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Abstract
Warty fruit in cucumber (Cucumis sativus L.) is an important quality trait that greatly affects fruit appearance and market
value. The cucumber wart consists of fruit trichomes (spines) and underlying tubercules, in which the existence of spines is
prerequisite for tubercule formation. Although several regulators have been reported to mediate spine or tubercule forma-
tion, the direct link between spine and tubercule development remains unknown. Here, we found that the basic Helix-
Loop-Helix (bHLH) gene HECATE2 (CsHEC2) was highly expressed in cucumber fruit peels including spines and tubercules.
Knockout of CsHEC2 by the CRISPR/Cas9 system resulted in reduced wart density and decreased cytokinin (CTK) accumu-
lation in the fruit peel, whereas overexpression of CsHEC2 led to elevated wart density and CTK level. CsHEC2 is directly
bound to the promoter of the CTK hydroxylase-like1 gene (CsCHL1) that catalyzes CTK biosynthesis, and activated CsCHL1
expression. Moreover, CsHEC2 physically interacted with GLABROUS3 (CsGL3, a key spine regulator) and Tuberculate fruit
(CsTu, a core tubercule formation factor), and such interactions further enhanced CsHEC2-mediated CsCHL1 expression.
These data suggested that CsHEC2 promotes wart formation by acting as an important cofactor for CsGL3 and CsTu to
directly stimulate CTK biosynthesis in cucumber. Thus, CsHEC2 can serve as a valuable target for molecular breeding of
cucumber varieties with different wart density requirements.

Introduction
Cucumber (Cucumis sativus L.), a member of the
Cucurbitaceae family, is one of the most important vegeta-
ble crops worldwide (Huang et al., 2009; Guo et al., 2020).
Cucumber fruit is the edible organ with important eco-
nomic value that can be consumed fresh or processed into
pickles. The surface of cucumber fruit is often covered with

spines, tubercules and bloom trichomes, which are highly
specialized structures derived from epidermal cells. The fruit
spine (type II trichome, the dominant type in cucumber) is
composed of a spherical or conical base and a sharp spiny
stalk (Chen et al., 2014). The tubercule, generally located be-
neath the spine base, is an arched structure derived from
several layers of surface cells (Supplemental Figure S1A;
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Yang et al., 2014; Che and Zhang, 2019). The bloom
trichome (type I trichome) has a glandular structure that
produces fine white powdery secretions and is responsible
for the rough outer appearance of the fruit (Supplemental
Figure S1B; Samuels et al., 1993). When spines are combined
with tubercules, the cucumber fruit has a warty trait. Warty
fruit is an important quality trait that greatly affects fruit ap-
pearance and market value in cucumber. In 2019, China
accounts for 80.1% of the total cucumber production world-
wide (FAOSTAT), and the majority of cucumber fruits in
China display warty trait. Thus, dissecting the regulatory
mechanism of wart formation is of great significance for cu-
cumber breeding with desired external quality.

Fruit spines are regulated by a complex gene network
involving multiple transcription factors and endogenous
phytohormones. Several spine mutants have been identified,
including the completely glabrous mutants glabrous 3 (csgl3)
and trichome-less (tril), and the reduced spine density mu-
tant few spines 1 (fs1) in cucumber (Pan et al., 2015; Cui
et al., 2016; Wang et al., 2016; Zhang et al., 2016; Du et al.,
2020). Interestingly, the csgl3, tril and fs1 mutants are allelic
and caused by different forms of mutations in the same
gene Csa6G514870. The csgl3 mutants were due to insertion
of a 5005-bp long terminal repeat retrotransposon in the
fourth exon (Pan et al., 2015) or three single-nucleotide
transitions in the fourth exon (Cui et al., 2016). The tril
mutant was caused by a 5008-bp retrotransposon insertion
following the first exon (Wang et al., 2016), and the fs1 mu-
tant resulted from a 812-bp fragment substitution in the
promoter region (Zhang et al., 2016). The gene
Csa6G514870 encodes a member of the class IV homeodo-
main leucine zipper (HD-ZIP) transcription factor that plays
an essential role in spine initiation and development (Du
et al., 2020). Unlike the completely abolished spine in the
fruit surface from csgl3 and tril mutants, fruit spines in csgl1,
tiny branched hair (tbh) and micro-trichome tubercule (mict)
mutants exhibited reduced size and aberrant morphology
(Chen et al., 2014; Li et al., 2015; Zhao et al., 2015). However,
the distribution and density of the deformed trichomes
were unaffected, suggesting that CsGL1/TBH/Mict functions
in trichome development rather than the initiation process
(Li et al., 2015). Similarly, map-based cloning revealed that
CsGL1/TBH/Mict encodes the same Class I HD-ZIP transcrip-
tion factor, and loss-of-function mutants were due to a
2,649-bp genomic deletion spanning the first and second
exons (Li et al., 2015; Zhao et al., 2015). In addition, several
genes regulating spine initiation and development have
been identified by means of reverse genetics. Overexpression
of CsMYB6, a MIXTA-like MYB transcription factor, reduced
the density of spines in cucumber. Further analyses indi-
cated that CsMYB6 directly binds to the promoter region of
CsTRY, a homolog of TRIPTYCHON in Arabidopsis
(Arabidopsis thaliana), and inhibits its expression, and
CsMYB6 also interacts with CsTRY protein, suggesting that
CsMYB6 and CsTRY may function as a module to negatively
regulate trichome initiation in cucumber (Yang et al., 2018).

TRANSPARENT TESTA GLABRA1 (CsTTG1), a WD40 repeat-
containing gene, acts as a positive regulator of fruit spine
initiation and differentiation in cucumber. Biochemical and
genetic analyses showed that CsTTG1 regulates fruit spine
formation through direct protein-protein interaction with
CsGL1 (Chen et al., 2016).

Fruit tubercule is a composite trait that includes tubercule
initiation, tubercule shape, and tubercule size. The develop-
mental process of fruit tubercule can be generally divided
into three stages: initiation (earlier than 2 d before anthesis
[DBA]), development (2 DBA to 13 d postanthesis [DPA]),
and senescence (after 13 DPA; Yang et al., 2014). Genetic
studies showed that the warty phenotype is dominant to
the non-warty fruit trait, and that fruit tubercule trait is
controlled by a single dominant gene (CsTu), which encodes
a C2H2 zinc finger transcription factor (Wang et al., 2007;
Zhang et al., 2010; Yang et al., 2014). Importantly, the spine
gene CsGL1 is epistatic over CsTu, as CsTu is not expressed
in the csgl1 mutant with no spine and no tubercule, while
spine was unchanged upon mutation of CsTu (Cao et al.,
2001; Yang et al., 2014). Further, among all the reported
mutants with disrupted spine initiation, no tubercule was
observed (Chen et al., 2014; Li et al., 2015; Cui et al., 2016;
Liu et al., 2016; Du et al., 2020). All the reports suggested
that the existence of spines is prerequisite for tubercule for-
mation. Recently, cucumber Tubercule size 1 (CsTS1) gene
was identified to encode an oleosin family protein that con-
trols the size of tubercule. Sequence variation of CsTS1 pro-
moter indicated that low expression levels of CsTS1 were
associated with the 22 small-warty or non-warty cucumber
lines. Biochemical analyses showed that CsTu directly binds
to the CsTS1 promoter and enhances its transcriptional ac-
tivity. These results suggested that CsTS1 acts in the tuber-
cule size control and CsTu–CsTS1 regulatory module
coordinately promotes fruit wart initiation and development
in cucumber (Yang et al., 2014, 2019).

In addition, phytohormones such as gibberellin (GA),
auxin (indole-3-acetic acid [IAA]), and cytokinin (CTK) have
been shown to modulate fruit spine and tubercule develop-
ment in cucumber. Transcriptome and hormone assay
results showed that CsTu functions in CTK biosynthesis by
indirectly promoting the expression of two CTK
hydroxylase-like (CHL) genes, thereby stimulating cell divi-
sion and ultimately causing the initiation of fruit tubercule
(Yang et al., 2014). The auxin content was significantly in-
creased in the 35S:CsTS1 tubercules but significantly de-
creased in the CsTS1-RNAi tubercules, and the expression of
CsTS1 was induced by auxin treatments, suggesting that
CsTS1 regulates tubercule development through increasing
auxin signaling and auxin levels in cucumber (Yang et al.,
2019). The GA biosynthesis gene CsGA20ox1 was found to
be a negative regulator for fruit spine development and act
as a potential downstream gene of CsGL1 (Li et al., 2015).
Despite of its importance in cucumber breeding and pro-
duction, the genetic and regulatory mechanisms of wart for-
mation are very limited.
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In this study, we identified a cucumber fruit wart regula-
tor, a bHLH family gene HECATE2 (CsHEC2), which was
highly expressed in fruit peels including spines and tuber-
cules. Furthermore, we showed CsHEC2 directly interacts
with CsGL3 and CsTu, and such interactions can further en-
hance CsHEC2-mediated CsCHL1 (a CTK biosynthesis en-
zyme) transcriptional activation, thereby resulting in CTK
accumulation in fruit peels. Together, we uncover a tran-
scriptional regulation module, CsGL3- and/or CsTu-CsHEC2,
that promotes wart formation by directly activating the
CTK biosynthesis gene CsCHL1 in cucumber.

Results

CsHEC2 is a nucleus-localized transcriptional
activator
HEC transcription factors were shown to play important
roles during the development of female reproductive organ
and meristem regulation in Arabidopsis (Gremski et al.,
2007; Schuster et al., 2014, 2015), while the functions of HEC
genes in cucumber are largely unknown. Our recent study
revealed that C. sativus Irregular Vasculature Patterning
(CsIVP), the cucumber HEC3 gene, was highly expressed in
vascular tissues and functions in organ morphogenesis and
downy mildew resistance in cucumber (Yan et al., 2020).
But, the functions of CsHEC1/2 in cucumber are unknown.
In this study, we focus on the characterization and func-
tional analyses of CsHEC2 (Csa2G285890). Sequence analysis
showed that the full-length coding sequence (CDS) of
CsHEC2 was 648 bp, with a single exon and a conserved
bHLH domain (Figure 1A), similar to that of HEC family
genes in Arabidopsis (Gremski et al., 2007). The CsHEC2 pro-
tein was localized in the nucleus using transient expression
analyses in Nicotiana benthamiana leaves (Figure 1B). A
dual-luciferase (LUC) reporter (DLR) system was performed
to test the transcriptional activity of CsHEC2 (Ohta et al.,
2001; Hellens et al., 2005). The full-length CDS of CsHEC2
was fused with the GAL4 DNA-binding domain (GAL4DB)
as an effector, the transcriptional activation motif Herpes
Simplex Virus 16 (VP16) was used as a positive control,
while GAL4DB was used as a negative control (Figure 1C).
Compared with the empty vector and GAL4DB controls, the
relative intensity of LUC/REN activity significantly increased
upon co-transformation of GAL4DB-CsHEC2 with the re-
porter (Figure 1, C and D), which was similar to that of
VP16 positive control, indicating that CsHEC2 may act as a
transcriptional activator in cucumber.

CsHEC2 is highly expressed in spine and tubercule of
cucumber fruit
To explore the expression pattern of CsHEC2, reverse tran-
scription quantitative polymerase chain reaction (RT-qPCR)
was performed in different cucumber organs (Figure 1E).
Transcripts of CsHEC2 were greatly enriched in the ovary and
fruit peel (Figure 1E). The fruit peel in cucumber consists of
the wart and the epidermis (Figure 1G), in which the wart is
composed of spines and tubercules (Che and Zhang, 2019).

Although the transcript abundance of CsHEC2 was continu-
ously detected from the initial stage of tubercule develop-
ment to developmental stages of wart (Yang et al., 2014), the
transcript level of CsHEC2 was the highest in fruit peels at an-
thesis (Figure 1F). Among the three parts of ovary at anthesis
(Figure 1G), CsHEC2 was found to be expressed at a higher
level in the pulp than in the spine or epidermis (Figure 1H).
In situ hybridization further confirmed that CsHEC2 tran-
scripts were enriched in spines, tubercules, and epidermis of
ovary (Figure 1, I and J). In the longitudinal sections of cu-
cumber ovary, strong expression of CsHEC2 was detected in
developing ovules (Figure 1K). No signal was detected upon
hybridization with the sense probe of CsHEC2 (Figure 1L).
These results implied a potential function of CsHEC2 in regu-
lating fruit wart formation in cucumber.

Knockout of CsHEC2 results in decreased wart
density in cucumber fruit
To investigate the function of CsHEC2 in cucumber, we used
CRISPR/Cas9 (clustered regularly interspaced short palin-
dromic repeats/CRISPR-associated system 9) system to
knock out CsHEC2 as previously described (Hu et al., 2017).
Two null mutants Cshec2#1 (a homozygous allele with a 2-
bp and a 1-bp deletions) and Cshec2#2 (a homozygous allele
with a 7-bp and a 2-bp deletions) were obtained (Figure 2,
A and B), and both mutants generated a premature stop co-
don resulting in a truncated protein of 86 amino acids and
33 amino acids, respectively (Figure 2A). To explore any off-
target effect, we searched the genomic sequences for poten-
tial off-target sites of CsHEC2 single-guide RNA (sgRNA), and
cloned and sequenced these PCR products in the homozy-
gous T2 mutants. No off-target mutations were found in
the examined plants (Supplemental Table S1). Compared
with the wild-type (WT) plants, the number of warts on the
fruit surface was greatly reduced in both Cshec2#1 and
Cshec2#2 mutants at anthesis (Figure 2, C–E) and 10 DPA
(Figure 2F). No visible differences were detected in the ap-
pearance and morphological characteristics of spines and
tubercules between WT and mutant plants (Figure 2, C–F).
Quantification data showed that the fruit wart density at
anthesis displayed a 61% reduction in Cshec2#1 plant and a
69% reduction in Cshec2#2 plant as compared to that in
WT plant (Figure 2G). No significant differences were
detected in fruit length (Figure 2H) or fruit diameter
(Figure 2I) between WT and Cshec2 mutants. Interestingly,
no changes were observed in the density of trichomes on
the abaxial or adaxial surface of leaves produced from WT
and mutant lines (Supplemental Figure S2). These results
suggested that CsHEC2 specifically functions in wart density
regulation in the cucumber fruit.

CsHEC2 regulates fruit wart formation through
mediating CTK biosynthesis and metabolism in
cucumber
Previous studies indicated that auxin, CTK, and GA signaling
pathways are involved in cucumber spine or tubercule
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Figure 1 Subcellular localization, transcriptional activity and expression pattern analysis of CsHEC2. A, Schematic diagram of the gene structure of
CsHEC2. The blue box represents the bHLH domain of 53 amino acids and Arabic numerals represent the position of base pairs sequence. B,
Subcellular localization indicating CsHEC2-GFP fusion protein located in the nucleus of N. benthamiana leaves. Empty GFP driven by the Super
promoter was used as a control. The fluorescent signals of GFP channel indicate GFP position. The fluorescent signals of mCherry channel indicate
mCherry-labeled nuclear marker (NF-YA4-mCherry) position. C, Schematic illustration for CsHEC2 transcriptional activity assay in (D). GAL4DB,
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formation (Yang et al., 2014; Li et al., 2015; Xie et al., 2018;
Che and Zhang, 2019; Yang et al., 2019). Thus, we measured
the levels of endogenous auxin (IAA), CTK (isopentenyl
adenosine [IPA]; trans-zeatin riboside, ZR; dihydrogen ZR
[DHZR]) and gibberellic acid (GA3) in the fruit peels of WT
and Cshec2 mutants. Interestingly, only the levels of IPA
and ZR were significantly decreased in the Cshec2 mutant
compared with WT (Figure 3, A and B), while the levels of
DHZR, IAA, and GA3 were unaltered (Figure 3C; Supplemental
Figure S3). Therefore, we speculated that CsHEC2 may regulate
fruit wart production through CTK pathway.

To comprehensively analyze the regulatory network, RNA
sequencing (RNA-seq) experiments were conducted on fe-
male buds at 7 DBA. Illumina high-throughput sequencing
produced about 44.9–55.6 million paired-end reads for each
sample (Supplemental Table S2). The principal component
analysis (PCA) of the six RNA-seq datasets showed two dis-
tinct groups corresponding to WT and Cshec2 mutant sam-
ples (Supplemental Figure S4A), indicating good
repeatability. Transcriptomic data analysis showed that 293
and 1295 genes were up- and down-regulated in Cshec2
mutants relative to WT, respectively (Supplemental Figure
S4B; Supplemental Table S3), consistent with the role of
CsHEC2 acting as a transcriptional activator (Figure 1, C and
D). As shown in the heat map, fifteen cytochrome P450 en-
zyme genes and two LONELY GUY genes were significantly
down-regulated in Cshec2 mutants (Figure 3, D and E),
which can catalyze the biosynthesis of active form of CTK
from ATP/ADP/AMP (Kurakawa et al., 2007; Schaller et al.,
2015). Among them, two cytochrome P450 enzyme family
genes, CsCHL1 (Csa5G224130) and CsCHL2 (Csa5G644580),
were previously reported to be up-regulated by tubercule
initiation gene CsTu and facilitated CTK biosynthesis in cu-
cumber (Yang et al., 2014). In addition, two uridine diphos-
phate glycosyltransferase (UGT) genes were significantly up-
regulated in Cshec2 mutants, which function in CTK conju-
gation metabolism to convert active CTKs into inactive
glycosylated modified CTKs (Bajguz and Piotrowska, 2009).
RT-qPCR was used to verify the transcriptomic data of
several selected genes and displayed similar expression pat-
terns (Figure 3E; Supplemental Figure S5, A–D).

To verify the positive role of CTK in wart formation in
cucumber, exogenous CTK application was performed
by treatment of WT and Cshec2 plants with 100 uM

N6-Benzyladenine (BAP). Compared to the control group
(0 uM BAP), BAP treatment was able to partially restore the
Cshec2 phenotype (Figure 3, F and G), resulting an increase
in wart density by 107.8% in Cshec2 fruits (Figure 3H). Taken
together, our results suggested that CsHEC2 may regulate
wart formation by promoting CTK biosynthesis and inhibit-
ing CTK conjugation in cucumber fruit.

Overexpression of CsHEC2 led to increased wart
density and CTK level in cucumber fruit peel
To further characterize the function of CsHEC2 in cucumber,
the CsHEC2 overexpression vector (35S:CsHEC2-Flag) was con-
structed for genetic transformation. Four overexpression lines
were obtained, and two of them (OE#1, OE#2) were
selected for phenotypic observation. RT-qPCR showed that
the expression of CsHEC2 was significantly increased in the
transgenic lines (Figure 4A). Immunoblot analyses demon-
strated that CsHEC2 protein accumulated at high levels in
both OE transgenic lines (Figure 4B). Compared with the WT
plants, the wart number on the fruit surface was greatly in-
creased in CsHEC2-OE lines (Figure 4, C–E). Quantification
data showed that the fruit wart density displayed a 31.9% in-
crease in OE#1 line and a 21.6% increase in OE#2 line as com-
pared to that in WT plant at anthesis (Figure 4F). Moreover,
the level of CTK IPA was increased 42.8% and 24.2% in the
fruit peels of OE#1 and OE#2 lines (Figure 4G), respectively,
while no consistent changes were observed in the levels of
ZR, DHZR, IAA, and GA3 (Supplemental Figure S6). These
data supported that CsHEC2 promotes wart formation
through activates CTK accumulation in cucumber fruit.

CsHEC2 interacts with wart initiation regulator
CsGL3, CsTu, and CsTTG1
Considering that knockout and overexpression of CsHEC2
resulted in changes in fruit wart density, but not wart mor-
phology (Figures 2 and 4), CsHEC2 may participate in wart
initiation in cucumber. Several transcription factors have
been reported to be involved in regulation of fruit spine or
tubercule development in cucumber (Che and Zhang, 2019),
in which CsGL3 (Pan et al., 2015; Cui et al., 2016; Wang
et al., 2016), CsMYB6 (Yang et al., 2018), and CsTTG1 (Chen
et al., 2016) regulate the initial development of fruit spines,
and CsTu (Yang et al., 2014) regulates tubercule initiation by
promoting CTK biosynthesis (Figure 5A). To investigate

GAL4 DNA binding domain; 5�GAL4-TATA, five GAL4-binding sites; VP16, Herpes Simplex Virus protein 16; REN, Renilla LUC; Ter, nopaline syn-
thase terminator. VP16 was used as a positive control. The REN gene driven by the 35S promoter was used as an internal reference to normalize
the LUC values. D, Relative LUC activities in N. benthamiana leaves indicating the transcriptional activation activity of CsHEC2. Values are
means 6 SD (n¼ 5). The different lowercase letters indicate significant differences (P< 0.01) by one-way ANOVA analysis with Tukey’s HSD test.
E, F and H, Expression analyses of CsHEC2 in different cucumber organs (E), ovary peel at different developmental stages (F), and different parts of
ovary at anthesis (H). R, young root; S, stem; L, leaf; FB, female bud; MB, male bud; Ov, ovary at anthesis. Error bars represent 6SD (n¼ 3). The dif-
ferent lowercase letters indicate significant differences (P< 0.05) by one-way ANOVA analysis with Tukey’s HSD test. G, Cross section view of a
WT ovary at anthesis in (H). The epidermis consists of exocarp and tubercules. The fruit peel consists of epidermis and spines. I–L, In situ hybridi-
zation of CsHEC2 showing expression signals in the spine, tubercule, epidermis, and ovule of cucumber. I, Cross section of a representative ovary
at anthesis, (J) Magnified view of the spine and tubercule in (I), (K) Longitudinal section of a cucumber ovary. L, The CsHEC2 sense probe was hy-
bridized as a control. Ep, epidermis; Sp, spine; Tu, tubercule; Ovu, ovule. Scale bars represent 200 lm in (I) to (L).

Figure 1 (Continued)
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Figure 2 Knockout of CsHEC2 by CRISPR/Cas9 resulted in reduced density of fruit wart in cucumber. A, Genotype identification of Cshec2 knock-
out mutants indicated the Cshec2#1 allele with 2-bp and 1-bp deletion and the Cshec2#2 allele with 7- and 2-bp deletion as shown in (B), both
generating a premature stop codon and resulting in a truncated protein of 86 amino acids and 33 amino acids in length, respectively. The orange
box represents the bHLH domain. B, Sanger sequencing chromatogram analysis of the transgene-free homozygous T2 mutants. Black lines repre-
sent targeted sequences and red lines indicate the protospacer-adjacent motif sequences. Dashed lines in chromatograms indicate nucleotide

1624 | PLANT PHYSIOLOGY 2021: 187; 1619–1635 Wang et al.



whether CsHEC2 interacts with these known regulators,
yeast two-hybrid assays were performed. The results showed
that CsHEC2 interacted strongly with CsGL3 and CsTu,
while weakly with CsTTG1 and CsMYB6 (Figure 5B). To fur-
ther confirm these protein interactions in vivo, firefly LUC
complementation imaging (LCI) assays (Figure 5, C–F) and
co-immunoprecipitation (Co-IP) analyses (Figure 5, G–J)
were performed in N. benthamiana leaves. As shown in
(Figure 5, C–J), CsHEC2 did interact with CsGL3, CsTu, and
CsTTG1, but not with CsMYB6. These results indicated that
CsHEC2 may function in fruit wart initiation through di-
rectly interacting with known regulators including CsGL3,
CsTu, and CsTTG1 in cucumber.

CsHEC2 directly binds to the promoter of CsCHL1
and activates its expression
To further explore the relationship of CsHEC2 with these
known regulators, RT-qPCR analyses were performed, and no
significant changes were observed for the expression of
CsGL3, CsTu, and CsTTG1 in WT and Cshec2 mutants.
Similarly, these three genes displayed no differential changes
in the RNA-seq transcriptome data (Figure 6A; Supplemental
Fig. S5, E–G). However, the expression levels of CsGL3 down-
stream gene CsGL1 (Li et al., 2015; Pan et al., 2015), as well as
the CsTu downstream genes CsCHL1 and CsCHL2 (Yang
et al., 2014), were significantly reduced in Cshec2 mutants
(Figure 6A; Supplemental Figure S5, A and H). To explore
any direct regulation between CsGL3, CsTu, CsHEC2 and
CsGL1, CsCHL1, and CsCHL2, DLR assay was performed in N.
benthamiana leaves (Figure 6B). The results showed that co-
expression of CsHEC2 with ProCsCHL1:LUC resulted in an in-
creased LUC/REN ratio activity (Figure 6C). However, when
co-expressed ProCsGL1:LUC with CsGL3 or CsHEC2, and
ProCsCHL2:LUC with CsTu or CsHEC2, the LUC activity
showed no significant changes (Figure 6C). Previous studies
showed that bHLH transcription factors bind to the consen-
sus sequence CANNTG (Massari and Murre, 2000; Toledo-
Ortiz et al., 2003) and that C2H2 zinc finger proteins bind to
the consensus sequence A[AG/CT]CNAC (Sun et al., 2015;
Han et al., 2020). We scanned approximately 2 kb promoter
regions of CsCHL1 to look for possible binding sites of
CsHEC2 and CsTu. Five putative CsHEC2 binding sites (E1-
E5) and four putative CsTu binding sites (T1-T4) were identi-
fied in the CsCHL1 promoter (Figure 6D). Y1H assay showed
that CsHEC2 can directly bind to the CsCHL1 promoter via
the E-box elements located in E5 (Figure 6E), while CsTu can-
not (Figure 6F). Chromatin immunoprecipitation (ChIP)-PCR
assays were performed to confirm the binding results in vivo,

using cucumber protoplast system (Figure 6, G and H). The
E5 fragment in CsCHL1 was significantly enriched after immu-
noprecipitation based anti-Flag antibodies recognizing
CsHEC2-Flag protein-DNA complexes (Figure 6G). We also
detected the expression of CsCHL1 by in situ hybridization
and the results showed that the transcripts of CsCHL1 were
highly accumulated in spine, tubercule, and epidermis of de-
veloping ovary (Supplemental Figure S7). Together with the
significant down-regulation of CsCHL1 expression in Cshec2
mutants (Figure 6A; Supplemental Figure S5A) and up-
regulation of CsCHL1 expression in CsHEC2-OE lines
(Figure 4H), these data supported that CsCHL1 was a direct
target gene of CsHEC2 rather than CsTu, and CsHEC2 acti-
vates CsCHL1 expression in cucumber.

CsGL3 and CsTu enhance the CsHEC2-mediated
CsCHL1 transcriptional activation
Given that CsHEC2 interacted with CsGL3 and CsTu, the
core initiation regulators of spine and tubercule, respectively,
we next investigate whether such interactions affect the
downstream target CsCHL1 of CsHEC2 by DLR assays. The
expression of CsHEC2 protein led to an increased LUC/REN
ratio of ProCsCHL1, which was further enhanced by co-
expression of CsHEC2 and CsGL3 proteins (Figure 7A).
Similarly, when ProCsCHL1:LUC reporter was co-expressed
with both CsHEC2 and CsTu, the activation of LUC activity
was significantly increased compared with CsHEC2 alone
(Figure 7B). These data suggested that CsHEC2 functions as
a key cofactor for CsGL3 and CsTu to control wart forma-
tion via CsCHL1-mediating CTK biosynthesis in cucumber.

Discussion

The bHLH transcription factor CsHEC2 is a wart
formation regulator in cucumber
Trichomes are specialized structures in the aerial parts of
plants derived from epidermal cells, and serve as the protec-
tive barrier from surrounding stresses, such as UV radiation,
low temperature, insect herbivory, and pathogen invasion
(Werker, 2000; Wagner et al., 2004). The unicellular and
branched trichome of Arabidopsis is one of the best-studied
models to explore the gene regulatory network underlying
cell fate determination and cell morphogenesis. There are
three groups of players in this regulatory complex, namely
R2R3-MYB transcription factors (Glabra1, also named
Glabrous1; Oppenheimer et al., 1991 or MYB23 [Kirik et al.,
2005]), bHLH transcription factors (GL3; Payne et al., 2000
or Enhancer of Glabra3 [Zhang et al., 2003]), and the WD40

deletions. C–F, Phenotypic characterization of Cshec2 knockout plants in cucumber. C, Cucumber ovaries at anthesis. D, Magnified view of warts
on the ovary at anthesis. E, Scanning electron micrographs of warts on the ovary at anthesis. F, Cucumber fruits at 10 DPA. The columns from left,
middle, and right represent WT, Cshec2#1, and Cshec2#2 plants (in C–F), respectively. Scale bar: (C) and (F) 2 cm, (D) and (E) 1 mm. G–I,
Quantification analysis of fruit wart density (G), fruit length (H) and fruit diameter (I) in WT and two Cshec2 mutants. Fruit warts of 40 mm2 sur-
face area on the ovary at anthesis were counted in (G) and error bars represent 6SD (n� 15); Fruit length (H) and fruit diameter (I) were mea-
sured in cucumber fruits at 10 DPA, and error bars represent 6SD (n� 5). The different lowercase letters indicate significant differences
(P< 0.01) by one-way ANOVA analysis with Tukey’s HSD test.

Figure 2 (Continued)
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replications. Significance analysis compared to WT was performed with the two-tailed Student’s t test (**P< 0.01, *P< 0.05, ns, no significant dif-
ference). D, Schematic diagram of a simplified biosynthesis and metabolic pathway for CTK. E, Heat map of the CTK pathway and related DEGs in
WT and Cshec2 lines. Three biological replicates were performed and the colored bar on the left of the map represents fold change (log2 value).
F–H, Representative morphology of cucumber ovaries at anthesis (F), magnified view of ovary at anthesis (G) and fruit wart density quantification
(H) of WT and Cshec2 plants treated with 100 lM BAP. Values are means 6 SD (n� 15). The different lowercase letters indicate significant differ-
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Figure 4 Overexpression of CsHEC2 resulted in increased wart density and CTK levels in fruit peels of cucumber. A, RT-qPCR analysis of CsHEC2
expression in CsHEC2-OE lines. Values are means 6 SD (n¼ 3). B, Immunoblot analysis of CsHEC2 protein levels in CsHEC2-OE plants. CsHEC2-
Flag was detected using anti-Flag antibody. Rubisco large subunit stained by Ponceau S was used as a loading control. C–E, Phenotypic characteri-
zation of CsHEC2-OE plants. C, Cucumber ovaries at anthesis. D, Magnified view of warts on the ovary at anthesis. E, Cucumber fruits at 10 DPA.
Scale bar: (C) and (E) 2 cm, (D) 1 mm. F, Quantification analysis of fruit wart density in WT and CsHEC2-OE plants. Fruit warts of 40 mm2 surface
area on the ovary at anthesis were counted and error bars represent 6SD (n� 14). G, The levels of endogenous CTK (IPA) were measured in WT
and CsHEC2-OE plants. H, RT-qPCR analysis of CsCHL1 expression in CsHEC2-OE lines. Values are means 6 SD (n¼ 3). Significance analysis com-
pared to WT was performed with the two-tailed Student’s t test (**P < 0.01, *P < 0.05).
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repeat protein TTG1 (Galway et al., 1994; Walker et al.,
1999), that form an MYB-bHLH-WD40 complex to positively
regulate trichome formation by inducing the class IV HD-
ZIP gene GL2 expression (Larkin et al., 2003; Morohashi
et al., 2007; Ishida et al., 2008; Wang and Chen, 2008).
Unlike that in Arabidopsis, trichomes of cucumber are mul-
ticellular and unbranched, in which those covered the sur-
face of fruit are called spines. Fruit spines and tubercules
together constitute the warty trait, which determines the

appearance quality and final market value in cucumber (Pan
et al., 2015). Although several genes and hormones have
been reported to regulate spine or tubercule formation, no
bHLH gene was found to be involved in wart formation in
cucumber yet.

In this study, we used CRISPR/Cas9 technology to knock
out the bHLH transcription factor CsHEC2 and found that
the density of fruit wart in cucumber was significantly re-
duced (Figures 1 and 2). Overexpression of CsHEC2 resulted
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Figure 5 CsHEC2 interacted with CsGL3, CsTu, and CsTTG1 at protein level. A, Simplified regulatory network of fruit spine and tubercule develop-
ment in cucumber. Blue regulators represent genes involved in fruit spine and tubercule initiation. B, Yeast two-hybrid assay showing that
CsHEC2 interacts strongly with CsGL3 and CsTu, while CsHEC2 interacts weakly with CsTTG1 and CsMYB6 on SD-Leu/-Trp/-His/-Ade/X-a-gal se-
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in significant increase in wart density (Figure 4). Importantly,
Cshec2 mutants showed no significant changes in fruit
length (Figure 2H) or fruit diameter (Figure 2I) compared to
WT. Therefore, CsHEC2 is a bHLH gene functions specifically
for fruit wart formation in cucumber. Our recent studies
showed that the HEC3 subfamily gene CsIVP functions in or-
gan morphogenesis by directly promoting vascular-related
regulators expression, and in downy mildew resistance by
salicylic acid-mediated pathway in cucumber (Yan et al.,
2020). In the evolution of HEC family genes, the HEC3 group
and the HEC1/2 clades were produced by a duplication
event prior to the origin of angiosperms (Ortiz-Ramı́rez
et al., 2018; Yan et al., 2020). In Arabidopsis, mutations of
HEC genes led to developmental defects in the stigma,
septum, and transmitting tract (Gremski et al., 2007), and
HEC genes buffered auxin and CTK signals during gynoecium
development and shoot stem cell control (Schuster et al.,
2014, 2015). No roles of HECs have been reported in tri-
chome development yet. The functional divergence of HEC
genes between cucumber and Arabidopsis may be due to
neofunctionalization after replication. Besides, unlike the
pepo fruit of cucumber, the Arabidopsis fruit belongs to the
silique that fails to produce any spines or tubercules on its
fruit surface. Therefore, studying the function of HEC2
homologs in different fruit types with distinct trichome
characteristics will help to understand the cause of gene
functional differentiation.

CsHEC2 regulates spine formation through
interaction with CsGL3 and CsTTG1
During spine development, the CsGL3/Tril/FS1 gene has
been shown to play a core role in spine initiation through
gene dosage effects (Pan et al., 2015; Cui et al., 2016; Wang
et al., 2016; Zhang et al., 2016; Du et al., 2020). The Class I
HD-ZIP transcription factor CsGL1/TBH/Mict functions in tri-
chome differentiation rather than the initiation process (Li
et al., 2015; Zhao et al., 2015). Genetic analyses showed that
CsGL3 has an epistatic effect on CsGL1 and the expression
of CsGL1 depends on CsGL3 in cucumber (Pan et al., 2015).
Here, we found that CsHEC2 directly interacted with CsGL3
at the protein level (Figure 5, B, C, and G). We also found
that the expression of CsGL3 was unaffected in Cshec2 mu-
tant, while the expression of CsGL1 had a significant de-
crease (Figure 6A; Supplemental Figure S5, E and H). Our
DLR assay showed that CsGL3 and CsHEC2 were unable to
directly activate the expression of CsGL1 gene (Figure 6C). In
addition, we also detected the direct protein interaction be-
tween CsHEC2 and CsTTG1 (Figure 5, B, E, and I), which

regulates the initial development of fruit spines through in-
teraction with CsGL1 (Chen et al., 2016). Therefore, CsHEC2
may form a protein complex with CsGL3 and CsTTG1 to
control spine initiation and subsequent development via in-
directly promoting the expression of CsGL1 (Figure 7C).

CsHEC2 promotes tubercule formation through
interaction with CsTu to directly stimulate CTK
biosynthesis in the fruit peel of cucumber
Previous studies showed that CsTu is required for warty fruit
phenotype and probably functions through activating the
CTK hydroxylase-like genes, CsCHL1 and CsCHL2 (Zhang
et al., 2010; Yang et al., 2014). However, the specifical mech-
anism of how CsTu regulates CsCHL1/2 expression remains
unknown. CTK has been shown to play an important role
in nodule development, in which a local increase in CTK
activates cortical cell division, and exogenous CTK treatment
is sufficient to induce the dedifferentiation and division of
legume cortical cells, resulting in the formation of nodule
primordia (Cooper and Long, 1994; Mathesius et al., 2000;
Oldroyd, 2007; Dong et al., 2020). Similar to that in nodule,
occurrence of fruit wart formation was reported to be asso-
ciated with high CTK content (Yang et al., 2014). In this
study, we found that CTK content was significantly lower in
the Cshec2 mutant (Figure 3, A and B), and greatly increased
in the CsHEC2-OE lines (Figure 4G). Meanwhile, the expres-
sion level of CsCHL1 was substantially decreased in Cshec2
mutants (Figure 3E; Supplemental Figure S5A), and elevated
in CsHEC2-OE lines (Figure 4H). Exogenous CTK treatment
partially restored the wart density phenotype in the Cshec2
mutant (Figure 3, F–H). Importantly, we found that CsHEC2
directly binds to the CsCHL1 promoter and facilitates its
transcriptional activation, while CsTu could not (Figure 6,
B–H). We further showed that the protein interactions of
CsHEC2 with CsGL3 and CsTu reinforced the CsHEC2-
mediated CsCHL1 transcriptional activation (Figure 7, A and
B). Together, our data suggested that CsHEC2 promotes
fruit tubercule formation via cooperating with CsGL3 and
CsTu to directly activate the expression of CsCHL1 and
thereby increases CTK accumulation in cucumber
(Figure 7C). Our work provides a valuable gene target for
molecular breeding of cucumber varieties with different
wart density requirements. Future studies with applications
of genomics and CRISPR/Cas9 technology to explore the
function of putative additional players will help enrich the
regulatory network underlying fruit wart formation, which
will serve as the gene resources for accelerating improve-
ment of fruit appearance quality in cucumber.

REN. Values are means 6 SD (n¼ 6). D, Schematic diagram of the distribution of putative CsHEC2 binding sites and CsTu binding sites in CsCHL1
promoter. E1-E5 are the putative binding sites of CsHEC2, T1-T4 are the putative binding sites of CsTu. Adenine residues of translation start codon
(ATG) were located position þ1. E and F, Yeast one-hybrid assay showing that CsHEC2 directly binds to E5, two adjacent E-box elements in CsCHL1
promoter (E), while CsTu does not bind to T1–T4 elements in CsCHL1 promoter (F). G and H, ChIP-PCR assay showing that CsHEC2 binds to the
CsCHL1 promoter via E5 element in vivo (G), but CsTu does not bind to CsCHL1 promoter (H). Values are means 6 SD (n¼ 3). Significance analysis
(C, compared to empty vector; G and H, compared to Tubulin control) was performed with the two-tailed Student’s t test (**P < 0.01).

Figure 6 (Continued)
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Materials
Inbred line XTMC (Northern China type) was used for ex-
pression analysis and genetic transformation. After seeds ger-
minated in an incubator, the cucumber seedlings were
transferred to the greenhouse of China Agricultural University
in Beijing, where they were grown under standard water man-
agement and pest control. Cotyledons of cucumber seedlings
growing for about 10 d in growth chamber were used for pro-
toplast isolation and transformation. Nicotiana benthamiana
plants were grown in a growth chamber set at 24�C under a
long-day condition (16-h light/8-h dark). The fully expanded
young leaves of N. benthamiana about 6-week-old plants
were used for biochemical experiments.

RNA extraction and RT-qPCR
Total RNA was extracted from different cucumber tissues at
different developmental stages using an Eastep Super isolation
Kit (Promega, Madison, WI, USA) and cDNA was synthesized
using a FastKing gDNA Dispelling RT SuperMix Kit (Tiangen
Biotech, Beijing, China) according to the manufacturer’s

protocol. RT-qPCR was performed to determine the expres-
sion levels of genes by using the TB GreenVR Premix Ex TaqTM

II (Takara, Shiga, Japan) on the CFX384 Real-Time PCR
Detection System (Bio-Rad, Hercules, CA, USA). Three biologi-
cal replicates and three technical replicates were performed
for each gene. The cucumber ubiquitin extension protein
gene (CsaV3_5G031430) was used as an internal reference to
normalize the expression results (Wan et al., 2010). The
primer information is listed in Supplemental Table S3.

Subcellular localization
The full-length CDS without the stop codon of CsHEC2 was
cloned into the pSUPER1300 vector and fused with the
green fluorescent protein (GFP) to produce a CsHEC2–GFP
fusion protein. The empty pSUPER1300 vector was served as
a control. The resultant constructs were introduced into
the Agrobacterium tumefaciens strain GV3101. Nicotiana
benthamiana leaves were co-transformed with the
GFP-fusion construct and the nuclear location marker
(NF-YA4-mCherry; Zhang et al., 2019). After 48h infiltration,
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fluorescence signals were visualized at excitation/emission
wavelength of 488/510 nm (GFP), 552/610 nm (mCherry),
using a confocal laser scanning microscope (Leica SP8,
Germany). The primer information is listed in Supplemental
Table S3.

Cucumber transformation
To generate the construct used for CRISPR/Cas9-edited
plants of CsHEC2, the specific sgRNA target sites were se-
lected by the sgRNA design web (http://crispr.hzau.edu.cn/
CRISPR2/). The PCR fragment harboring two target sites was
amplified using four partially overlapping primers and then
inserted in the binary CRIPSR/Cas9 vector pKSE402G using
BsaI site and T4 Ligase (New England Biolabs, Ipswich, MA,
USA; Xing et al., 2014; Hu et al., 2017). To obtain CsHEC2
overexpression lines, full-length CDS of CsHEC2 was ampli-
fied and cloned into pCAMBIA1300-Flag vector to generate
the Pro35S:CsHEC2-Flag construct. The D35S-GFP expression
cassette was inserted into the Pro35S:CsHEC2-Flag construct
using the EcoRI site to generate the overexpression vector
(pCAMBIA1300-FlagþGFP). The resultant constructs were
transferred into the A. tumefaciens strain EHA105 and then
transformed into cucumber by Agrobacterium-mediated cot-
yledon method as previously described (Hu et al., 2017).

The GFP of pKSE402G or modified overexpression vector
was used as a reporter to select putative positive buds in T0
transgenic plants. Genomic DNA was extracted from plants
using the CTAB method. The target gene and potential off-
target sites were respectively amplified with specific primers,
and the resultant PCR products were sequenced and aligned
by Geneious software. The primer information is listed in
Supplemental Table S3.

Yeast two-hybrid assay
The full-length CDSs of CsHEC2, CsTu, CsGL3, CsTTG1, and
CsMYB6 were cloned into pGADT7 or pGBKT7 vector. All
reconstructed plasmids were verified by sequencing and
then transformed into yeast strain AH109. Yeast two-hybrid
assays were performed using the MatchmakerTM GAL4 Two-
Hybrid System 3 & Libraries (Clontech, Mountain View, CA,
USA) method, following the description of manufacturer’s
instructions. The yeast transformants were grown on SD/-
Leu/-Trp medium and protein interactions were assayed on
selective medium SD/–Trp/–Leu/-His/-Ade with X-a-Gal.
The primer information is listed in Supplemental Table S3.

LCI assay
The full-length CDS of CsHEC2 was cloned into
pCAMBIA1300-cLUC, and the full-length CDSs without the
stop codon of CsTu, CsGL3, CsTTG1, and CsMYB6 were
cloned into pCAMBIA1300-nLUC. The prepared vectors
were transferred into the Agrobacterium strain GV3101 and
then co-infiltrated into N. benthamiana leaves together with
the p19 Agrobacterium as described previously (Zhou et al.,
2018). After 48-h infiltration, the abaxial sides of leaves were
sprayed with 1 mM D-Luciferin, Potassium Salt (Biovision,
San Francisco, CA, USA), and then the LUC activities were

analyzed and captured using a CCD imaging system of
MiniChemi 610 (Sagecreation). The primer information is
listed in Supplemental Table S3.

Co-IP assay
The CDS of CsHEC2 was cloned into pCAMBIA1300-GFP
vector, and the CDSs of CsTu, CsGL3, CsTTG1, and CsMYB6
were cloned into pCAMBIA1300-FLAG vector. The prepared
vectors were transferred into the Agrobacterium strain
GV3101 and then co-infiltrated into N. benthamiana leaves
together with the p19 Agrobacterium as described previously
(Zhou et al., 2018). After 48-h infiltration, samples were col-
lected, ground into fine powder in liquid nitrogen and ho-
mogenized in extraction buffer (50 mM HEPES [pH 7.5],
150 mM KCl, 1 mM EDTA [pH 8.0], 2.5 mM MgCl2, 1 mM
DTT, 0.5% (v/v) Triton X-100, 1� protease inhibitor cocktail
[Roche, Basel, Switzerland]). Immunoprecipitation was per-
formed using anti-GFP nanobody-coated agarose beads (KT-
HEALTH, China, Catalog No. KTSM1301) at 4�C for 2 h. The
beads were washed 6 times with washing buffer (50 mM
HEPES [pH 7.5], 150 mM KCl, 1 mM EDTA, 0.2% (v/v)
Trition-X 100, 1 mM DTT). The immunoprecipitates were
separated by SDS-PAGE and detected by immunoblot with
anti-GFP (TransGen Biotech, Beijing, China, Catalog No.
HT801) or anti-FLAG (Sigma-Aldrich, Burlington, MA, USA;
Catalog No. F3165) antibodies. The primer information is
listed in Supplemental Table S3.

Yeast one-hybrid assay
The full-length CDSs of CsHEC2 and CsTu were cloned into
pB42AD vector (effector). The 30-bp sequences around the
E-box cis-element (CANNTG) of possible CsHEC2 binding
site or sequences of possible CsTu binding site (A[AG/
CT]CNAC) in the promoter regions of CsCHL1�2 kb up-
stream of the start codon were repeated three times and
cloned into the pLacZi2u vector (reporter). The combina-
tions of indicated effectors and reporters were co-transferred
into the yeast strain EGY48. The yeast assays were per-
formed according to described previously (Li et al., 2010).
Yeast positive transformants were selected on SD/-Trp-Ura
agar plates and interactions of protein and DNA were
assayed on SD/Gal/Raf/-Trp-Ura agar plates containing
40 ug/mL 5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside
by observing blue color development. The primer informa-
tion is listed in Supplemental Table S3.

DLR assay
The transient transcriptional activity assay was analyzed in
N. benthamiana leaves as described previously (Ohta et al.,
2001; Xu et al., 2020). The full-length CDS of CsHEC2 was
cloned into the effector GAL4DB vector to generate the
GAL4DB-CsHEC2. The fusion effector plasmids (GAL4DB-
CsHEC2 or positive control GAL4DB-VP16 or negative con-
trol GAL4DB or empty control) and reporter plasmid were
introduced into Agrobacterium strain GV3101. Different
combinations of Agrobacterium culture were co-injected
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into N. benthamiana leaves for transcriptional activity
analysis.

To detect transient transcriptional activity of specific pro-
moters, the full-length CDSs of CsHEC2, CsTu and CsGL3
were fused to the pGreen II 62-SK vector to generate effec-
tor constructs; the promoter of CsCHL1 (�1,890 bp),
CsCHL2 (�1,792 bp), and CsGL1 (�2,082 bp) were cloned
into the vector pGreen II 0800-LUC to generate the reporter
constructs. The REN gene under the control of cauliflower
mosaic virus 35S promoter in the pGreenII 0800-LUC vector
was used as the internal control. The prepared vectors were
introduced into Agrobacterium strain GV3101 (pSoup19)
and then co-infiltrated in N. benthamiana leaves. After incu-
bation for 48-h, the Firefly LUC and REN activities were
assayed using the dual-LUCVR reporter assay reagents
(Promega, Madison, WI, USA; Hellens et al., 2005). The ratio
of LUC to REN was calculated as the final transcriptional ac-
tivity of the corresponding combination. The primer infor-
mation is listed in Supplemental Table S3.

ChIP assay
The CDS of CsHEC2 or CsTu was cloned into PUC19-35S-
FLAG-RBS vector. The cucumber protoplasts were trans-
fected with the prepared plasmids and incubated overnight
at 23�C. The samples were treated with the final concentra-
tion of 1% (v/v) formaldehyde to crosslink protein-DNA
complexes, and the final concentration of 0.125 M glycine
was added to stop the cross-linking. The cross-linked tissues
were then used for ChIP experiments as described previously
(Ding et al., 2015). ChIP reaction was performed using anti-
FLAG M2 affinity agarose beads (Sigma-Aldrich, Burlington,
MA, USA, Catalog No. A2220). The co-precipitated DNA
was purified by QIAquick PCR Purification Kit (QIAGEN,
Hilden, Germany) and analyzed using RT-qPCR. Cucumber
TUBULIN gene was used as an internal control. Three biolog-
ical and three technical replicates were performed. The pri-
mers for ChIP-PCR are listed in Supplemental Table S3.

RNA-sequencing and data analysis
RNA-seq experiments were performed using the female
buds at 7 DBA. Samples were collected from WT and
Cshec2 mutant plants, and three biological replicates were
prepared for each sample. RNA library construction and se-
quencing were performed by the Biomarker Technologies
Corporation (Beijing, China) on an Illumina NovaSeq 6000
platform. After screening and trimming, clean reads were
mapped to the cucumber genome (Chinese Long version
2.0) using the HISAT2 software (Huang et al., 2009; Li et al.,
2011; Kim et al., 2015). Transcriptomic data were analyzed
on the BMKCloud platform (www.biocloud.net). The se-
quencing data information was displayed in Supplemental
Table S2. Differentially expressed genes (DEGs) were calcu-
lated using DESeq2 (Love et al., 2014) and the false discovery
rate <0.05 and the fold change >1.5 as were set as the
threshold.

Measurement of endogenous hormones
To measure the levels of endogenous auxin (IAA), CTK (IPA,
ZR, and DHZR), and GA3, about 0.2 g of fruit peel samples
at two DBA from WT, Cshec2 mutants or CsHEC2-OE lines
were harvested and homogenized in 3 mL of 80% (v/v)
methanol (containing antioxidant). Then, the extraction and
quantification of phytohormones were performed using
enzyme-linked immunosorbent assay as previously described
(Wang et al., 2012). Three biological replicates were per-
formed for each plant type.

Exogenous CTK treatments
CTK treatment was carried out as described previously (Xue
et al., 2019). Plants of WT and Cshec2 were treated with 100
or 0 uM BAP (control) (MedChemExpress, Catalog No HY-
B0941), a synthetic CTK, when the first true leaf has just
emerged. The seedlings were sprayed every other day until
they reached the five-true-leaf stage, then twice a week until
fruit set. Each treatment was performed with six plants and
the experiment was repeated twice independently.

Accession numbers
The accession number of all genes used in this paper is
listed in Supplemental Table S5. Sequencing data were de-
posited with the Gene Expression Omnibus database at the
National Center for Biotechnology Information under acces-
sion number GSE166286.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Morphological characteristics of
cucumber fruit surface.

Supplemental Figure S2. Morphological characteristics of
leaf surface in WT and CsHEC2 knockout lines.

Supplemental Figure S3. Contents of IAA and GA3 in
the fruit peels of WT and CsHEC2 knockout lines.

Supplemental Figure S4. Global analysis of RNA-Seq data
from WT and Cshec2 samples.

Supplemental Figure S5. RT-qPCR analysis of DEGs se-
lected from the transcriptomic data.

Supplemental Figure S6. Contents of ZR, DHZR, IAA,
and GA3 in the fruit peels of WT and CsHEC2-OE lines.

Supplemental Figure S7. In situ hybridization of CsCHL1
in cucumber.

Supplemental Table S1. Analysis of the potential off-
target sites for CsHEC2 sgRNA.

Supplemental Table S2. Summary of transcriptome se-
quencing data.

Supplemental Table S3. List of DEGs between WT and
Cshec2 female buds.

Supplemental Table S4. Primer information used in this
study.

Supplemental Table S5. Accession number of genes used
in this paper.
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