k-nearest neighbour (k-NN) |
Distance (DD) |
{cityblock, chebychev, correlation, cosine, euclidean, hamming, jaccard, mahalanobis, minkowski,spearman} |
DistanceWeight (DW) |
{equal, inverse, squaredinverse} |
Exponent (E) |
[0.5, 3] |
NumNeighbors (NN) |
[1, 5] |
Support vector machine (SVM) |
BoxConstraint (BC) |
log-scaled in the range [1e-3,1e3] |
KernelFunction (KF) |
{gaussian, linear, polynomial} |
KernelScale (KS) |
log-scaled in the range [1e-3,1e3] |
PolynomialOrder (PO) |
{2,3,4} |
Artificial neural network (ANN) |
Activation Function (AF) |
{relu, sigmoid, tanh} |
Hidden layer nr. of neurons (HLN) |
[25, 200] |
Linear discriminant analysis (LDA) |
Gamma (G) |
[0,1] |
Delta (D) |
log-scaled in the range [1e-6,1e3] |
DiscrimType (DT) |
{linear, quadratic, diagLinear,} |
{diagQuadratic, pseudoLinear, pseudoQuadratic} |
Random forest (RF) |
Depth (D) |
[5,20] |
Number of trees (NT) |
[15,100] |
Maximum depth of the tree |
[5,30] |
Logistic regression (LR) |
Penalty (P) |
{L2, elastic net} |
Inverse of regularization strength (C) |
[0.25, 1.0] |