Skip to main content
. 2021 Oct 21;12:757869. doi: 10.3389/fpls.2021.757869

TABLE 2.

Performance indices of different machine learning algorithms (MLP, GRNN, and ANFIS) for modeling and predicting shoot length, root length, number of nodes, number of shoots, and canopy surface area of Cannabis.

Model Performance index Shoot length
Shoot number
Node number
Root length
Canopy surface area
Training Testing Training Testing Training Testing Training Testing Training Testing
MLP R2 0.972 0.954 0.625 0.421 0.717 0.390 0.938 0.900 0.953 0.928
RMSE 4.929 6.927 0.396 0.632 0.702 1.202 15.112 15.956 277.487 340.538
MBE –0.090 1.673 0.009 –0.001 0.017 0.260 0.001 2.259 30.952 25.016
GRNN R2 0.983 0.964 0.733 0.714 0.791 0.744 0.941 0.914 0.962 0.944
RMSE 3.879 6.081 0.347 0.606 0.594 0.933 14.754 14.972 248.737 300.911
MBE 0.001 1.540 0.001 0.012 –0.001 0.063 0.001 2.581 0.001 2.388
ANFIS R2 0.770 0.590 0.647 0.501 0.767 0.549 0.781 0.589 0.733 0.644
RMSE 17.538 23.327 0.407 0.557 0.650 0.942 41.881 39.007 1282.011 1282.697
MBE –4.549 –5.508 0.006 –0.065 –0.003 0.037 5.962 8.546 –26.525 –32.037

ANFIS, adaptive neuro-fuzzy inference system; GRNN, generalized regression neural network; MBE, mean bias error; MLP, multilayer perceptron; R2, coefficient of determination; RMSE, root mean square error.