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Underwater CAM photosynthesis elucidated by
[soetes genome
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To conserve water in arid environments, numerous plant lineages have independently
evolved Crassulacean Acid Metabolism (CAM). Interestingly, Isoetes, an aquatic lycophyte,
can also perform CAM as an adaptation to low CO, availability underwater. However, little is
known about the evolution of CAM in aquatic plants and the lack of genomic data has
hindered comparison between aquatic and terrestrial CAM. Here, we investigate underwater
CAM in [soetes taiwanensis by generating a high-quality genome assembly and RNA-seq time
course. Despite broad similarities between CAM in [soetes and terrestrial angiosperms, we
identify several key differences. Notably, Isoetes may have recruited the lesser-known ‘bac-
terial-type' PEPC, along with the ‘plant-type’ exclusively used in other CAM and C4 plants for
carboxylation of PEP. Furthermore, we find that circadian control of key CAM pathway genes
has diverged considerably in Isoetes relative to flowering plants. This suggests the existence
of more evolutionary paths to CAM than previously recognized.
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soetes, commonly known as quillworts, is the only genus in

the lycophyte order Isoetales, containing roughly 250

described species!. It is the last remaining member of an
ancient lineage with a fossil record that dates back to at least the
late Devonian. As such, quillworts are believed to represent the
closest living relatives of the giant, tree-like lycopsids such as
Sigillaria and Lepidodendron that dominated the terrestrial
landscape during the Carboniferous?. However, in contrast to its
arborescent ancestors, modern Isoetes species are diminutive and
mostly aquatic with the vast majority of species growing com-
pletely or partially submerged. Underwater, Isoetes can conduct
CAM?, a carbon concentrating mechanism involving the
separation of carbon uptake and fixation in a time of day (TOD)
fashion, with carbon being sequestered as malate at night, to be
fed into the Calvin cycle during the day. CAM is a common
strategy to improve water-use efficiency among xeric-adapted
plants, allowing them to keep their stomata closed during the day.
However, its prevalence in aquatic species of Isoetes?, as well as
several aquatic angiosperms*, highlights its utility for reducing
photorespiration where CO, availability may be limited. While
CO, limitation in terrestrial plants is caused by increased sto-
matal resistance, in aquatics it is largely the result of the relatively
high diffusional resistance of water combined with significant diel
fluctuation of dissolved CO, in the oligotrophic lakes and sea-
sonal pools*®.

Though it has been nearly four decades since Keeley first
described “CAM-like diurnal acid metabolism” in Isoetes
howellii’, relatively little is known about the genetic mechanisms
controlling CAM in Isoetes or any other aquatic plant. Previous
genomic and/or transcriptomic studies that focused on terrestrial
CAM have found evidence for regulatory neofunctionalization,
enrichment of cis-regulatory elements, and/or reprogramming of
gene regulatory networks that underlie the convergent evolution
of CAM in Sedum albumd, Ananas comosus’, Kalanchoe
fedtschenkoil®, several orchids'!-13, and Agavoideae species!®1>.
Furthermore, a case of amino acid sequence convergence in
phosphoenolpyruvate carboxylase (PEPC), which catalyzes the
carboxylation of phosphoenolpyruvate (PEP) to yield oxaloace-
tate (OAA), has also been reported among some terrestrial CAM
plants. However, the lack of a high-quality genome assembly has
made a meaningful comparison of Isoetes or any other aquatic
CAM plant to terrestrial CAM species impossible.

The only lycophyte genomes available to date are from the
genus Selaginella'6-18, leaving a deep, >300-million-year gap in
our knowledge of lycophyte genomics and limiting inferences of
tracheophyte evolution. Selaginella is the only genus in the
Selaginellales, the sister clade to Isoetales. Notably, Selaginella is
known for being one of few lineages of vascular plants for which
no ancient whole-genome duplications (WGDs) have been
detected. Conversely, there is evidence from transcriptomic data
for as many as two rounds of WGD in Isoetes tegetiformans'®. As
such, a thorough characterization of the history of WGD in
Isoetes is vital to future research into the effects and significance
of WGD across lycophyte diversity.

With this study, we seek to investigate genome evolution as
well as the genetic underpinnings of CAM in Isoetes. To that end,
we present a high-quality genome assembly for Isoetes taiwa-
nensis DeVol. We find evidence for a single ancient WGD event
that appears to be shared among multiple species of Isoetes.
Additionally, while many CAM pathway genes display similar
expression patterns in Isoetes and terrestrial angiosperms, notable
differences in gene expression suggest that the evolution of CAM
in Isoetes may have followed a markedly different path than it has
in terrestrial angiosperms.

Results

Genome assembly, annotation, and organization. Using Illu-
mina short-reads, Nanopore long-reads, and Bionano optical
mapping, 90.13% of the diploid (2n = 2X =22 chromosomes) I.
taiwanensis genome was assembled into 204 scaffolds
(N50 = 17.40 Mb), with the remaining 9.87% into 909 unplaced
contigs (Table 1). The total assembled genome size (1.66 Gb) is
congruent with what was estimated by k-mers (1.65 Gb) and flow
cytometry (1.55 Gb) (Supplementary Fig. 1). A circular-mapping
plastome was also assembled, from which we identified a high
level of RNA-editing (Supplementary Note 1 and Supplementary
Fig. 2).

A total of 39,461 high confidence genes were annotated based
on ab initio prediction, protein homology, and transcript
evidence. The genome and proteome BUSCO scores are 94.5%
and 91.0%, respectively, which are comparable to many other
seed-free plant genomes (Supplementary Fig. 3) and indicative of
high completeness. Orthofinder?? analysis of 25 genomes placed
647,535 genes into 40,144 orthogroups (Supplementary Note 2
and Supplementary Fig. 4). Subsequent examination of lignin
biosynthesis genes in I taiwanensis suggests that evolution of
particular pathway steps to S-lignin likely predates the divergence
of Isoetes and Selaginella (Supplementary Note 3 and Supple-
mentary Figs. 5-17). In addition, analysis of key stomatal and root
genes (Supplementary Notes 4 and 6) in I. taiwanensis genome
supported their homology (at the molecular level) with similar
structures in other vascular plants (Supplementary Table 1 and
Supplementary Figs. 18-20).

Repetitive sequences accounted for 38% of the genome
assembly with transposable elements (TEs) accounting for the
majority of those at 37.08% of the assembly length. Long terminal
repeat (LTR) retrotransposons were the most abundant (15.72%
of total genome assembly) with the Gypsy superfamily accounting
for around 68% of LTR coverage (10.7% of total genome
assembly; Supplementary Data 1). When repeat density was
plotted alongside gene density, the distribution of both was found
to be homogeneous throughout the assembly (Fig. 1). This even
distribution of genes and repeats is markedly different from what
has been reported in most angiosperm genomes?! where gene
density increases near the ends of individual chromosomes.
However, it is consistent with several high-quality genomes
published from seed-free plants, including Physcomitrium
patens?2, Marchantia polymorpha®3, and Anthoceros agrestis.
The result from I taiwanensis thus adds to the growing evidence
that the genomic organization might be quite different between
seed and seed-free plants?>,

Table 1 Isoetes taiwanensis genome assembly statistics.
Assembly size (Mb) 1658.30
Scaffolds (#) 204
Scaffold length (Mb) 1494.58
N50 of scaffold length (Mb) 17.40
Scaffolded contigs (#) 1879
Scaffolded contig length (Mb) 1211.25
N50 length of scaffolded contigs (Mb) 1.48
Unscaffolded contig (#) 909
Unscaffolded contig (Mb) 149.46
N50 length of unscaffolded contigs (Mb) 0.26
Genome BUSCO score (Eukaryota) (%) 94.5
Proteome BUSCO score (Eukaryota) (%) 91.0
Predicted protein-coding genes (#) 39,461
Predicted repetitive sequence (%) 38
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Fig. 1 Distribution of genes and repetitive elements in I. taiwanensis. The relatively even distributions differ from angiosperm genomes, but are similar to
what have been reported in other seed-free plants. Only scaffolds longer than 10 Mb are plotted. Center: an image of /. taiwanensis. Source data are

provided as a Source Data file.

Evidence for WGD in Isoetes taiwanensis. Using a combination
of methods including synonymous substitutions per site (Ks),
phylogenetic reconciliation, and synteny analyses, we identified a
single ancient WGD in I taiwanensis. This is in contrast to a
previous Ks analysis using 1KP transcriptome data, which found
evidence for two rounds of WGD, named ISTEa and ISTE, in
the North American species I. tegetiformans and I. echinospora®®.
These two WGDs have median Ks values of ~0.5 and ~1.52°
(Supplementary Fig. 21). Our Ks analysis of the whole paranome
(i.e., all of the paralogous gene copies in the genome) in I tai-
wanensis revealed a single peak at Ks ~ 1.8 (Fig. 2a), suggesting
that the earlier of the two duplications (ISTEP) in I. tegetiformans
and I echinospora is shared by I taiwanensis while the more
recent event (ISTEa) is not. This result was corroborated using

four-fold degenerate site transversion rates (4dtv; Supplementary
Fig. 21). Further analysis of orthologous divergence between I.
taiwanensis and I lacustris indicated that ISTEB predates the
divergence of these two species (Supplementary Fig. 22). The
ISTEP event was subsequently confirmed by gene tree-species tree
reconciliation using genomic data in the WhALE package?’.
WhALE returned a posterior distribution of gene retention cen-
tered on g = ~0.12. This result compares favorably with a pre-
viously documented WGD event in Azolla filiculoides®®
(q=~0.08) and is in stark contrast to our negative control,
Marchantia polymorpha®3 (q= ~0) (Fig. 2b, c).

While self-self syntenic analysis revealed 6196 genes (15.7%)
with a syntenic depth of 1x in 107 clusters (Supplementary
Fig. 23), we do not believe they resulted from WGD. Our Ks
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Fig. 2 Evidence for WGD in I. taiwanensis. a Ks plot showing a peak centered on 1.8 corresponding to the ISTEB event. b Hypothesized WGD events that
were tested (colored rectangles) in our WhALE analysis are shown on a phylogeny. ¢ I. taiwanensis' posterior distribution of gene retention rates (g) falls
between that of A. filiculoides and P. patens, both are known to have at least one WGD. This provides additional support for the ISTEp event. Conversely, the
gene retention rate is close to zero for M. polymorpha, consistent with its lack of WGD. Source data are provided as a Source Data file.

analysis restricted to syntenic gene pairs failed to recover the peak
at Ks ~ 1.8 and instead consisted of an initial slope toward a much
lower Ks value (Supplementary Fig. 24). Given their high degree
of similarity and location on separate scaffolds, it is possible that
these low Ks gene pairs are the result of relatively recent
segmental duplications. The absence of conserved synteny from
ISTEP is unsurprising. The high Ks value implies that ISTEP is
ancient; long enough ago for extensive genomic restructuring and
fractionation to have taken place. Altogether, of the two
hypothesized WGDs in Isoetes, we confirmed the presence of
ISTEP while the younger ISTEa might be either specific to I
tegetiformans and I. echinospora or an artifact stemming from the
quality or completeness of the transcriptomes.

Similarities to terrestrial CAM plants. The CAM in Isoetes is
unusual for at least two reasons. First, Isoetes diverged from other
CAM plants more than 300 million years ago and second, Isoetes
has an aquatic lifestyle. Here, we demonstrated that when sub-
merged, titratable acidity in the leaves of 1. taiwanensis increased
throughout the night, reaching peak acidity in the morning and
decreased throughout the daylight hours (Fig. 3b), consistent with
the cycle of carbon sequestration and assimilation seen in dry-
adapted CAM plants. To identify the underlying genetic elements,
we generated TOD RNA-seq (Supplementary Data 2), sampling
every 3h over a 27 h period under 12h light/12h dark and
continuous temperature (LDHH). A multidimensional scaling
(MDS) plot of normalized expression data showed that the
samples were generally clustered in a clockwise fashion as
expected for TOD expression analysis (Supplementary Fig. 25).
We found that some of the CAM pathway genes in I
taiwanensis exhibited TOD expression patterns that largely
resemble those found in terrestrial CAM plants (Fig. 3c-i and
Supplementary Data 3). For example, the strong dark expression
of PHOSPHOENOLPYRUVATE CARBOXYLASE KINASE
(PPCK) appears to be conserved in I taiwanensis as well as in
all three terrestrial taxa (Fig. 3i). Likewise, we found one copy of
B-CARBONIC ANHYDRASE (B-CA) that cycled similarly with
homologs in A. comosus and K. fedtschenkoi (Fig. 3g)—increasing
during the night and peaking in the early morning—although this
is different from S. album in which no -CA genes showed a high
dark expression. Similar to A. comosus where two copies of
MALATE DEHYDROGENASE (MDH) were found to cycle in
green leaf tissue®, we found multiple copies of MDH that appear
to cycle in I taiwanensis with one copy appearing to exhibit a
similar peak expression to its orthologue in pineapple (Fig. 3e).

4

However, neither of the other two MDH genes that cycle in I
taiwanensis exhibit similar expression to their orthologues in
terrestrial CAM species (Supplementary Fig. 26).

During the day, decarboxylation typically occurs by one of two
separate pathways (Fig. 3a). The first utilizes NAPD-MALIC
ENZYME (NADP-ME) and PYRUVATE PHOSPHATE DIKI-
NASE (PPDK), and appears to be favored by K. fedtschenkoi and
S. album®10. The second utilizes MDH and PHOSPHOENOL-
PYRUVATE CARBOXYKINASE (PEPCK) and is favored by A.
comosus®. Based on its TOD expression of multiple copies of
MDH and associated expression dynamics, it is possible that I
taiwanensis utilizes the MDH/PEPCK pathway. While all four
genes have elevated expression levels during the day, the
expression of NADP-ME is inverted compared to K. fedtschenkoi
and S. album (Fig. 3c), and PPDK exhibits relatively weak cycling
overall (R = 0.637; Fig. 3d). Additionally, PEPCK and one copy of
MDH have similar TOD expression in I taiwanensis and A.
comosus (Fig. 3f, e, respectively), which may indicate a shared
affinity for MDH/PEPCK decarboxylation. Interestingly, the copy
of PEPCK that cycles in I. taiwanensis is not orthologous to the
copy that cycles in A. comosus, being placed in a different
orthogroup by Orthofinder?’.

L taiwanensis likely recruited bacterial-type PEPC. While TOD
expression of many key CAM pathway genes was broadly similar
to that seen in terrestrial CAM plants, one important difference
can be found in the PEPC enzyme, which is the entry point of
carboxylation in CAM and C4 photosynthesis (Fig. 3a). PEPC is
present in all photosynthetic organisms as well as many non-
photosynthetic bacteria and archaea. It is a vital component of
plant metabolism, carboxylating PEP in the presence of HCO;~
to yield OAA. In plants, the PEPC gene family consists of two
clades, the “plant-type” and the “bacterial-type”. The latter was
named because of its higher sequence similarity with proteo-
bacteria PEPC than other plant-type PEPC genes®’. All CAM and
C4 plants characterized to date recruited only the plant-type
PEPC39, with the bacterial-type often being expressed at relatively
low levels and/or primarily in non-photosynthetic tissues3!.
Interestingly, in I taiwanensis we found that both types of
PEPC were cycling and that the bacterial-type was expressed at
much higher levels than plant-type PEPC (Fig. 3h). Copies from
both types had similar expression profiles in I taiwanensis,
peaking at dusk and gradually tapering off during the night.
While this may seem counterintuitive as PEPC is an important
component of the dark reactions, it is consistent with what has
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previously been found in other terrestrial CAM plants, with the
overall expression profile resembling that of S. album®. The
advantage of recruiting bacterial-type PEPC is unclear. In vivo,
both bacterial- and plant-type PEPC can interact with each other
to form a hetero-octameric complex that is less sensitive to
inhibition by malate32. Although the functional and physiological
implications await future studies, the unusual involvement of
bacterial-type PEPC is suggestive of a divergent evolutionary path
to underwater CAM in Isoetes.

No evidence for convergent evolution of PEPC. Plant-type
PEPC was recently shown to undergo convergent amino acid
substitutions in concert with the evolution of CAM!0. An aspartic
acid (D) residue appears to have been repeatedly selected across
multiple origins of CAM such as in K. fedtschenkoi and P.
equestris'?, although notably not in A. comosus nor S. album. This
residue is situated near the active site, and based on in vitro
assays, the substitution to aspartic acid significantly increased
PEPC activity!?. However, in I. taiwanensis we did not observe
the same substitution in any copies of PEPC (Fig. 4); instead, they
have arginine (R) or lysine (H) at this position like PEPC from
many non-CAM plants. This lack of sequence convergence
between Isoetes and few CAM angiosperms could be the result of
their substantial phylogenetic distance and highly divergent life
histories. Alternatively, it is also likely that the substitution is not
as important as previously hypothesized, or relevant only in the
context of plant-type PEPC. As I taiwanensis may also utilize
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bacterial-type PEPC, the aspartic acid residue might not serve the
same purpose.

Circadian regulation in Isoefes. Previous analysis of the A.
comosus genome found promoter regions of multiple key CAM
pathway genes containing known circadian cis-regulatory ele-
ments (CREs) including Morning Element (ME: CCACACQC),
Evening Element (EE: AAATATCT), CCAl-binding site (CBS:
AAAAATCT), G-box (CACGTG) and TCP15-binding motif
(NGGNCCCAC)?. This suggests that expression of CAM genes in
pineapple is largely under the control of a handful of known
circadian clock elements. The direct involvement of circadian
CREs was corroborated by a later study of the facultative CAM
plant S. album where shifts in diel expression patterns were tied
to a shift in TOD-specific enrichment of CREs: EE and Telobox
(TBX: AAACCCT)S.

In order to examine the role of the circadian clock and light/
dark cycles in regulating I. taiwanensis CAM, we used the
HAYSTACK pipeline33 to identify all genes with TOD expression
patterns. We predicted 3241 cycling genes, which is 10% of the
expressed genes (Supplementary Fig. 27 and Supplementary Note
6). While 10% is low compared to land plants that have been
tested under this condition (LDHH)—usually at 30-50%
genes®3334, a recent study found a reduced number of cycling
genes in another aquatic plant Wolffia australiana (duckweed/
watermeal)3>. Accordingly, decreased cycling may be a feature of
aquatic plants. Further discussions and comparisons of I
taiwanensis TOD gene expression with other species can be
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Fig. 4 A lack of PEPC sequence convergence in I. taiwanensis. Copies with putative convergent amino acid sequence (D at position 3 in alignment) are
indicated by thickened connecting lines and green arrows. Copies of bacterial-type and plant-type PEPC shown to cycle in I. taiwanensis are marked with

asterisks (*). Branch thickness indicates bootstrap support.

found in Supplementary Note 7, Supplementary Figs. 27, 28, and
Supplementary Data 4.

Core circadian clock genes such as LATE ELONGATED
HYPOCOTYL (LHY), PSEUDO-RESPONSE REGULATOR 7
(PRR7), LUX ARRHYTHMO (LUX), and EARLY FLOWERING 3
(ELF3), cycle with the expected TOD expression seen in their
Arabidopsis orthologs (Fig. 5, Supplementary Note 8, and
Supplementary Figs. 29, 30)33. Furthermore, TIMING OF CAB2
1/PSEUDO-RESPONSE REGULATOR 1 (TOCI/PRRI) and
GIGANTEA (GI), which are typically single-copy genes in land
plants, have, respectively, 3 and 5 predicted genes in distinct
genomic locations. Similarly, an increased number of homologs was
found in the facultative CAM plant S. album®. Closer inspection
confirmed all 3 TOCI/PRRI paralogs are full length, while only 1 of
the GI genes (Gla) is full length and 1 other (GIb) is a true partial/
truncated (and expressed) paralog. Surprisingly, all 3 copies of

TOCI/PRRI have dawn-specific expression compared to the dusk-
specific expression found in all plants tested to date3® (Fig. 5b)
including terrestrial CAM species (Supplementary Fig. 30). In
addition, Gla and GIb have antiphasic expression, with the full-
length GIa having dusk-specific expression, which is consistent with
other plants, and GIb having dawn-specific expression (Fig. 5¢ and
Supplementary Fig. 30).

The duplications and divergent expression patterns of TOC1/
PRRI and GI in I taiwanensis have important implications on
circadian clock evolution. Despite the TOD expression of core
circadian clock genes being highly conserved since the common
ancestor of green algae and angiosperms, the mechanisms may be
simpler in algae3” and mosses®3. This idea is largely based on the
lack of key components of the evening-phased loop including
PRRI, GI, and ZTL in P. patens and the absence of the same along
with morning-phased loop genes ELF3 and ELF4 in algae®.
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Fig. 5 Expression of key circadian associated genes is shifted in

I. taiwanensis. a LATE ELONGATED HYPOCOTYL (LHY), b PSEUDO-
RESPONSE REGULATOR 1 (PRRT), € GIGANTEA (GI) orthologs in Isoetes (blue
lines), Selaginella (orange line), and Arabidopsis (red line) normalized
expression over the day. Day (yellow box); night (black box); Zeitgeber
time (ZT) is the number of hours (h) after lights on (O h). Locus IDs for
genes used in expression plots can be found in Supplementary Data 3.
Source data for I. taiwanensis are provided in Supplementary Data 2. Source
data for the other taxa are provided as a Source Data file.

While 1. taiwanensis possesses all the major clock genes that are
found in other vascular plants, lineage-specific expansion and
phase-shifted gene expression in the evening-phased loop could
indicate that circadian control was less conserved during the early
evolution of land plants. However, Selaginella exhibits a very
similar expression of various circadian modules relative to other
vascular plants and likewise, possesses a single copy of both GI
and PRRI%. It is thus possible that the TOD architecture in L
taiwanensis represents a more recent adaptation to its aquatic
CAM lifestyle. As a comparison, S. album similarly has multiple
duplicated clock genes and its transition to CAM is associated
with significant shifts in both phase and amplitude of gene
expression®. To further investigate the relationship between clock
and CAM in I. taiwanensis, we next focused on characterizing the
circadian CREs.

Canonical circadian CREs are not enriched in Isoetes CAM
cycling genes. We used ELEMENT?3 to exhaustively search the
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Fig. 6 Multiple CREs exhibit time-structured enrichment in I. taiwanensis.
a, b Two telobox (TBX) containing motifs showed similar patterns to one
another, both being enriched ingenes with peak expression at dusk. ¢ Motif
containing Evening Element (EE) was significantly enriched in genes with
peak expression at mid-day. d A significantly enriched motif at mid-day.
Day (yellow box); night (black box); Zeitgeber time (ZT) is the number of
hours (h) after lights on (O h). Shaded regions represent the standard
deviation of log-transformed, FDR corrected, single-tailed p-values of
component k-mers as calculated by ELEMENT33. Source data are provided
as a Source Data file.

promoter region of cycling genes for putative CRE motifs. Fol-
lowing de novo identification, putative CREs were compared to
known transcription factor binding sites in Arabidopsis to
determine to what degree their functions might be conserved
between Isoetes and flowering plants. We identified 16 sig-
nificantly enriched CREs motifs in the 500 bp 5’ promoter region
of cycling genes identified by HAYSTACK, and clustered them
according to TOD expression (Supplementary Data 5). Half of
the motifs shared some degree of sequence similarity to known
circadian CREs previously identified in Arabidopsis, including the
EE as well as two “ACGT”-containing elements (G-box-like) and
two TBX-containing motifs33. In the case of TBX, both motifs
were associated with peak expression at dusk (at around 12 h after
lights on; Zeitgeber Time [ZT]) in I taiwanensis (Fig. 6a, b),
similar to Arabidopsis under light/dark cycles alone®>. On the
other hand, the EE appear to be associated with peak expression
at different TOD. In Arabidopsis, the EE is enriched in genes with
peak expression at dusk (ZT =12), but in I. taiwanensis, this
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pattern is shifted, with the EE associating with genes that peak in
expression around mid-day (ZT =6) (Fig. 6¢). Additionally,
while the two “ACGT”-containing elements were found upstream
of genes that exhibited significant cycling behavior, neither was
strongly associated with peak expression at a particular TOD. We
also found an unidentified CRE (AGAATAAG) that is strongly
associated with peak expression in the morning (ZT =4)
(Fig. 6d).

We next examined the connection between circadian CREs and
CAM genes in I. taiwanensis. Interestingly, with the exception of
the RVE1/2 motif, we did not find significant enrichment of any
known circadian CREs in CAM cycling genes relative to non-
cycling paralogues. While a targeted search of CAM cycling gene
promoters did uncover circadian CREs including the CBS,
TCP15, TBX, and EE (Supplementary Data 6), none were
strongly associated with either light or dark phase CAM gene
expression. In addition, both ME and G-box were conspicuously
absent from the promoter regions of cycling CAM
photosynthetic genes.

In sum, TOD-specific enrichment of CREs appears to differ in
various aspects from Arabidopsis. While some CRE sequences
themselves are conserved between lycophytes and angiosperms,
their interaction with various transcription factors and subse-
quent regulatory function could be quite different in Isoetes.
Importantly, our results stand in contrast to other CAM plants
such as S. album3 and A. comosus® where CAM genes appeared to
be under the direct control of a handful of strictly conserved
circadian CREs. These results either suggest that the circadian
clock network that emerged in Isoetes, which included the
addition of central components GI and PRRI, was quite different
than that found to be highly conserved in seed plants, or there is
significant TOD innovation associated with the evolution of
underwater CAM. Additional Isoetes genomes and TOD analysis
of underwater CAM plants will be required to test these
hypotheses.

The assembly and analyses of the I taiwanensis genome
bridges a substantial gap in our knowledge of vascular plant
evolution. We have combined genomic and transcriptomic data
to corroborate one of the two hypothesized WGDs in Isoetes
relative to its closest extant relative Selaginella, highlighting the
contrasting history of WGD in these two lineages. Additionally,
comparison of TOD gene expression with genomic sequence data
has given us insights into the convergent evolution of CAM
photosynthesis, not only in a lycophyte, but also in the aquatic
environment. As such, our analysis stands as a necessary
counterpoint to similar studies previously conducted in terrestrial
angiosperms. Shifts in expression of CAM pathway genes and the
possible recruitment of bacterial-type PEPC in I taiwanensis
demonstrate a remarkable degree of plasticity in the convergent
evolution of this complex trait throughout vascular plants.
Likewise, differences in the enrichment of CREs associated with
circadian gene expression suggest that control of CAM, as well as
other processes tied to the circadian clock, may have diverged
markedly since the common ancestor of Isoetes and flowering
plants. We propose that the emergence of underwater CAM may
have followed a distinct route in Isoetes, shedding light on a
classic example of convergent evolution of a complex plant trait.

Methods

Plant sample. Isoetes taiwanensis is endemic to a small pond in Northern Taiwan
and has been ex situ propagated in Taiwan Forestry Research Institute. This species
is expected to have a low genetic diversity due to a very restricted distribution and a
small population size. The voucher specimen (Kuo4500) was deposited at TAIF
herbarium.

Genome size estimate. The genome size of I. taiwanensis was first determined by
flow cytometry following the protocols outlined in Kuo et al.#% and Li et al.28. The

flow cytometric experiments were performed on BD FACSCan system (BD Bios-
ciences, USA), and the Beckman buffer?! was used with 0.5% (v/v) 2-mercap-
toethanol, 40 mg mL~! PVP-40, and 0.1 mg mL~! RNaseA added. We used Zea
mays (1C = 5.57pg*?) as the internal standard. To confirm the flow cytometry-
based measurement, a k-mer frequency distribution was generated from Illumina 2
x 150 bp paired reads (described below) using Jellyfish43, which was then input into
GenomeScope?* to estimate genome size.

Genome sequencing. High molecular weight (HMW) DNA was extracted using a
modified CTAB method on isolated nuclei. First, leaf tissues were ground in liquid
nitrogen, and the powder was resuspended in the Beckman buffer (same as in our
flow cytometric experiments). We then used 30 um nylon circular filters (Partec,
Germany) to remove tissue debris, and precipitated nuclei with 100xg cen-
trifugation under 4 °C for 20 min. DNA was extracted following a modified CTAB
protocol®. HMW DNA was QC’d on an agarose gel for length and quantified on a
bioanalyzer. Unsheared HMW DNA was used to make Oxford Nanopore Tech-
nologies (ONT) ligation-based libraries (Oxford, UK). Libraries were prepared
starting with 1.5 pg of DNA and following all other steps in ONT’s SQK-LSK109
protocol. Final libraries were loaded on an ONT flowcell (v9.4.1) and run on the
GridION. Bases were called in real-time on the GridION using the flip-flop version
of Guppy (v3.1). The resulting fastq files were concatenated and used for down-
stream genome assembly steps. The same batch of HMW genomic DNA was used
to construct Illumina (Illumina, USA) libraries for estimating genome size (above)
and correcting residual errors in the ONT assembly. Libraries were constructed
using the KAPA HyperPrep Kit (Kapa Biosystems, Switzerland) followed by
sequencing on an Illumina NovaSeq6000 with 2 x 150 bp paired-ends.

Genome assembly. ONT reads were assembled using minimap2 and miniasm?°,

and the resulting draft assembly was then polished by racon?” (with ONT reads)
and pilon*? (with Illumina reads). Because the plants were grown non-axenically
under water, the assembly inevitably contained contaminations. We, therefore,
used blobtools*® to identify non-plant contigs based on a combination of contig
read coverage, taxonomic assignment, and GC content.

To further scaffold the assembly, we generated a genome map using Bionano
with the Direct Label and Stain chemistry and DLE-1 labeling. For this, high
molecular weight DNA was extracted using the Bionano Plant DNA Isolation Kit.
Hybrid scaffolding, combining the nanopore draft and Bionano map, was done on
the Bionano Saphyr computing platform at the McDonnell Genome Institute at
Washington University. We then gap-filled the scaffolded genome using two
rounds of LR_Gapcloser>? (3 iterations each and a pilon polishing in between).
Finally, to remove redundancy the purge_haplotigs pipeline®! was used to obtain
the v1 assembly. The circular chloroplast genome was assembled from Illumina
data using the GetOrganelle®? toolkit.

Repeat annotation. We generated a custom 1. taiwanensis-specific repeat library
using LTR-retriever> and RepeatModeler>*. The I taiwanensis genome contains a
high number of genes encoding pentatricopeptide repeat proteins which are often
misclassified as repetitive elements in the genome. Thus, in order to identify and
remove repeats with homology to plant proteins, we used BLASTx to query each
repeat against the uniprot plant protein database (e-value threshold at 1e—10). The
resulting library was then input into RepeatMasker> to annotate and mask the
repetitive elements in the I. taiwanensis genome.

Gene annotation. We trained two ab initio gene predictors, AUGUSTUS® and
SNAP?’, on the repeat-masked genome using a combination of protein and
transcript evidence. For the protein evidence, we relied on the annotated proteomes
from Selaginella moellendorffii'® and S. lepidophylla'8, and for the transcript evi-
dence, we used the RNA-seq data from our time-course experiment and a separate
corm sample. To train AUGUSTUS, BRAKER2°8 was used and the transcript
evidence was input as an aligned bam file. SNAP was trained under MAKER with 3
iterations, and in this case, the transcript evidence was supplied as a de novo
assembled transcriptome done by Trinity>®. After AUGUSTUS and SNAP were
trained, they were fed into MAKER®? along with all the evidence to provide a
synthesized gene prediction. Gene functional annotation was done using the
eggNOG-mapper v2°L. To filter out spurious gene models, we removed genes that
met none of the following criteria: (1) a transcript abundance greater than zero in
any sample (as estimated by Stringtie®2), (2) has functional annotation from egg-
NOG, and (3) was assigned into orthogroups in an Orthofinder?? run (see below).
The resulting gene set was used in all subsequent analyses.

Homology assessment and gene family analysis. Homology was initially
assessed with Orthofinder?® using genomic data from a range of taxa from across
the plant tree of life including all CAM plant genomes published to date: Amborella
trichopoda®3, Ananas comosus®, Anthoceros agrestis?*, Arabidopsis thaliana®,
Azolla filiculoides®8, Brachypodium distachyon®, Ceratophyllum demersum®®, Iso-
etes taiwanensis (this study), Kalanchoe fedtschenkoil0, Marchantia polymorpha®3,
Medicago truncatula®’, Nelumbo nucifera®®, Nymphaea colorata®, Phalaenopsis
equestris'!, Physcomitrium patens’2, Picea abies’", Salvinia cucullata®S, Sedum
album3, Selaginella moellendorffii'®, Sphagnum fallax (Sphagnum fallax v0.5, DOE-

8 | (2021)12:6348 | https://doi.org/10.1038/s41467-021-26644-7 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

JGI, http://phytozome.jgi.doe.gov/), Spirodela polyrhiza’l, Utricularia gibba’?,
Vitus vinifera’3, and Zostera marina’4, and one algal genome: Mesotaenium
endlicherianum?>. Following homology assessment, the degree of overlap between
gene families was assessed using the UpsetR7® package in R.

RNA-editing analysis. RNA-seq data were first mapped to combined nuclear and
chloroplast genome assemblies using HISAT277. The reads mapping to the
chloroplast genome were extracted using samtools’8. SNPs were called using the
mpileup function in beftools”. The resulting vcf files were filtered using beftools to
remove samples with a depth < 20, quality score < 20 and mapping quality bias <
0.05. After filtering, C-to-U and U-to-C edits were identified using an alternate
allele frequency threshold of 10%. Finally, RNA-editing sites were related to specific
genes using the intersect command in bedtools®® and characterized using a custom
python script (available at https://github.com/dawickell/Isoetes_ CAM).

Ks analysis. Ks divergence was calculated by several different methods. Initially, a
whole paranome Ks distribution was generated using the “wgd mcl” tool®. Self-
synteny was then assessed in i-Adhore and Ks values were calculated and plotted
for syntenic pairs only using the “wgd syn” tool®!. To conduct Ks analysis of related
species, RNA-seq data was downloaded from the SRA database for Isoetes yun-
guiensis (SRR6920723)82, I. sinensis (SRR1648119)%3, I. drummondii
(SRR4762161), I echinospora (SRR6853338)%4, I. lacustris (SRR9620527)%, and I.
tegetiformans (ERR2040873)1%. Transcriptomes were assembled using
SOAPdenovo-Trans® with a k-mer length of 31. Next, for each Isoetes genome and
transcriptome, we used the DupPipe pipeline to construct gene families and esti-
mate the age distribution of gene duplications8”-38. We translated DNA sequences
and identified ORFs by comparing the Genewise® alignment to the best-hit pro-
tein from a collection of proteins from 25 plant genomes from Phytozome. For all
DupPipe runs, we used protein-guided DNA alignments to align our nucleic acid
sequences while maintaining the ORFs. We estimated Ks divergence using PAML?!
with the F3X4 model for each node in the gene family phylogenies.

Four-fold transversion substitution rate analysis. For each Isoetes genome and
transcriptome, we used the DupPipe pipeline as described above to generate gene
alignments. We estimated a four-fold transversion substitution rate (4dtv) using an
existing perl script for each duplicate gene pair (https://github.com/chaimol/
KK4D/blob/master/calculate_4DTV_correction.pl).

Estimation of orthologous divergence. To place putative WGDs in relation to
lineage divergence, we estimated the synonymous divergence of orthologs among
pairs of species that may share a WGD based on their phylogenetic position and
evidence from the within-species Ks plots. We used the RBH Orthologue pipeline$8
to estimate the mean and median synonymous divergence of orthologs, and
compared those with the synonymous divergence of inferred paleopolyploid peaks.
We identified orthologs as reciprocal best BLAST hits in pairs of transcriptomes.
Using protein-guided DNA alignments, we estimated the pairwise synonymous
divergence for each pair of orthologs using PAML®! with the F3X4 model.

Phylogenetic assessment of ancient whole-genome duplication. WGD infer-
ence was conducted by phylogenomic reconciliation using the WhALE package
implemented in Julia’. First, prior to WhALE analysis, Orthofinder?? was used to
identify groups of orthologous genes among 7 species representing 3 taxonomic
groups (bryophytes, lycophytes, and ferns): Azolla filiculoides?8, Isoetes taiwanensis
(this study), Marchantia polymorpha®3, Physcomitrium patens®?, Salvinia
cucullata®3, Selaginella moellendorffii'®, and Sphagnum fallax (Sphagnum fallax
v0.5, DOE-JGI, http://phytozome.jgi.doe.gov/). These species were chosen based on
phylogenetic relatedness, availability of a high-quality genome assembly, and
previous assessment for the presence or absence of WGD. The resulting
orthogroups were filtered using a custom python script to remove the 5% largest
orthogroups and those with less than 3 taxa. Additionally, WhALE requires
removal of gene families that do not contain at least one gene in both bryophytes
and ferns to prevent the inclusion of gene families originating after divergence from
the most recent common ancestor. Alignments were generated for the filtered
orthogroups in PRANK®2 using the default settings. A posterior distribution of
trees was obtained for each gene family in MrBayes 3.2.6° using the LG model.
Chains were sampled every 10 generations for 100,000 generations with a relative
burn-in of 25%. Following the Bayesian analysis, conditional clade distributions
(CCDs) were determined from posterior distribution samples using ALEobserve in
the ALE software suite%. CCD files were subsequently filtered using the ccddata.py
and ccdfilter.py scripts provided with the WhALE program. A dated, ultrametric
species tree was generated using the “ape” package in R, in which branch lengths
were constrained according to 95% highest posterior density of ages, assuming that
bryophytes are monophyletic, as reported by Morris et al.”. Finally, the filtered
CCD files were loaded in Julia along with the associated species phylogeny. A
hypothetical WGD node was inferred at 200 million years ago (MYA) along the
branch leading to I. taiwanensis, prior to the estimated crown age of extant
Isoetes®”. Modifying the hypothetical age of this WGD node did not affect the
outcome. Additional WGD nodes were placed as positive controls along branches
leading to Physcomitrium patens and Azolla filiculoides at 40 MYA and 60 MYA,

respectively, based on previous studies?>25. A false WGD event was also placed
arbitrarily in Marchantia polymorpha at 160 MYA as a negative control. A WhALE
“problem” was constructed using an independent rate prior and MCMC analysis
was conducted using the DynamicHMC library in Julia (https://github.com/tpapp/
DynamicHMC,jl) with a sample size of 1000.

Phylogenetic analysis of root, stomata, and CAM pathway genes. Following
clustering of homologs in Orthofinder, we conducted a phylogenetic analysis of
several gene families of interest, including those containing SMF, FAMA, TMM,
RSL, and PEPC genes, which were identified based on homology using gene
annotations from Arabidopsis. Gene trees from Orthofinder were initially used to
identify paralogues and remove fragmented genes where appropriate. In the case of
PEPC, orthogroups containing “bacterial-type” and “plant-type” PEPC were
combined prior to alignment. Next, amino acid sequences were aligned using
MUSCLE®® under default settings and trimmed using TrimAL with the -strict flag.
An amino acid substitution model was selected according to the Bayesian Infor-
mation Criterion (BIC) in ModelFinder® prior to phylogenetic reconstruction by
maximum likelihood in IQ-TREE v1.6.12100 with 1000 ultrafast!?! bootstrap
replicates.

Phylogenetic and gene expression analysis of genes salient to the phenyl-
propanoid and lignin biosynthesis pathway. The datasets used for phylogenetic
analyses were based on de Vries et al.!02 with added I. taiwanensis sequences. In
brief, we assembled a dataset of predicted proteins from (A) the genomes of
seventeen land plants: Anthoceros agrestis as well as Anthoceros punctatus®4,
Amborella trichopoda®, Arabidopsis thaliana®, Azolla filiculoides?8, Brachypodium
distachyon®, Capsella grandifloral®3, Gnetum montanum!%4, Isoetes taiwanensis
(this study), Marchantia polymorpha?3, Nicotiana tabacum'%%, Oryza satival?®,
Physcomitrium patens®?, Picea abies’?, Salvinia cucullata®8, Selaginella
moellendorffii'®, and Theobroma cacao;!%7 (B) the genomes of seven streptophyte
algae: Chlorokybus atmophyticus'%8, Chara braunii'®®, Klebsormidium nitens!10,
Mesotaenium endlicherianum’>, Mesostigma viride'08, Penium margaritaceum'1,
Spirogloea muscicola’>—additionally, we included sequences found in the tran-
scriptomes of Spirogyra pratensis''?, Coleochaete scutata as well as Zygnema
circumcarinatum!13, and Coleochaete orbicularis;'1* (C) the genomes of eight
chlorophytes: Bathycoccus prasinos''5, Chlamydomonas reinhardtii''%, Coccomyxa
subellipsoidea'l”, Micromonas sp. as well as Micromonas pusilla'18, Ostreococcus
lucimarinus''®, Ulva mutabilis'?, Volvox carteri'?!. For phenylalanine ammonia-
lyase, additional informative sequences were added based on de Vries et al.122,

Building on the alignments published in de Vries et al.!%2, homologs of each
gene family (detected in the aforementioned species via BLASTp) were (re-)aligned
using MAFFT v7.475!23 with a L-INS-I approach; both full and partial sequences
from I. taiwanensis were retained. We constructed maximum likelihood
phylogenies using IQ-TREE 2.0.6!24 1000 ultrafast!! bootstrap replicates were
computed. To determine the best model for protein evolution, we used
ModelFinder?® and picked the best models based on BIC (PAL: LG + F + R7; CSE:
LG + F + R8; C4H: LG + R8; C3H: LG + R10; COMT: JTT + R7; HCT:

WAG + R9; F5H: LG + F + R10; CCOAOMT: WAG + R5; 4CL: LG + R9; CAD:
LG + R8; CCR: LG + R6). Residue information was mapped next to the tree based
on structural analyses by Hu et al.!12%, Pan et al.!?%, Louie et al.!?’, Youn et al.!28,
and Ferrer et al.12.

Raw read counts from expression data of different tissues (leaf time series and
the corm) of I taiwanensis were extracted for those genes highlighted. Data were
filtered to retain genes with more than 1 count per million (CPM) in at least
2 samples and normalized by applying the trimmed mean of M values procedure
with the edgeR package!3. The count data were transformed to log2-CPM via the
limma package!?!. Finally, heatmaps of gene expression levels were produced via
the R packages gplots and RColorBrewer.

Time-course titratable acidity and RNA-seq experiments. Leaves of I. taiwa-
nensis were taken from five individuals (as five biological replicates) every 3 h over
a 27-h period on a 12-hour light/dark cycle and constant temperature. To measure
changes in acidity over time, a portion of the leaf tissues was weighed, mixed with
3.5-5mL of ddH,O0, and titrated with 0.0125 M NaOH solution until pH = 7.0. At
the same time, we froze the leaf tissues in liquid nitrogen, and extracted RNA using
a modified CTAB protocol!32, RNA quality was examined on a 1% agarose gel and
RNA concentration was quantified using the Qubit RNA HS assay kit (Invitrogen,
USA). Based on the RNA quality and concentration, three samples per time point
were picked for sequencing. 2 pg of total RNA was used to construct stranded
RNA-seq libraries using the Illumina TruSeq stranded total RNA LT sample prep
kit (RS-122-2401 and RS-122-2402). Multiplexed libraries were pooled and
sequenced on an Illumina NovaSeq6000 with 2 x 150 bp paired-ends.

Differential expression analysis. RNA-seq reads were mapped to the combined
nuclear and chloroplast genome using HISAT27”. Stringtie®? was used to assemble
transcripts and estimate transcript abundance. A gene count matrix was produced
using the included prepDE.py script. We imported gene count data into the
DESEQ2 package in R133 for read normalization using its median of ratios method
as well as identification and removal of outlier samples using multidimensional
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scaling. A single outlier sample from each of six time points (1, 4, 7, 10, 13, and
19 h) was removed from the final dataset. The resulting dataset was used to analyze
temporal gene expression patterns in the R package maSigPro!34. Using maSigPro,
genes with significantly differential expression profiles were identified by com-
puting a regression fit for each gene and filtered based on the associated p-value
(p<0.001).

Identification of CAM-associated genes. CAM-associated gene identification
was accomplished by a combination of functional annotation, homology
assessment, and differential expression analysis. Initially, genes previously
identified as being involved in the CAM pathway in terrestrial plants were
identified using their functional annotations assigned by eggNOG-mapper v26!
according to sequence similarity. Next, additional putative CAM photo-
synthesis genes were identified from Orthofinder results if they belonged to any
group containing genes identified in the previous step or a group having known
CAM-associated genes from Ananas comosus®, Kalanchoe fedtschenkoil?, and/
or Sedum album3. Finally, genes identified in the previous steps were submitted
to differential expression analysis to determine whether or not they showed
TOD expression. Thus, genes were considered to be “CAM associated” if they
exhibited homology to known CAM photosynthetic genes in terrestrial CAM
species and cycled in I taiwanensis in a TOD manner.

HAYSTACK global cycling prediction. Genes with mean expression across all the
time points below 1 TPM were considered “not expressed” and filtered prior to
cycling prediction with HAYSTACK (https://gitlab.com/NolanHartwick/
super_cycling)33. HAYSTACK operates by correlating the observed expression
levels of each gene with a variety of user specified models that represent archetypal
cycling behavior. We used a model file containing sinusoid, spiking traces, and
various rough linear interpolations of sinusoids with periods ranging from 20 to
28 h in one-hour increments and phases ranging from 0 to 23 h in one-hour
increments. Genes that correlated with their best fit model at a threshold of R > 0.8
were classified as cyclers with phase and period defined by the best fit model. This
threshold for calling cycling genes is based on previous validated
observations®3334135 'We also validated this threshold by looking at the cycling of
known circadian clock genes (Fig. 5).

ELEMENT cis-regulatory elements analysis. Once cycling genes in I. taiwanensis
were identified, we were able to find putative cis-acting elements associated with TOD
expression. Promoters, defined as 500 bp upstream of genes, were extracted for each
gene and processed by ELEMENT (https://gitlab.com/salk-tm/
snake_pip_element)33136:137_ Briefly, ELEMENT generates an exhaustive background
model of all 3-7 k-mer using all of the promoters in the genome, and then compares
the k-mers (3-7 bp) from the promoters for a specified gene list. Promoters for
cycling genes were split according to their TOD expression into “phase” gene lists and
k-mers that were overrepresented in any of these 24 promoter sets were identified by
ELEMENT. By splitting up cycling genes according to their associated phase, we
gained the power to identify k-mers associated with TOD-specific cycling behavior at
every hour over the day. Our threshold for identifying a k-mer as being associated
with cycling was an FDR < 0.05 in at least one of the comparisons. The significant
k-mers were clustered according to sequence similarity (Fig. 6).

Promoter motif identification. Core CAM genes with significantly differential diel
expression profiles (as identified in maSigPro) including 8-CA, PEPC, PEPCK, ME,
MDH, and PPDK were selected for motif enrichment analysis. Enriched motifs
were identified relative to a background consisting of non-cycling paralogues of
photosynthetic genes using the AME utility'33. Promoters were searched for known
motifs from the Arabidopsis promoter binding motif database!3? with FIMO!40,

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

A reporting summary for this Article is available as a Supplementary Information file.
Additional data supporting the findings of this work are available within the paper and
its Supplementary Information. All the raw sequences generated by this study have been
deposited in the NCBI Sequence Read Archive under the BioProject PRINA735564.
Genome assembly and annotation are available at https://genomevolution.org/coge/
Genomelnfo.pl?gid=61511. Source data are provided with this paper.

Code availability
Sequence alignments, tree files, and custom scripts can be found at GitHub [https://
github.com/dawickell/Isoetes_ CAM].
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