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Abstract
Coleus (Coleus scutellarioides) is a popular ornamental plant that exhibits a diverse array of foliar color patterns. New
cultivars are currently hand selected by both amateur and experienced plant breeders. In this study, we reimagine breeding
for color patterning using a quantitative color analysis framework. Despite impressive advances in high-throughput data
collection and processing, complex color patterns remain challenging to extract from image datasets. Using a phenotyping
approach called “ColourQuant,” we extract and analyze pigmentation patterns from one of the largest coleus breeding
populations in the world. Working with this massive dataset, we can analyze quantitative relationships between maternal
plants and their progeny, identify features that underlie breeder-selections, and collect and compare public input on trait
preferences. This study is one of the most comprehensive explorations into complex color patterning in plant biology and
provides insights and tools for exploring the color pallet of the plant kingdom.

Introduction
Coleus (Coleus scutellarioides) is a common ornamental bed-
ding plant that is bred for its brilliant and diverse foliar color
patterning (Bailey, 1924; Pedley and Pedley, 1974; Paton et
al., 2018, 2019). Wild relatives in the Coleus genus harbor a
small degree of variegated pigmentation that has
been expanded into distinctive new cultivars that harbor
complex variegation patterns through successive rounds of

hybridization and selection (Suddee et al., 2004). The preva-
lence of coleus in gardens and urban landscapes around the
world is a testament to the unique aesthetic capacity of this
species (Rogers, 2008). With over 500 cultivars on the mar-
ket, and new ones added each year, coleus represents one of
the largest and most diverse examples of pigmentation pat-
terning within a single species.

Although the genetic basis for color patterning in coleus
is poorly studied, conserved regulatory networks identified
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in other model plants can provide insight and a fundamen-
tal framework for understanding the molecular genetic
mechanisms of pigmentation patterning in this horticultural
model (Albert et al. 2014). The biochemical deposition of
anthocyanins produces the vast majority of red, blue, and
purple pigmentation in plants (Forkmann 1991; Holton and
Cornish 1995). Anthocyanin biosynthesis pathways can be
activated uniformly, creating solid colors, or they can be spa-
tially regulated, producing spots and stripes that give rise to
patterned color traits. The spatial regulation of pigment de-
position is controlled by an MYB-bHLH-WD40 repeat
(MBW) regulon that functions in diverse species to activate
the anthocyanin biosynthetic pathway (Paz-Ares et al. 1987;
Ludwig et al. 1989; Goodrich et al. 1992; de Vetten et al.
1997; Quattrocchio et al. 1998, 1999; Walker et al. 1999;
Spelt et al. 2000; Schwinn et al. 2006; Albert et al. 2011,
2014; Hsu et al. 2015; Ding et al. 2020). A long-standing hy-
pothesis posed by the late computer scientist, Alan Turing
(1990), postulates that self-generated pigmentation patterns
in nature arise from a reaction–diffusion-based mechanism
involving a local activator that self-activates and turns on a
mobile inhibitor that represses the activator (Kondo and
Miura 2010). Molecular regulators for Turing’s proposed re-
action–diffusion model have now been identified in petunia
(Petunia hybrida) and monkeyflowers (Mimulus), providing a
genetic basis for pigmentation patterning that could likely
be extended to the wide diversity of patterning found
among coleus cultivars (Albert et al. 2014; Ding et al. 2020).

Advances in plant phenotyping have revolutionized how
humans interact with botanical traits (Fahlgren et al., 2015;
Gehan et al., 2017; Gehan and Kellogg, 2017; Li et al., 2018b;
Amézquita et al., 2020; Prunet and Duncan, 2020). High-
throughput data collection has enabled rapid agricultural
trait selection (Shakoor et al., 2019; Singh et al., 2019; Ibba et
al., 2020), early detection and management of disease
(Mutka and Bart, 2014; Shakoor et al., 2017), and large-scale
two-dimensional (2D) morphological analyses (Li et al.,
2018a). Penetrating high-resolution imaging technologies,
such as X-ray CT and laser ablation tomography have also
made complex, three-dimensional (3D) topologies accessible
(Chitwood et al., 2019; Li et al., 2019b, 2020; Amézquita et
al., 2020; Prunet and Duncan, 2020; Vanhees et al., 2020).
Despite these enormous advances, rapid phenotyping for
complex color patterning remains a major hurdle in high-
throughput phenotyping (HTP) analysis. Indeed, the major-
ity of color phenotypes expressed in plants are typically
uniformly expressed [e.g. monochromatic leaves (Gehan et
al., 2017) and berries (Underhill et al., 2020)], un-patterned
in their expression [e.g. lesions (Arnal Barbedo, 2013;
Gobalakrishnan et al., 2020; Xie et al., 2020)], or have highly
predictable patterns (e.g. nectar guides). These color pheno-
types are readily extractable using existing image processing
approaches that are not suited for the complex suite of
color patterns represented in our coleus population (Arnal
Barbedo, 2013; Gobalakrishnan et al., 2020; Xie et al., 2020).
Here, we address the need for enhanced tools to extract

and analyze complex color patterns. In this study, we map
out pigmentation values as 3D point clouds in Lab color
space, extract the continuous distribution of color using
Gaussian density estimation (Li et al., 2019a), dissect color
patterns based on pigmentation position on 2D leaves,
quantify bilateral symmetry for shape and color, and sepa-
rate shape from color using thin-plate spline deformation.

Given the prominence of coleus in the gardening market-
place, and the vast diversity of pigmentation patterns that
are exhibited within coleus breeding populations, coleus as a
breeding system serves as an ideal platform for testing this
quantitative approach for HTP color phenotyping. In this
study, we develop a pipeline to extract quantitative descrip-
tors for foliar pigmentation patterns from one of the largest
coleus breeding populations in the world (n> 32,800
plants). We can extract the distribution of all existing pig-
mentation patterns presented within this massive breeding
population, quantify maternal plant–progeny pigmentation
relationships, and identify aesthetic features that are associ-
ated with the increased value from the perspective of the
breeder as well as the general public. This work is built on a
powerful study system and provides a framework for
approaching complex color phenotyping. This work has di-
rect implications for investigating color features in both or-
namental plant breeding and ecological systems, where
pigmentation patterns play an important role in influencing
how plants interact with humans, pollinators, and
herbivores.

Results

New coleus breeding population
Coleus is one of the most diverse species with regards to
leaf pigmentation patterning in the world. Brilliant new co-
leus cultivars harboring novel leaf color and shape pheno-
types can be generated using a recurrent mass selection
approach. In this study, we took advantage of a very large
coleus breeding population to explore the full spectrum of
possible pigmentation patterns and their influence on
breeding processes. We used 133 open-pollinated elite co-
leus lines that exhibit a wide range of existing color and
shape phenotypes (Figure 1, A and B) to generate a large
population that harbors novel pigmentation combinations.
To capture these new combinations, we imaged leaves from
34,825 F1 on high-resolution color scanners (Figure 1, C;
Supplemental Figure S1). Color data are typically recorded
as a composite of discrete Red, Green, and Blue (RGB) val-
ues that range from 0 to 255. We transformed our RGB
data into the continuous Lab color space, which we then
plotted as a 3D point cloud and extracted quantitative pig-
mentation data using a Gaussian density estimator function
(Figure 1C). A Gaussian density estimator function is a
smoothed version of a histogram; it estimates data density
by summing all of the normal kernels, which are placed on
each of the data points. Higher values are produced from
regions with more data points, while lower values are
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produced from regions with sparse and/or noisy data, thus
making the function robust.

To visualize the CIELAB (L*a*b*) color space within our
breeding population, we plotted the mean L* (lightness), a*
(green-to-magenta), and b* (blue-to-yellow) values that were
extracted from each leaf. The majority of leaves within the
population skewed toward darker (lower) mean L* values
(Figure 2A; Supplemental Figure S2). Mean values for a*
spanned from magenta-to-green, but were more heavily
concentrated toward the magenta/maroon half of the range
(Figure 2B; Supplemental Figure S2), and mean values for b*
were almost exclusively in the positive range, and were
strongly concentrated toward yellow rather than blue values
(Figure 2C; Supplemental Figure S2). While this approach

provides an estimate of mean color distributions, it fails to
capture color patterning within the population. Three dis-
crete regions can be used to generically describe that vast
majority of variegation patterns in coleus: the area surround-
ing the veins, the leaf border, and the leaf center.
Importantly, the depth of border and center pigmentation
can vary substantially across varieties; we applied a Gaussian
density estimator function to three-dimensional point
clouds that captured the middle ground between thick and
thin border (15% of pixels from the leaf boundary) and cen-
ter (75% of the pixels from the centroid) regions of the leaf
(Figure 1C). Venation varies considerably from leaf-to-leaf,
and thus it is challenging to consistently extract this value
from a large population, so we did not consider the

Figure 1 Experimental design, high throughput sampling, and color analysis. A, Total of 133 field-grown parents were randomly mated by pollina-
tors, seeds were collected from each maternal plant, sown in progeny family blocks and grown for 5–6 weeks in a greenhouse. B, One fully ex-
panded leaf was harvested and scanned from each plant in the population. C, Color thresholding was used to isolate binary masks for each leaf.
Discrete RGB color matrices were converted to the continuous Lab color space, and color matrices for each leaf were spatially separated into seg-
ments: “full”—defined as the entire color matrix, “border”—defined as the outer 15% of pixels from the leaf boundary to the centroid, and
“center”—defined as the inner 75% of pixels from the centroid to the boundary.
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contribution of variegated venation for this study. Our iso-
lated border and center regions differed significantly from
the variance of full L*a*b* values (P-values ranged from 2.12

e-208 to <2.23 e-308 for two-sample Kolmogorov–Smirnov
test; P-value ranged from 3.78e-191 to <2.23e-308 in two-
sample Levene’s test), indicating that these regions exhibit

Figure 2 CIELAB (L*a*b*) color distribution. A, The histogram of mean L (lightness) values of the studied coleus population. The color for each
bar corresponds to the Lab color with L value at x axis, a¼ 0 and b¼ 0. B, Histogram of mean a (green to magenta) values. The color for each bar
corresponds to the Lab color with a value at x axis, L¼ 50 and b¼ 0. C, Histogram of mean b (blue to yellow) values. The color for each bar corre-
sponds to the Lab color with b value at x axis, L¼ 50 and a¼ 0. D, Boxplot of the variance of L, a, and b for full leaf, border, and center. The “þ”
signs mark outliers that are more than 1.5 interquartile ranges above the upper quartile or below the lower quartile for each box, the central line
indicates the median, top and bottom edges of the box indicate 25th and 75th percentiles. Whiskers extend to the most extreme non-outliers of
the data. P-values for full leaf versus border, full leaf versus center are also shown using paired sample Levene’s test to show the variances of the
distribution are significantly different, E and G. MDS plot (MDS1 vs MDS2 in (E) and MDS3 vs MDS4 in (G)) for the pattern difference defined by
the difference of Gaussian density estimator in 3D Lab colorspace across the full leaf, border, and center, F, and (H) The same MDS plots shown in
(E) and (G) but with example leaves superimposed to provide visual examples of the data distribution.
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distinct color patterns (Figure 2D). Full leaves show the larg-
est variance in color patterning, and center regions show
the least variance in color patterning. Principal component
analysis (PCA) or multidimensional scaling (MDS) can be
used to extract the main sources of variance within complex
datasets with vector or distance matrix as input, respec-
tively. To investigate the variance in color patterning within
our population, we generated PCA plots from the vectorized
Lab Gaussian density estimator for the full leaf
(Supplemental Figure S3A), border (Supplemental Figure
S3B), center (Supplemental Figure S3C), and MDS plots for
composite full leaf plus border plus center pixel values
(Figure 2E–H). We have superimposed example leaves on
top of the plot to illustrate the major color differences that
are represented within the population (Figure 2, F and H;
Supplemental Figure S3).

The sub-sample border and center plots provided poor
separation of the major pattern classes within the popula-
tion (Supplemental Figure S3, B and C). For example, green
bordered leaves with maroon centers are distributed in mul-
tiple locations across the border and center PCA plots
(Supplemental Figure S3, B and C). The full leaf plot per-
formed much better with regard to pattern separation com-
pared with the sub-sample plots; however, it still failed to
produce distinct groupings for detailed pattern differences.
For example, pink and maroon center variegation patterns
are intermixed with solid maroon leaves in all four dimen-
sions of the full leaf PCA (Supplemental Figure S3A). The
composite plot, on the other hand, accounts for both global
and isolated center and border pigmentation values, and
thus was able to resolve distinct pattern groupings
(Figure 2E–H). The first dimension clearly separates the pop-
ulation along the green-to-magenta divide (the a* value of
the L*a*b* color space), while the second dimension sepa-
rates the population from darker (toward the bottom) to
lighter L* pixel distributions (Figure 2F). In the third and
fourth dimensions, five major patterns are resolved: solid or-
ange in the upper right, solid deep purple in the upper left,
solid green in the lower left, solid maroon in the lower right,
and several sub-populations of variegated patterns in the
lower left and center (Figure 2H). In the lower left corner of
MD 3 and MD 4, we were able to resolve most of the varie-
gated patterns into subpopulations based on center and
border features, for example, wide maroon centers with thin
green borders, light pink centers with green, maroon, or or-
ange borders, yellow/white centers with green borders, and
even deep purple venation on green leaves. There are, how-
ever, two pigmentation patterns that we failed to isolate in
our composite plot. First, the leaves that have both relatively
small central pigmentation regions and low contrast be-
tween the border and center colors, and second, the leaves
with random green and purple sectors whose patterns were
most likely generated by active transposons (Tilney-Bassett
et al., 1986; Frank and Chitwood, 2016). Overall, this com-
posite MDS approach performed very well with regard to
separating the population into major pattern groups.

Maternal phenotypes influence the phenotypic
distance of their progeny
The vast majority of brilliant new coleus color patterns re-
sult from the spatially regulated production of anthocyanins
(purple, red, and blue pigments) and loss of chlorophyll
(white and yellow pigments). Classic genetic analyses in co-
leus indicate that purple pigmentation is controlled by a sin-
gle dominant allele, while loss of chlorophyll pigmentation
resulting in yellow/albino phenotypes results from a reces-
sive allele (Boye and Rife, 1938; Rife, 1948). These studies
were carried out in simplified phenotypic and genetic back-
grounds that may not reflect the genetic context of our
population, which was generated from highly heterozygous
allopolyploid parents. Indeed, modern genetic work in di-
verse model systems demonstrates that anthocyanin pro-
duction is controlled by a complex of transcription factors,
rather than a single gene (Albert et al., 2014). Furthermore,
a recent mathematical model for flavonoid biosynthesis
demonstrates how purple, blue, and red pigmentation traits
are actually under complex metabolic control, involving
interactions between multiple alleles (Wheeler and Smith,
2019).

To address patterning relationships within our population
of 34,825 individuals, we quantified the relative distance be-
tween maternal plants and their progeny and visualized it in
MDS space (Figure 3), and then calculated the heritability of
these color traits using a mixed effect model. We need to
note that our population was generated using an uncon-
trolled, open-pollination design in which honeybee hives
were brought into the field to ensure pollination and pro-
mote outcrossing among the maternal plants. In our field
setting, it is impossible to track the male half of the parental
equation without the developing genotype-specific molecu-
lar markers, so we are only analyzing maternal-to-progeny
relationships. Additional limitations that we cannot exclude
from this experimental design is the potential bias that leaf
patterning can have on pollinator behavior, and the bias
that may be induced due to beehive position. While we can-
not assume true random mating within this context, we
have reason to believe that pollination behavior is close to
random based on the fact that coleus flowers tend to be
highly conserved with respect to their morphology and
color. Thus, they are likely equally attractive to our honey
bee pollinators.

We identified a few clear trends from our mother–child
analysis. First, brighter maternal plants (high L*) tend to pro-
duce progeny with a greater variance of pixel brightness
(Supplemental Figure S4A). This is exemplified by the prog-
eny in families 79 and 43. We also observed that green ma-
ternal plants (low a*) tend to produce progeny that exhibit
a large variance between green and magenta (Supplemental
Figure S4B, e.g. the progeny in families 43 and 94). This is
logical, given that purple and magenta pigments have been
linked to dominant alleles, and thus would be expressed in
F1 crosses with purple/magenta pollen donors. Along similar
lines, yellow maternal plants (high b*) tend to produce
progeny that express a large variance in the yellow-to-blue
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color range (Supplemental Figure S4C, e.g. the progeny in
families 79 and 29). We also found that maternal plants
with complex color patterning (high variance of L*, a*, or
b*) tend to produce progeny with larger variance in their
complexity (Figure 3; Supplemental Figure S4, D–F, e.g. the
progeny in families 22 and 23), which results in more diverse
color patterns. Surprisingly, we only saw a minor trend for

green versus purple maternal plants being closer versus far-
ther away (respectively) from their progeny in phenotypic
space (Figure 3). The majority of green-leafed maternal
plants fall on the top half of the phenotypic distance plot
(e.g. smaller distance, e.g. the progeny in families 63, 43, 94,
79, and 15), while purple maternal plants are distributed
across the phenotypic spectrum (Figure 3). Overall, our

Figure 3 Maternal Plant-Progeny relationships. On the left panel, each bar shows the average distance from maternal plants to progeny divided
by the average distance from maternal plants to all leaves (x-axis) for each progeny family (y-axis) superimposed upon the scan of the maternal
plant. On the right panels, there are six MDS plots (MDS1 vs MDS2) from six progeny families as examples with different colors correspond to the
families highlighted in the same colored rectangles on the left panel. On each MDS plot, grey dots show all leaves, colored stars represent the ma-
ternal plants, and colored dots are the progeny.

Quantitative dissection of color patterning PLANT PHYSIOLOGY 2021: 187; 1310–1324 | 1315

https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab393#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab393#supplementary-data


measurements of maternal–progeny color relationships
agree strongly with our calculation for the heritability of Lab
and MDS color traits. All of these traits exhibit moderate to
high narrow-sense heritability (L¼ 0.53, a¼ 0.60, b¼ 0.58,
MDS1¼ 0.57, MDS2¼ 0.56, MDS3¼ 0.46, and MDS4¼ 0.59;
Supplemental Tables S1–S4), indicating that these color
traits are under strong genetic control in coleus.

Bilateral symmetry for color and shape are
associated with the selection of new cultivars
New coleus cultivars are hand selected based on the visual
identification of target traits, through a process that is fre-
quently referred to as selection via “the breeder’s eye”
(Fasoula et al., 2019). Our experienced coleus breeder identi-
fied 697 selected lines from the population to carry forward
for potential cultivar development. To investigate the influ-
ence of color patterning and symmetry on our breeding
process, we tested whether our selected population deviated
significantly from the total population with regard to mean
Lab distributions, as well as color and shape symmetry
(Figure 4).

To determine if specific color features are associated with
cultivar selection, we tested whether the selected pool dif-
fered from the total population with regard to independent
components of the Lab color space (Figure 4D).
Interestingly, the selected pool deviated significantly from
the full population with regard to both the mean and vari-
ance for each of the three Lab color components
(Figure 4D). Comparative plots of mean Lab space for the
total population (in gray) and selected pool (in red) clearly
show that the source of divergence between these two pop-
ulations comes from an accentuated bimodal distribution
on either end of the spectra within the selected pool, indi-
cating that the breeder is selecting along the extremes of
the color space. For example, within the L spectrum (the
light-to-dark spectrum), the enriched bimodal distribution
reflects strong selection for both bright and dark (deep col-
ored) pixel values (P-value in two-sample Kolmogorov–
Smirnov for mean L¼ 9.78e-13; Figure 4D). Furthermore,
our analysis revealed significant divergence in the distribu-
tion of selected versus total population values for variance
within the Lab space (P-values for L¼ 2.87e-42, a¼ 1.58e-64,
b¼ 8.54e-33). Again, graphs for the selected pool have
strong bimodal distributions for all three Lab spectra indicat-
ing that there was a selection for varieties with either high
color contrast or uniform (solid color) patterning
(Figure 4D). In contrast, the total population graphs are con-
centrated around a single mean peak (Figure 4D).

A long-standing theory posits that symmetry is associated
with aesthetic value (Birkhoff, 1933). To quantify the degree
of mirror symmetry within leaves from the selected versus
total population, we manually partitioned every leaf into left
and right halves by drawing a line from the tip to the base
of the leaf. We then quantified color symmetry by compar-
ing the Lab Gaussian distributions between the left and right
halves (Figure 4A), and shape symmetry by folding binary

leaf silhouettes along the midline and calculating the per-
centage of non-overlapped pixels (Figure 4B). Our two-
sample Kolmogorov–Smirnov test between the selected and
total population showed very strong statistical support for
both color and shape symmetry playing a significant role in
influencing the selection process (P-value¼ 5.84e-04 and
Cohen’s d effect size 0.6845 for increased color symmetry,
and P-value¼ 1.37e-48 and Cohen’s d effect size 0.1816 for
increased shape symmetry in the selected population;
Figure 4C).

Taken together, these analyses demonstrate how the
“breeder’s eye” reshaped the selected pool to significantly
enhance mirror symmetry for both color and shape, and
concentrate the cultivars with either high color contrast or
complete color uniformity. Notably, this analysis accounts
for the first round of selection where a high level of variabil-
ity concentrated around both commercial targets and novel
aesthetic traits are maintained. Approximately 6–8 of the
plants from this large selection pool are taken through the
commercialization process.

Public survey shows an overlap between public
preferences and breeder selection
Once we established the quantitative color structure for our
breeding population, we explored how the existing coleus
color space matched with public color preferences. To do
this, we created a pilot survey that was openly distributed
using a dedicated Twitter account (@ColeusColours). To
avoid the confounding influence of leaf shape on color pref-
erence, we standardized the leaf orientation based on the bi-
lateral symmetrical line and deformed our leaf shapes into
circles using a thin plate spline interpolation (Figure 5A),
this method smoothly transforms the border shape into a
uniform edge with minor distortion of the internal color
patterning. Next, we performed a PCA with our circularized
leaves (Figure 5, B and C) and used the top principal com-
ponents (PCs) to construct our survey for color preference.
Our survey presented eight questions that asked the partici-
pants to select their preference from the mean and plus or
minus a few standard deviations along PC axis
(“eigencolors”) for each of the top 8 PCs (Figure 5D). We
gathered data from 172 participants, plotted each of their
preferences (Figure 5E), and then reconstructed the ideal
leaf based on public preferences for the first eight eigencol-
ors with weighted contributions based on the percentage of
variance contained within each PC (Figure 5F). Our results
show that participants have a strong preference for very
green (responses to PC1 in Figure 5E), very magenta
(responses to PC2 in Figure 5E), and leaves with high con-
trast color patterns (responses to the contrasting standard
deviation extremes in PC3–PC8). The resulting ideal leaf
that was reconstructed from the survey data has a high con-
trast bright green border with internal magenta pigmenta-
tion and yellow base (Figure 5F). This ideal leaf not only
matches an existing variegated pattern that was resolved in
the lower left-hand quadrant of MD 3 and MD 4 in our
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original population analysis (Figure 2H), it is also consistent
with the direction of breeding in our selected pool
(Figure 4D). This result indicates that even with this small
pilot survey, there is an overlap between public preferences
and new cultivar development. To provide a quantitative
test for whether the public preference and breeder’s

selection overlap, we calculated the distance from the ideal
leaf to the other leaves using the first 8 PC scores. The aver-
age distance from the ideal leaf to selected leaves is 1981–
1987. The average distance from the ideal leaf to all the
other leaves is 2003–2009, demonstrating that leaves after
selection get closer to the ideal leaf in the first 8 PC spaces.

Figure 4 Influence of color and shape on cultivar selection. A, Mirror symmetry of color: Partitioning of each leaf into left and right halves (top
panel), convert each part into 3D point cloud in Lab color space (middle panel), and calculate the 3D Gaussian density estimator (lower panel,
only shows 2D Gaussian density estimator for visualization). B, Mirror symmetry of shape: flip the leaf horizontally (top panel), measure the non-
overlapped area (lower panel) and calculate the percentage of a non-overlapped area over the leaf area. C, Distribution of degree of color asymme-
try (top panel) and shape asymmetry (bottom panel) for the entire population (in black) and selected population (in red), D, Distribution of
mean L (top left), mean a (top middle), mean b (top right), variance of L (bottom left), variance of a (bottom middle), and variance of b (bottom
right) for entire population (in black) and selected population (in red). Significance was measured using a two-sample Kolmogorov-Smirnov test
for the distribution difference for uneven sample sizes.
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Discussion
HTP has transformed our ability to select and optimize
plant traits (Das et al., 2015; Shakoor et al., 2017; York, 2019;

Liu et al., 2020). Relative to morphological and architectural
phenotypes, approaches for collecting and analyzing color
patterns in plants remain limited. Indeed, existing methods

Figure 5 Public survey for color preferences using shape-transformed leaves. A, Deform each leaflet into a disk by thin-plate spline interpolation—
non-linear deformation into a unit circle. B and C, PCA plot superimposed upon some example of leaves [PC1 vs PC2 in (B) and PC3 vs PC4 in
(C)] for the pixel Lab values of a deformed leaflet. D, Eigencolors for the first eight PCs and the percentage of variance they explained. For PC k,
the eigencolor at �x SD and þx SD along PC axis is shown, where x¼ 3þ(k-1)�0.5 for better visualization. E, Survey logo (top left) and the survey
result from 172 responses. White bars ¼ the proportion of responses in favor of positive eigencolors, grey bars ¼ the proportion of responses that
selected mean eigencolors, and black bars ¼ the proportion of responses that selected negative eigencolors. F, Reconstructed pattern (top) and
closest real leaf (bottom) from first eight eigencolors with weights guided by the survey response proportion. Raw survey data is available in
Supplemental Dataset S2.
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of HTP data analysis are not well-suited for the large suite of
patterning phenotypes exhibited in ornamental plants, like
coleus. In this article, we use an approach to address the
problem of complex color patterning in a large coleus
breeding population. We partitioned the 2D leaf into differ-
ent zones based on morphology and transformed the color
data into a continuous, 3D color space, and applied a
Gaussian density estimator to extract pixel patterning across
the 2D map of the leaf. Using this approach, we were able
to successfully resolve the major pigmentation patterns con-
tained within one of the largest and most diverse color pat-
terned breeding populations in the world. Historically, these
patterns were discussed using qualitative descriptors. By
extracting the quantitative features underlying this pattern
space, we were able to mathematically analyze relationships
between maternal plants and their progeny, identify how
aesthetic preferences reshape the color properties of the
breeding population, and independently address whether
public preferences align with commercial breeding goals.

Our maternal–offspring color analysis examines the inheri-
tance of pigmentation traits through a quantitative lens. We
identified quantitative connections between color variance
in maternal plants and their offspring that have direct appli-
cations for ornamental breeding. We supplemented this
analysis with calculations for trait heritability and found that
quantitative color patterns have moderate to high narrow-
sense heritability. Breeders and researchers looking to in-
crease the range of brightness within their population can
start with a brighter parental population; we show that
brighter mothers produce offspring that express a wider var-
iance of brightness. Those aiming to increase overall color
variation would want to start with parental plants that ex-
hibit complex color patterning, as these mothers produced
offspring with the largest variance in terms of pixel complex-
ity. In line with classic and more recent genetic studies on
anthocyanin pigmentation in leaves, showing that purple
and red pigmentation is expressed as a dominant trait, while
green leaves are recessive, we found that mothers with pixel
concentrations on the green end of the spectrum produced
offspring that had wider color variation (Rife 1948; Albert et
al. 2015; Wang et al. 2021). In essence, recessive color
palettes could be considered blank canvases for breeding
new pattern variants.

Our analysis of features associated with breeder selection
supports long-held theories about aesthetic preferences in
humans; aesthetic preference for bilateral symmetry
(Birkhoff, 1933) is reflected in the breeding process, where
we identified significant enrichment for bilateral color and
shape symmetry. Moreover, we found that public preferen-
ces for leaves with high color contrast largely agree with the
independent selection process for breeding new cultivars. As
mentioned previously, new coleus cultivars are currently
sight-selected through a process that involves extensive
screening by professional and amateur breeders. The strong
quantitative agreement between well-established aesthetic
preferences and the breeding process opens the possibility

for automating this first step of cultivar selection. It is not
hard to imagine taking this a step further, transforming the
cultivar selection process into a customized system. Simple
surveys, like the Coleus Colours pilot survey conducted for
this study, could help people identify their ideal patterns
and automated population screening would match a novel
cultivar from the breeding population with the customer.
This reimagined breeding approach offers people the per-
sonalized experience of designing and naming their own,
unique coleus cultivar.

Pigmentation patterns have fascinated scientists for centu-
ries. These visual cues direct plant–pollinator interactions
(Leonard and Papaj, 2011; Whitney et al., 2013), fend off her-
bivores (Lev-Yadun, 2017), and as shown in this study, influ-
ence aesthetic value in ornamentals. A simple, yet elegant
model involving a reaction–diffusion based mechanism, was
famously put forth by Alan Turing to explain the diversity of
pattern formation in nature (Turing, 1952). Recent work in
the genus Mimulus uncovered genetic regulators that fit this
Turing-based model, and direct the patterning of nectar
guides through a reaction–diffusion interaction between an
activator NECTAR GUIDE ANTHOCYANIN (NEGAN), and its
inhibitor RED TONGUE (RTO) (Ding et al., 2020). Beyond this
specific result, significant progress toward mapping the under-
lying genetic mechanisms that regulate pigment deposition
has been made using diverse floral models. In these systems,
an R2R3 Myb, bHLH, and WDR “MBW” transcriptional regu-
lon have been identified as a central regulator for color pat-
terning, controlling both orange carotenoid and purple/red
anthocyanin deposition (Ludwig et al. 1989; Albert et al. 2014;
Sagawa et al. 2016). In contrast to floral systems, relatively lit-
tle is known about the genetics of color patterning in vegeta-
tive organs; however, current knowledge including genetic
mapping of pigmentation variants for leaves, roots, and fruits
(Albert et al., 2015; Xu et al., 2020; Yan et al., 2020; Yu et al.,
2020; Wang et al., 2021) and ectopic expression of floral regu-
lators in vegetative tissue (Albert et al., 2020), indicates that
the transcriptional MBW regulon is broadly involved in pig-
mentation patterning across diverse organs.

Our coleus breeding population expresses a tremendous di-
versity of pattern combinations. Boye and Rife (1938) recog-
nized the potential of this prized ornamental, and proposed
using coleus as a model to dissect genetic regulators for color
patterning. This suggestion did not get much traction, and we
still know relatively little about color patterning in this unique
ornamental. After 80 years of stalled progress, a renewed focus
on the genetic regulation of pigmentation production and
patterning would not only advance ornamental breeding, it
would push the limits of Turing’s reaction–diffusion model,
reaching to describe the truly complex pattern variants that
have drawn admiration from scientists and gardeners alike.

Materials and methods

Coleus population, sampling, and image processing
We planted 133 open-pollinated coleus (Coleus scutellar-
ioides) plants in Gainesville, FL in early January (2015) to
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generate our 2015 breeding population. These mothers were
selected based on their diverse color traits, desirable branch-
ing architectures, and hardiness. We collected and sowed
50,000 seeds from the 133 mothers, of which, 34,825 seed-
lings germinated. We organized the seedlings into families
based on their maternal parents, grew the plants for 5 weeks
and then selected 697 individuals as potential new cultivars
based on their foliar color patterning and branching archi-
tecture in mid-February. coleus produces leaf pairs; we har-
vested one leaf from the youngest fully expanded leaf pair
from each plant between 5 and 6 weeks of age and imaged
the leaves on Epson Perfection V550 Scanners with 300 dpi
resolution. We included Kodak KOCSGS color separation
guides to control for potential color differences across the
scanners. During our post-image processing, we found that
the calculated values for our color guide were highly consis-
tent across scanners and imaging days (Supplemental Figure
1; data available here: Zenodo.org 10.5281/zenodo.4421754).
We performed color analysis using our open-access software
program called ColourQuant (Li et al., 2019a); software avail-
able on github: github.com/maoli0923/ColourQuant). Briefly,
we adjusted the RGB color balance on each scan by a white
balance method so that the white swatch in the Kodak
KOCSGS color separation guide is pure white, to ensure that
scanners were not biasing the color data. Next, we seg-
mented the leaves from the background by converting the
RGB matrix into a hue-saturation-value (HSV) format. Since
most background pixels become gray in HSV, this was used
to set a threshold (e.g. S> 0.15) that separates gray values
from true leaf values. We then used the binary leaf silhou-
ettes to extract the leaf color data by setting the back-
ground to pure white. We manually adjusted the
thresholding for leaves that could not be automatically
extracted due to shadows in the scan, and removed outliers
from the sample set, including leaves that were overlapping
on the scanner, very small, or broken (209 images were
removed).

Color pattern analysis
To extract quantitative color distribution information, we
converted the leaf color matrices from RGB to CIELAB
(L*a*b*) color, which is a continuous color space that con-
sists of three descriptors: L* ¼ “lightness,” a* ¼ “green to
magenta,” and b* ¼ “blue to yellow.” Importantly, L*a*b is a
device-independent color space that is frequently applied to
image processing pipelines (Phung et al. 2005; Jyoti Bora et
al. 2015). We used the rgb2lab function in Matlab R2017a to
perform the color conversion.

To study the distribution of mean and variance for L*, a*,
b* color values across the leaves, we first calculated the aver-
age value and variance of L*, a*, and b* for each leaf so that
each leaf has six features (“mean L”, “mean a”, “mean b”,
“variance of L”, “variance of a”, and “variance of b”) and
then plotted histograms and boxplots to show the overall
mean and variance distributions for all leaves. Small variance
is produced by solid colored leaves, while large variance is
produced by leaves with high contrast color patterning.

Next, we treated the 3D Lab color matrices as 3D point
clouds, which enabled us to extract color distribution and
frequency information for each leaf. Here, it is important to
emphasize that this method of extracting color patterning
using color as a third dimension mapped onto 2D leaves
requires a continuous color space, like CIELAB, and would
not be possible using standard colorimetric RGB values.

The mean and variance of Lab values roughly describe the
color for each leaf. However, to compare the distribution
and frequency of Lab values across the leaves, we applied a
Gaussian density estimator (GDE) to the Lab point cloud.
GDE is a function defined on 3D space, providing a robust
and direct density estimate from the point cloud data. To
reduce computational complexity, we restricted the domain
of the GDE function to a fixed bounded cuboid. The GDE
descriptor alone captures statistical color frequency, not spa-
tial patterning. To capture spatial color information, we seg-
mented the leaves into distinct zones based on normalized
pixel distances: “border”—defined as the outer 15% of pixels
from the leaf boundary to the centroid, “center”—defined as
the inner 75% of pixels from the centroid to the boundary,
and “full”—defined as the entire color matrix. The distance
between any two leaflets is calculated with the following
equation, which reweights the contributions from border
and center regions where pigmentation patterning is visually
distinct:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

full þ d2
border þ d2

center

q

where d represents the L2 distance (the square root of the
sum of the squared vector values) between GDE functions
for each corresponding zone. With this calculation, the pat-
tern difference between two leaves is determined by their
degree of similarity across all three zones. For every two
samples, we calculated D between them and then per-
formed MDS on a pairwise matrix in which the element of
row i and column j is the distance between sample i and
sample j. For these pairwise distances, we used MDS (similar
to a PCA) to project the data in a lower dimensional space,
which allows us to capture the major features that contrib-
ute to pattern variation. These methods and the supporting
software for this approach can also be found in the publica-
tion by (Li et al., 2019a; https://github.com/maoli0923/
ColourQuant).

To quantify the degree of mirror symmetry for each leaf,
we first marked a bilaterally symmetric line by placing two
landmarks, one at the proximal point (petiole) and another
at the distal point (leaf tip). These landmarks were then
used to partition the leaf into longitudinal halves that could
be directly compared with one another. We used two meth-
ods for quantifying mirror symmetry (where smaller values
equate to a higher degree of symmetry). First, we performed
a general measure by comparing the differences in left and
right color distributions (using GDE functions), and second,
we measured the degree of bilateral shape symmetry by
overlaying the left and right halves of the leaf and comput-
ing the percentage of pixels that fail to overlap.

1320 | PLANT PHYSIOLOGY 2021: 187; 1310–1324 Li et al.

https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab393#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab393#supplementary-data
https://github.com/maoli0923/ColourQuant
https://github.com/maoli0923/ColourQuant


Quantitative analysis of maternal–offspring
pigmentation relationships
To calculate the average phenotypic distance between each
maternal plant and its progeny, we divided the distance be-
tween each maternal leaf and the leaves of its progeny by the
distance between the maternal leaf and all of the leaves in
the breeding population. To investigate how maternal color
and color complexity influence these color traits in the prog-
eny population, we calculated the mean and variance of L*,
a*, and b* for the maternal leaves and their offspring and
then computed the variance of those traits across the off-
spring within each family. For example, each family has a trait
named “variance of family mean L” which is the variance of
“mean L” of all the offspring leaves in this family. Large
“variance of family mean L” indicates the offspring leaves in
this family have a wide range of color. Similarly, each family
has a trait named “variance of family L variance” which is the
variance of “variance of L” for all of the offspring leaves in
this family. Large “variance of family L variance” indicates that
the offspring leaves in this family produced a wild range of
color patterns ranging from solid colors to high contrast pat-
terns. Raw data for the family mean and variance of L* a* b*
are included in Supplemental Dataset S1.

Calculating the heritability of lab and MDS color space
Multi-trait model for L, a, and b

Given the high phenotypic association between the L, a, b
color traits, a multi-trait mixed model was utilized to esti-
mate genetic and residual covariances between traits. The
model was fit using ASReml-R (Butler et al., 2017).

yL
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yb

2
4

3
5 ¼

1lL

1la

1lb

2
4

3
5þ

ZL 0 0
0 Za 0
0 0 Zb

2
4

3
5

gL

ga

gb

2
4

3
5þ

eL

ea

eb

2
4

3
5 (1)

where yL, ya; and yb are vectors of phenotypes for traits L,
a, and b; 1 is a vector of 1’s of length corresponding to the
number of observed phenotypes; lL, la, and lb are the
means for each trait; ZL, Za; and Zb are the incidence matri-
ces for each trait; gL, ga, and gb are vectors of the additive
genetic effects for each trait; and eL, ea; and eb are vectors
of the residuals for each trait.

The additive genetic effects, g ¼ cðgL, ga, gbÞ, were as-
sumed to be distributed as:

g � MVNð0;G� AÞ (2)

where � is the Kronecker product; A is the additive pedi-
gree relationship matrix (calculated with male parents
treated as unknown and randomly sampled from the popu-
lation); and G is a 3 � 3 unstructured covariance matrix:

G ¼
r2

gL
rgL;a

rgL;b

rgL;a
r2

ga
rga;b

rgL;b
rga;b

r2
gb

2
64

3
75 (3)

where r2
gi

is the additive genetic variance for trait i and rgi;j

is the additive genetic covariance between traits i and j.

The residuals, e ¼ cðeL, ea, ebÞ, were assumed to be dis-
tributed as:

e � MVNð0; R� IÞ (4)

where � is the Kronecker product; I is the identity matrix
with dimensions corresponding to the number of observa-
tions, and R is a 3 � 3 unstructured covariance matrix:

R ¼
r2

eL
reL;a

reL;b

reL;a
r2

ea
rea;b

reL;b
rea;b

r2
eb

2
64

3
75 (5)

where r2
ei

is the residual variance for trait i and rei;j
is the

residual covariance between traits i and j.

Modeling Traits MDS1, MDS2, MDS3, and MDS4

The traits MDS1–4 were assumed to be uncorrelated and
analyzed using the following univariate mixed model:

yMDSi ¼ 1lMDSi þ ZMDSigMDSi þ eMDSi (6)

where yMDSi is a vector of phenotypes for the ith MDS trait;
1 is a vector of 1’s of length corresponding to the number
of observed phenotypes; lMDSi the mean for the ith MDS
trait; ZMDSi is the incidence matrix for the ith MDS trait;
gMDSi is a vector of the additive genetic effects for the ith
MDS trait; and eMDSi is a vector of the residuals for the ith
MDS trait.

The additive genetic effects were assumed to be distrib-
uted as:

gMDSi � MVNð0;r2
gMDSi
�AÞ (7)

where A is the additive pedigree relationship matrix, and
r2

gMDSi
is the additive genetic variance for the ith MDS trait.

The residuals were assumed to be distributed as:

eMDSi � MVNð0;r2
eMDSi
�IÞ (8)

where I is the identity matrix with dimensions correspond-
ing to the number of observations, and r2

eMDSi
is the residual

variance for the ith MDS trait.

Heritability

The narrow-sense heritability (h2
t ) for each trait t was calcu-

lated as:

r̂2
gt

ðr̂2
gt
þ r̂2

et
Þ

(9)

where r̂2
gt

and r̂2
et

are the REML estimates of the additive
genetic and residual variance for trait t, estimated using
Equations 1 and 6

Quantifying aesthetic features of selected plants
We calculated the influence of breeder selection on color
and shape symmetry, as well as pigmentation L*, a*, and b*
values, by comparing the probability distribution for each
value in the entire breeding population with the probability
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distribution in the selected population. Because the data are
not normally distributed, a nonparametric two-sample
Kolmogorov–Smirnov test was used to calculate the signifi-
cance of selection on each color parameter.

Public preferences for coleus colors independent of
shape
To investigate color preferences amongst the general public,
we created a survey based on the major sources of variation
for leaf color patterning. First, we separated shape from
color patterning by deforming the leaves into uniform circles
using thin-plate-spline interpolation, followed by centering
and normalizing the circles into the same position and size.
Next, we rotated each circularized leaf so that the first land-
mark (near the base) is on the negative half of the y axis
(x¼ 0) and the tip is on the positive half. We resized each
circular leaf image to be 70�70 dimension and reshaped the
pixel L*a*b* colors into a long (12,150 dimension) vector. To
calculate the main sources of variance, we performed a PCA
on the long vectors of the circularized leaves and created a
survey using google forms where public volunteers were
asked to select their preference of eigencolors for the top 8
PCs. For kth PC, the eigencolors are represented by 6 x
standard deviation along the PC axis, where x¼ 3þ(k-1) �
0.5, this produced more distinct color variants for the survey
participants. We distributed the survey using a dedicated
Twitter account (@ColeusColours), and then plotted the
responses from all of the survey participants (N¼ 172) and
reconstructed the composite preferred leaf based on the
responses (Supplemental Dataset S2). Unfortunately, we did
not randomize the order of the questions, which may have
induced some bias in the participant responses.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Data collection.
Supplemental Figure S2. Color distribution for mean Lab.
Supplemental Figure S3. PCA for color in the entire co-

leus population using segmented or full leaf data sampling.
Supplemental Figure S4. Maternal plant-progeny rela-

tionships based on mean and variance of lab color.
Supplemental Table S1. Genetic additive relationship

matrix.
Supplemental Table S2. Residuals.
Supplemental Table S3. Heritability.
Supplemental Table S4. Heritability of MDS traits.
Supplemental Dataset S1. Quantitative information for

maternal plants and their progeny.
Supplemental Dataset S2. Public survey result for color

preferences.
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