19 (d, J = 8.2 Hz, 2H, arom. H), 7.23 (d, J =
2.6 Hz, 1H, arom. H), 7.34 (dd, J = 2.6, 8.7 Hz, 1H, arom. H), 7.51 (d, J 
= 8.2 Hz, 2H, arom. H), 7.57 (d, J = 8.3 Hz, 2H, arom. H), 7.63 (s, 1H, 
olefinic CH), 7.73 (s, 1H, olefinic CH), 7.74 (br s, 2H, arom. H). 13C NMR 
(DMSO‑d6) δ (ppm): 20.3 (CH3), 42.6 (NCH2), 46.8 (NCH2), 122.8, 
123.2, 124.8, 126.8, 129.7, 129.95, 130.0, 131.3, 131.7, 131.8, 132.4, 
132.5, 132.9, 133.3, 135.0, 135.7, 144.9 (arom. C + olefinic C), 164.0, 
168.2 (CO), 185.4 (ketonic CO). Anal. Calcd. for C28H20Br2ClNO4 
(629.73): C, 53.41; H, 3.20; N, 2.22. Found: C, 53.60; H, 3.33; N, 2.47. 

4.1.13. 2-[3,5-Bis((E)-4-methoxybenzylidene)-4-oxopiperidine-1- 
carbonyl]-4-chlorophenyl acetate (5 m) 

It was obtained from the reaction of 3b and 4f as yellow micro-
crystals from n-butanol with mp 175–176 ◦C and yield 87% (1.16 g). IR: 
νmax/cm− 1 1763, 1647, 1605, 1566. 1H NMR (DMSO‑d6) δ (ppm): 2.15 
(s, 3H, COCH3), 3.78 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 4.56 (br s, 2H, 
NCH2), 4.98 (s, 2H, NCH2), 6.89 (d, J = 8.4 Hz, 2H, arom. H), 7.09–7.13 
(m, 3H, arom. H), 7.23 (d, J = 8.4 Hz, 2H, arom. H), 7.26 (d, J = 2.6 Hz, 
1H, arom. H), 7.37 (dd, J = 2.6, 8.7 Hz, 1H, arom. H), 7.58 (d, J = 8.4 
Hz, 2H, arom. H), 7.62 (s, 1H, olefinic CH), 7.74 (s, 1H, olefinic CH). 13C 
NMR (DMSO‑d6) δ (ppm): 20.3 (CH3), 42.6 (NCH2), 47.2 (NCH2), 55.3 
(OCH3), 114.0, 114.4, 124.8, 126.4, 126.8, 126.9, 129.76, 129.78, 
129.9, 130.01, 130.03, 132.0, 132.6, 135.9, 136.5, 145.0, 160.1, 160.4 
(arom. C + olefinic C), 163.9, 168.2 (CO), 185.2 (ketonic CO). Anal. 
Calcd. for C30H26ClNO6 (531.99): C, 67.73; H, 4.93; N, 2.63. Found: C, 
67.49; H, 5.12; N, 2.46. 
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4.1.14. 2-[3,5-Bis((E)-3,4-dimethoxybenzylidene)-4-oxopiperidine-1- 
carbonyl]-4-chlorophenyl acetate (5n) 

It was obtained from the reaction of 3b and 4 g as yellow micro-
crystals from n-butanol with mp 173–175 ◦C and yield 61% (0.90 g). IR: 
νmax/cm− 1 1767, 1647, 1582, 1516. 1H NMR (DMSO‑d6) δ (ppm): 2.15 
(s, 3H, COCH3), 3.69 (s, 3H, OCH3), 3.78 (s, 3H, OCH3), 3.84 (s, 3H, 
OCH3), 3.85 (s, 3H, OCH3), 4.62 (br s, 2H, NCH2), 4.99 (s, 2H, NCH2), 
6.86–6.94 (m, 3H, arom. H), 7.11–7.23 (m, 4H, arom. H), 7.31 (d, J =
2.6 Hz, 1H, arom. H), 7.39 (dd, J = 2.6, 8.7 Hz, 1H, arom. H), 7.61 (s, 
1H, olefinic CH), 7.75 (s, 1H, olefinic CH). 13C NMR (DMSO‑d6) δ (ppm): 
20.3 (CH3), 42.4 (NCH2), 47.3 (NCH2), 55.2, 55.49, 55.53, 55.6 (OCH3), 
111.5, 111.7, 113.1, 114.4, 123.8, 124.2, 124.8, 126.6, 126.9, 127.0, 
129.7, 129.9, 130.03, 130.05, 130.14, 136.3, 136.8, 145.0, 148.3, 
148.6, 150.0, 150.2 (arom. C + olefinic C), 163.9, 168.3 (CO), 185.1 
(ketonic CO). Anal. Calcd. for C32H30ClNO8 (592.04): C, 64.92; H, 5.11; 
N, 2.37. Found: C, 65.08; H, 5.03; N, 2.33. 

4.1.15. 4-Chloro-2-(4-oxo-3,5-bis((E)-3,4,5-trimethoxybenzylidene) 
piperidine-1-carbonyl)phenyl acetate (5o) 

It was obtained from the reaction of 3b and 4 h as yellow micro-
crystals from n-butanol with mp 148–150 ◦C and yield 60% (0.98 g). IR: 
νmax/cm− 1 1763, 1647, 1609, 1578. 1H NMR (DMSO‑d6) δ (ppm): 2.15 
(s, 3H, COCH3), 3.69 (s, 3H, OCH3), 3.71 (s, 6H, 2 OCH3), 3.75 (s, 3H, 
OCH3), 3.86 (s, 6H, 2 OCH3), 4.64 (br s, 2H, NCH2), 5.01 (s, 2H, NCH2), 
6.59 (s, 2H, arom. H), 6.93 (s, 2H, arom. H), 7.15 (d, J = 8.7 Hz, 1H, 
arom. H), 7.31 (d, J = 2.7 Hz, 1H, arom. H), 7.38 (dd, J = 2.6, 8.7 Hz, 
1H, arom. H), 7.61 (s, 1H, olefinic CH), 7.75 (s, 1H, olefinic CH). 13C 
NMR (DMSO‑d6) δ (ppm): 20.3 (CH3), 42.1 (NCH2), 47.2 (NCH2), 55.7, 
56.1, 59.9, 60.1 (OCH3), 107.8, 108.1, 124.8, 126.7, 129.3, 129.7, 
130.0, 130.3, 131.0, 131.1, 136.4, 137.1, 138.7, 138.9, 145.1, 152.5, 
152.9 (arom. C + olefinic C), 164.0, 168.5 (CO), 185.4 (ketonic CO). 
Anal. Calcd. for C34H34ClNO10 (652.09): C, 62.63; H, 5.26; N, 2.15. 
Found: C, 62.40; H, 5.39; N, 1.97. 

4.1.16. 4-Chloro-2-[(3E,5E)-4-oxo-3,5-bis(thiophen-2-ylmethylene) 
piperidine-1-carbonyl]phenyl acetate (5p) 

It was obtained from the reaction of 3b and 4i as yellow micro-
crystals from n-butanol with mp 188–190 ◦C and yield 75% (0.91 g). IR: 
νmax/cm− 1 1767, 1643, 1589, 1562. 1H NMR (DMSO‑d6) δ (ppm): 2.14 
(s, 3H, COCH3), 4.64 (br s, 2H, NCH2), 5.04 (br s, 2H, NCH2), 7.19 (t, J =
4.4 Hz, 1H, arom. H), 7.24 (d, J = 8.4 Hz, 1H, arom. H), 7.32 (t, J = 4.4 
Hz, 1H, arom. H), 7.48–7.53 (m, 3H, arom. H), 7.70 (d, J = 3.7 Hz, 1H, 
arom. H), 7.85 (d, J = 5.1 Hz, 1H, arom. H), 7.88 (s, 1H, olefinic CH), 
7.98 (s, 1H, olefinic CH), 8.02 (d, J = 5.1 Hz, 1H, arom. H). 13C NMR 
(DMSO‑d6) δ (ppm): 20.3 (CH3), 42.1 (NCH2), 47.0 (NCH2), 124.9, 
127.3, 127.9, 128.2, 128.3, 128.4, 128.5, 128.9, 130.0, 130.27, 130.31, 
132.3, 132.6, 134.86, 134.98, 137.1, 137.4, 145.2 (arom. C + olefinic 
C), 164.1, 168.2 (CO), 184.2 (ketonic CO). Anal. Calcd. for 
C24H18ClNO4S2 (483.98): C, 59.56; H, 3.75; N, 2.89. Found: C, 59.51; H, 
3.89; N, 2.97. 

4.2. Biological and molecular modeling studies 

Details of the experimental techniques utilized for biological studies 
were mentioned in the supplementary file. 
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M. Bojiţă, R. Pop, Synthesis and anti-inflammatory evaluation of some new acyl- 
hydrazones bearing 2-aryl-thiazole, Eur. J. Med. Chem. 46 (2) (2011) 526–534, 
https://doi.org/10.1016/j.ejmech.2010.11.032. 

[25] S. Derry, Y.K. Loke, Risk of gastrointestinal haemorrhage with long term use of 
aspirin: meta-analysis, BMJ 321 (2000) 1183–1187, https://doi.org/10.1136/ 
bmj.321.7270.1183. 
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