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ABSTRACT
Introduction: Human gut microbiota plays a crucial role in providing protective responses against 
pathogens, particularly by regulating immune system homeostasis. There is a reciprocal interaction 
between the gut and lung microbiota, called the gut-lung axis (GLA). Any alteration in the gut 
microbiota or their metabolites can cause immune dysregulation, which can impair the antiviral activity 
of the immune system against respiratory viruses such as severe acute respiratory syndrome corona
virus (SARS-CoV) and SARS-CoV-2.
Areas covered: This narrative review mainly outlines emerging data on the mechanisms underlying the 
interactions between the immune system and intestinal microbial dysbiosis, which is caused by an 
imbalance in the levels of essential metabolites. The authors will also discuss the role of probiotics in 
restoring the balance of the gut microbiota and modulation of cytokine storm.
Expert opinion: Microbiota-derived signals regulate the immune system and protect different tissues 
during severe viral respiratory infections. The GLA’s equilibration could help manage the mortality and 
morbidity rates associated with SARS-CoV-2 infection.
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1. Introduction

Influenza and other respiratory virus infections are one of the 
leading causes of morbidity and mortality worldwide [1]. A 
competent immune system reduces mortality by protecting 
the host against viral infections and reducing susceptibility to 
secondary bacterial infections [2]. The World Health 
Organization (WHO) has stated that severe coronavirus disease 
2019 (COVID-19) is a pandemic challenge [3]. COVID-19 is a 
lethal condition in patients with comorbidity, particularly 
those with immune system disorders. A healthy immune sys
tem can help people overcome clinical complications and 
return to work faster [4]. COVID-19 seems to cause a wide 
range of extrapulmonary difficulties affecting multiple organ 
systems. The pooled prevalence of all gastrointestinal (GI) 
problems was 17.6% in an early meta-analysis of 60 trials 
involving 4243 patients, most of whom were from China. The 
most prevalent presenting symptom was anorexia (26.8%), 
followed by diarrhea (12.5%), nausea/vomiting (10.2%), and 
abdominal pain (9.2%) [5]. Critically ill COVID-19 patients 

often develop GI complications during hospitalization, such 
as bowel ischemia, pancreatitis, GI bleeding, elevated transa
minases, ogilvie syndrome, and severe ileus [6,7].

Gut microbiota is essential for the development of immune 
responses [8]. There are approximately 38 trillion microorgan
isms in our body, including bacteria, fungi, archaea, viruses, 
and other eukarya. Bacteria are more common among them, 
with at least 2,000 different species [9]. The gastrointestinal 
tract (GIT) is the main habitat of microbiota, since it provides 
the largest interface surface (250–400 m2) of the body and is 
nutrient-rich. The GIT comprises over 2,000 bacteria species 
from 12 distinct phyla. The microbiome contains 3 million 
genes that are 150 to 500 times more than the number of 
genes in the human genome [10]. The gut microbiota can 
affect food digestion, production of energy and vitamins (B1, 
B5, B12, K, and folic acid), biliary acids deconjugation, and 
other vital biochemical aspects of our life [11,12]. On the 
other hand, microbiota has a remarkable impact on the activa
tion and function of immune cells. Accordingly, a persistent 
microbial community imbalance in the gut is known as 
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dysbiosis [13], increasing the risk of infections and autoim
mune diseases [14–19].

Many studies have recently shown a regulatory association 
between the gut microbiota and other organs, such as the 
gut–lung axis, gut–brain axis [20], gut–liver axis [21], gut-host 
hormonal axis [22], and gut–skin axis [23]. Noticeably, cross- 
talk between the healthy gut microbiota and lungs can sig
nificantly prevent respiratory tract infection in both influenza 
A virus and COVID-19 [24,25]. Based on these interactions, any 
alterations in the gut microbiota may directly affect the func
tion of other organs. Furthermore, more than 50% of patients 
with inflammatory bowel disease (IBD) and 33% of patients 
with irritable bowel syndrome (IBS) are susceptible to respira
tory complications as a result of dysbiosis without a history of 
acute or chronic respiratory disease [26,27].

The interaction of the gut microbiome and immune system 
[10] plays a protective role in preventing severe infection and 
controlling the viral load. The immune system is naïve in 
newborns and inefficient in older adults. Both groups are 
susceptible to viral infections and have a high mortality rate 
[28,29]. Recent molecular studies have also revealed differ
ences in gut microbiota composition among infants, toddlers, 
adults, and the elderly [30]. It appears that an altered gut 
microbiota composition can make an infant more susceptible 
to infections and allergic disease [31]. Dysbiosis, or disruptions 
in the hemostasis of gut microbiota, may cause an uncon
trolled and intense immune response to viral infections. 
Dysbiosis occurs when there is disparity in the number of 
normal bacteria and a rise in commensal, and/or opportunistic 
gut bacteria. Moreover, eubiosis is characterized by a species 
diversity dominated by members of only four bacterial phyla, 
including Firmicutes (e.g. Lactobacillus and Clostridium), 
Bacteroidetes (e.g. Bacteroides), Proteobacteria (e.g. 
Escherichia), and Actinobacteria (e.g. Bifidobacterium) [32,33]. 
Antibiotics, high-fat diet, stress, and air pollution have all been 
linked to dysbiosis, which has been shown to affect other 
body systems [17,34]. During COVID-19 infection, microbiota 
dysbiosis such as Klebsiella oxytoca, Lactic Acid Bacteria, and 
Tobacco mosaic virus were discovered [35]. In addition, a 
study found a link between the severity of COVID-19 infection 
and the prevalence of Clostridium ramosum, Coprobacillus, 

Clostridium hathewayi, Faecalibacterium prausnitzii, and 
Alistipes onderdonkii [36].

The present narrative review discusses the interaction 
between the healthy microbiome and the immune system 
during the initiation and progression of COVID-19. Finally, we 
overview the protective role of probiotics in the current 
COVID-19 pandemic.

2. Gut microbiota regulates the immune system

The number of microorganisms in the GI tract is reported to 
be more than 1014. The total number of microbes encom
passes about 10 times more than human cells [37]. Bacteria 
that inhabit the microbiota of the human gut are classified 
into phyla, classes, orders, families, genera, and species. 
Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, 
Fusobacteria, and Verrucomicrobia are the significant gut 
microbial phyla [38,39]. Recent research has discovered that 
species and strains of microorganisms can control the host 
defense against different pathogens. According to the rodent 
studies, Bacteroides fragilis strain No. 9343 protects against 
colitis, while strain 86–5443-2-2 induces colitis [17,40]. 
Clostridial cluster IV and XIVa have also been shown to cause 
colonic Treg cells [41].

On the other hand, the density of DNA and RNA viruses 
that comprise the intestinal virome is equal to that of bacterial 
cells. At the same time, they may exceed bacterial cells by a 
20:1 ratio on gut mucosal surfaces and within mucus layers 
[42]. Through inducing immune system tolerance, the gut 
virome maintains and develops diversity in the human gut 
microbiota in a dynamic equilibrium with the host. The reg
ulation of human metabolism, inflammation, and carcinogen
esis are all influenced by gut virome. Recent evidence showed 
that Bacteriophages play a role in human liver metabolism and 
immune response modulation [43]. Developing an immunor
egulatory network that protects against induction of mucosal 
IgE, which is linked to allergy susceptibility, is also dependent 
on intestinal microbial diversity during early-life coloniza
tion [44].

The gut microbiota, including bacteria, archaea, and 
eukarya, colonize within the GI tract and co-evolve with the 
host over thousands of years to develop an intricate and 
mutually beneficial interaction. The gut microbiota influences 
the host immune system’s induction, education, and function 
[45,46]. On the other hand, the immune system has largely 
evolved to maintain the host’s symbiotic relationship with 
these diverse and evolving microorganisms. This immune sys
tem-microbiota alliance interweaves the innate and adaptive 
arms of immunity in a dialog that selects, calibrates, and 
terminates responses. This interaction also enables the main
tenance of regulatory pathways to maintain tolerance to 
innocuous antigens [45–48]. Gut microbiota may modulate 
systemic immunity by regulating innate and adaptive immune 
homeostasis by developing metabolites and antimicrobial 
peptides against various pathogens [10,49,50]. Several studies 
showed a cross-talk between the gut microbiota and antigen- 
presenting cells (APCs) and neutrophil regulation, besides 
forming CD4 + T cells both within and outside the intestine 

Article highlights

● Gut microbiota is essential for host immune system’s induction, 
education, function, development of immune responses, and regu
lates the integrity of the mucosal barrier, provides bacterial metabo
lites, and regulates the immunoregulatory functions of intestinal 
epithelial cells by modulating the expression of antimicrobial factors.

● Dysbiosis is linked to dysimmunity, commonly described as a T-helper 
2 (Th2)-overactive, and Treg-deficient state.

● Cross-talk between the healthy gut microbiota and lungs can sig
nificantly prevent respiratory tract infection in both influenza A virus 
and COVID-19 through reciprocal interaction, quorum-sensing mole
cules, and synthesis of antimicrobial agents.

● In COVID-19 patients, probiotic treatment could result in an eight- 
fold lower rate of respiratory failure.

● It seems that fecal microbiota transplantation could be used as a 
therapeutic and rehabilitative intervention in the COVID-19 patients.
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[41,44,51–54]. A shift in the gut microbiota’s composition can 
have either a pathological or beneficial effects, mediated by 
the gut microbiota’s regulation of specific CD4 + T cell sub
types [55]. Dysbiosis is linked to dysimmunity, commonly 
described as T-helper 2 (Th2)-overactived and Treg-deficient 
state [19]. The gut microbiome’s influence on the T cell com
partment of the adaptive immune system is the best-under
stood mechanism by which the gut microbiota influences the 
systemic immunological response [46]. The GIT microbiota has 
been found to influence T cell development into Th1, Th2, and 
Th17 cells, as well as regulatory T cells [47]. It has been 
reported that segmented filamentous bacteria (SFBs) directly 
regulate the secretion of various antibacterial peptides leading 
to altered secretion of IL-17 by Th17 cells [56,57]. The number 
of Th17 cells in the lamina propria and the production of IgA 
in the intestinal mucosa were found to be reduced by SFBs 
[58,59].

In response to the microbiota signal, secretory IgA (sIgA), 
IL-12, IL-22, and IFN-α are secreted. sIgA regulates local immu
nity, viral infection colonization, and proliferation [60]. Short- 
chain fatty acids (SCFAs) are one of the common metabolites 
produced by the gut microbiota and rapidly absorbed by 
intestinal epithelial cells (IECs) [61]. SCFAs regulate immune 
cell bioactivity, such as glucose homeostasis, gene expression 
profile, anticancer activity, and inflammatory response. SCFAs 
can also serve as a source of energy for T cell differentiation 
(Th1, Th2, Th17, and T regulatory (Treg) cells). Interestingly, 
SCFAs can induce tolerance in dendritic cells (DCs) which 
contributes to the differentiation of naïve CD4 + T cells into 
Treg cells [62]. Common SCFAs include propionate (form 
Bacteroidetes), butyrate (form Firmicutes), and acetate (from 
most gut anaerobes) [60,63]. Butyrate enhances the differen
tiation of Treg cells and prevents the development of systemic 
inflammation [48]. The potential of microbiota-released signal
ing molecules to enter the circulation also enables resident 
bacteria in the gut to affect the immune system during 
immune cell formation in hematopoiesis, and hence alter 
infection response [64]. Moreover, the SCFA butyrate induces 
bone marrow monocyte differentiation from an inflammatory 
to a more tolerogenic phenotype [48]. A decrease in butyrate- 
producing bacteria and gut dysbiosis, in particular, resulted in 
reduced IL-22 production, which is necessary for gut and lung 
epithelial barrier integrity [65]. Acetate is the most abundant 
SCFA produced in high quantities by Bifidobacteria, and is 
found in the gut lumen and peripheral circulation [66]. 
Acetate modulates intestinal inflammation by activating G 
protein-coupled receptor 3 (GPR43) [67], thereby contributing 
to the maintenance of gut epithelial barrier function [68]. 
Acetate also has anti-inflammatory characteristics in neutro
phils, decreasing NF-kB activation by suppressing the levels of 
pro-inflammatory mediators such as lipopolysaccharide- 
induced TNF-α [66].

The mucus in the intestines and lungs is considered the 
first defense line against pathogen colonization [69]. The lumi
nal layer of the gut mucosa is a suitable site for the coloniza
tion of commensal bacteria. Furthermore, the gut microbiota 
regulates the integrity of the mucosal barrier, provides bacter
ial metabolites [37,70], and regulates the immunoregulatory 

functions of IECs by modulating the expression of antimicro
bial factors [71,72]. As one of the critical bacterial metabolites, 
butyrate regulates transepithelial fluid transport, reduces 
mucosal inflammation and oxidative stress, improves the 
epithelial defense barrier, and controls visceral sensitivity and 
intestinal motility [73]. Moreover, butyrate provides a critical 
line of immunologic defense in the intestine via induction of 
DCs tolerance in the epithelium, which is associated with 
mucosal IgA production. Butyrate also suppresses mast cell 
degranulation in the intestinal mucosa and limits circulating 
inflammatory mediators’ production [74]. So, the absence of 
the gut mucosa reduces the commensal bacteria adhesion 
and IECs integrity and result in direct contact with bacteria 
which eventually causes inflammation in the gut [75]. On the 
other hand, SCFAs induce the expression of pattern recogni
tion receptors (PPRs) on DCs and macrophages, which regu
late cytokine secretion and antibody synthesis (sIgA and 
IgM) [76].

The balanced production of antiviral cytokines is associated 
with specific GIT bacteria, including Faecalibacterium, 
Oscillibacter, Pseudoflavonifractor, Anaerotruncus, and 
Bifidobacterium. It has been reported that antibiotic adminis
tration in chickens resulted in higher susceptibility to the avian 
influenza virus (AIV) and reduced expression of IFN-α, IFN-β, 
and IL-22 levels [77]. The synthesis of microbial peptides in the 
gut is regulated by the key active components of innate 
immunity such as α-defensin (DEFA) and C-type lectins 
(REG3g and REG3b) [60]. Menendez et al. showed that germ- 
free mice had a significant decrease in the expression of DEFA 
[78]. Toll-like receptors (TLRs) and NOD-like receptors (NLRs) 
on DCs and macrophages help the immune system to distin
guish between useful and pathogenic bacteria [79]. IECs also 
express these transmembrane receptors, which are involved in 
the recognition of different microbe-associated molecular pat
terns (MAMPs) e.g. peptidoglycan, capsular polysaccharides, 
lipopolysaccharides (LPS), and flagellin and bacterial DNA 
CpG motifs [80].

Gut-associated lymphoid tissue (GALT), composed of 
lamina propria, intraepithelial lymphocytes, mesenteric 
lymph nodes, Peyer patches, and isolated lymphoid follicles, 
helps defend against external factors that penetrate the lumi
nal mechanical barrier [38]. Experimental evidence has estab
lished the role and function of gut microbiota in GALT 
regulation [81,82]. Accordingly, germ-free mice developed 
hypoplastic Peyer’s patches/mesenteric lymph nodes in the 
small intestine, but no isolated lymphoid follicles (ILFs) [83]. 
The first colonization of gut microorganisms in full-term 
infants depends on GALT maturation and GI-Blood Barrier 
critical closure. These interactions result in the formation of 
symbiotic conditions, which are defined as a balance between 
immunity and infections [84].

During early life, critical host immune-microbiota interac
tions occur, which may have long-term effects on multiple 
immune arms that contribute to immune homeostasis and 
sensitivity to infectious and inflammatory diseases later. 
However, the mechanisms underlying these interactions are 
remaining unclear. In this regard, future studies are needed to 
determine the long-term effects of mild dysbiosis states 

EXPERT REVIEW OF GASTROENTEROLOGY & HEPATOLOGY 3



during the neonatal period on adult immunity and the risk of 
immune-mediated diseases [44].

3. Gut microbiota–lung axis

A healthy lung contains 10–100 bacteria per 1,000 cells [85]. 
Bacteroidetes, Firmicutes, and Proteobacteria are the most com
mon phyla colonizing the healthy lung [86]. There is a con
stant cross-talk between the gut and lung mucosal 
compartments through the mesenteric lymphatic system and 
lung lymph nodes. Physical interaction, quorum-sensing mole
cules, and synthesis of antimicrobial agents could all be 
involved in these interactions, which could modulate the 
lung’s immune response [87] .Changes in the microbial com
position of the lung can influence the community of gut 

microbiota and vice versa. Due to possible barrier dysfunction, 
bacterial translocation from the gut to the lungs has been 
documented in sepsis and acute respiratory distress syndrome 
[88]. The gut and respiratory tract have been linked to control 
immunological responses, and dysbiosis in the gut microbiota 
leads to development of respiratory disease [89]. Mechanisms 
involved in microbiota-lung-gut-axis alteration in COVID-19 
include direct lung damage, ACE2 expression, gut microbiota 
as lungs’ defense against SARS-CoV-2, and immune response 
[90]. In 2012, researchers demonstrated that colonization of 
the influenza virus in the respiratory tract of mice causes 
intestinal dysbiosis by increasing Enterobacteriaceae, while 
reducing Lactobacilli and Lactococci [91]. In consistent with 
these findings, IBD and IBS patients with many lung disorders, 
including asthma, chronic obstructive pulmonary disease 

Figure 1. The gut-lung axis plays a critical role in the control of SARS-CoV-2 virulence. The gut microbiota regulates the innate and adaptive immunity by producing 
bacterial metabolites (SCFAs) and antimicrobial peptides against different pathogens. In addition, they regulate the integrity of the mucosal barrier and immune 
homeostasis. Dysbiosis can make negative impact on the balance and recruitment of immune cells in the lungs and increase inflammatory cytokines such as IL-6, 
TNF-α, and IL-1β, which could be the most important predisposing factor for sever COVID-19 infection.
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(COPD), influenza virus, and coronavirus, exhibited dysbiosis in 
their airway microbiota [92–94]. As illustrated in Figure 1, 
Figure 2 the commensal intestinal microbiota plays an essen
tial role in regulating the immune response against respiratory 
virus infections such as influenza and coronavirus [8,95].

Moreover, alterations of the lung microbiota following 
infection can cause intestinal complications. Accordingly, P. 
aeruginosa pneumonia can reduce IECs proliferation and 
improve mucosal repair [96,97]. According to a meta-analysis, 
GI symptoms such as nausea, vomiting, diarrhea, and abdom
inal pain were seen in 17.6% of SARS-CoV-2 infected patients, 
and they were more common in severe cases [5]. These GI 
signs could be caused by SARS-CoV-2 directly infecting enter
ocytes through the GLA, or by immunoregulatory mechanisms 
[98]. On the other hand, dysbiosis in the gut microbiota nega
tively impacts on the balance and recruitment of immune cells 
in the lungs, which could be the most important predisposing 
factor in the development of respiratory tract infections [99]. 
In addition, this immune cell imbalance in the lungs reduces a 
load of certain beneficial bacteria (Bifidobacteria, Akkermansia, 
Faecalibacterium, Lachnospira, and Veillonella), which has been 
linked to an increased risk of asthma in neonates [100,101]. 
Table 1 summarizes the association between chronic respira
tory diseases and changes in the microbial composition of the 
gut or respiratory tract.

Metabolites of gut bacteria can reach other organs via the 
bloodstream and regulate immune responses at distal muco
sal sites such as the lungs. This control can be seen in the 
induction of antibody synthesis and anti-inflammatory 

responses [99,124]. Microbiota and viruses interact in both 
direct and indirect ways [125]. Microbiota-produced lipopoly
saccharides (LPS) and peptidoglycans compete with viruses to 
bind to cell surface receptors, such as TLRs.COVID-19 infection 
symptoms are found to be more severe in the absence of LPS. 
TLR4 is one of the leading players of the immune system 
against COVID-19 infection. Indirectly, microbiota can regulate 
the secretion of IFN-α and antimicrobial peptides, which are 
essential in preventing virus-host cell fusion. Therefore, they 
can prevent viral colonization using the S protein [126–128]. 
According to the experimental studies in a mouse model, 
dysbiosis in the lung impacts the immune system, reducing 
the recruitment of APCs to the lungs and phagocytic activity. 
In addition, less intensive recruitment of immune cells results 
in an increase in viral load in the lungs [129,130] and a 
decrease in IFN-α and -β production which can negatively 
impact T cell priming [130]. It was shown that active resident 
memory B cells in the lungs also required encountering lung 
microbiota [131]. This interaction is reciprocal, and any 
changes in the gut microbiota directly affect the host’s 
defense against acute respiratory pathogens as well as the 
risk of death [87].

4. Gut microbiota and immune system in COVID-19

Changes in the gut microbiota increase the risk of infectious, 
inflammatory, and endocrine diseases. Since there is no 
approved treatment or vaccine for many respiratory viral infec
tions [132], a healthy immune system can play a key role in 

Figure 2. The interaction between the SARS-CoV-2 spike protein and ACE2 on the DCs and MQs contributes to the pathogenicity of COVID-19. Most critically ill 
patients in ICU, who are suffering from ARDS, have high levels of inflammatory cytokines owing to the complex immune dysregulation. Thus, the NAbs can 
potentially block the interaction between the SARS-CoV-2 spike protein and ACE2 on the cell membrane and thus prevent the entry of the virus and can control viral 
load. There are supporting evidence suggesting that probiotics affect pulmonary health through gut-lung cross-talk. MAMPs are the microbiota-derived products/ 
metabolites, such as SCFAs that have increased cellular levels of acetyl-CoA, ATP, and lipid biogenesis to drive plasma B cell’s differentiation and induce IgAs and 
NAbs secration against viral respiratory infections particularly SARS-CoV-2 and modulate immune reactions.
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reducing the severity of symptoms and mortality. SARS-CoV 
belongs to the subfamily of Orthocoronavirinae in the family 
of Coronaviridae. The enveloped and crown-like SARS-CoV 
virus is the second-largest genome size (27–32 kb) and sin
gle-strand positive-sense RNA (+ssRNA) of all RNA viruses (27– 
32 kb). Lv et al. reported an imbalance of fungal and bacterial 
flora in COVID-19 patients [133]. A study of the diverse array of 
fungal species, which refers to the diverse array of fungal 
species the gut mycobiota [134] showed that the most com
mon symptom of fungal mycobiota dysbiosis in COVID-19- 
infected patients was the depletion of Aspergillus and 
Penicillium. Interestingly, the gut mycobiota profiles of 
COVID-19 patients with mild and severe symptoms were simi
lar. In COVID-19 patients, the gut virome, especially in those 
with GI infections, can be very significant [135]. COVID-19 

patients had significant differences in their fecal mycobiome 
at the time of hospitalization compared to controls, including 
Candida albicans enrichment and a highly heterogeneous 
mycobiome composition that lasted up to 12 days after naso
pharyngeal clearance of SARS-CoV-2, according to a recent 
report [136]. Fecal metabolomic analysis in COVID-19 patients 
has revealed possible amino acid-related pathways that relate 
gut microbiota to inflammation [137]. In patients with COVID- 
19, Zuo et al. studied the temporal transcriptional activity of 
SARS-CoV-2 and its relationship with longitudinal fecal micro
biota modifications. They showed that SARS-CoV-2 RNA was 
found in 46.7% of stool samples of patients without GI symp
toms. In fecal samples with high SARS-CoV-2 active viral tran
scription and replication in vitro (infectivity), the numbers of 
particular opportunistic pathogens, such as Collinsella 

Table 1. The association between respiratory chronic diseases and alterations of the intestinal and respiratory tract microbial composition.

Type of Disease/Infection

Alteration of gut bacteria

Subject ReferenceDecreased Increased

Asthma 
(in children)

Akkermansia muciniphila, 
Faecalibacterium prausnitzii Bifidobacteria

Clostridia Human [102]
[103]

Asthma (in adults) Bacteroidetes (specifically), 
Prevotella spp.

Proteobacteria (Haemophilus, Moraxella, Neisseria 
spp.) Firmicutes (Lactobacillus spp.)

Human [85,104]

Chronic Obstructive Pulmonary 
Disease (COPD)

Enterobacter cloacae, Citrobacter, Eggerthella, 
Pseudomonas, Anaerococcus, Proteus, Clostridium 
difficile, Salmonella

Human [105]

Cystic fibrosis 
(in children)

Bacteroides vulgatus Bacteroides uniformis 
Firmicutes Faecalibacterium prausnitzii, 
Bifidobacterium adolescentis Bifidobacterium 
catenulatum, Eubacterium rectale

Streptococcus, Staphylococcus, Veillonella dispar, 
Clostridium difficile, Pseudomonas aeruginosa, 
Escherichia coli

Human [106]

Cystic fibrosis 
(in adults)

Bacteroidetes, Faecalibacterium Prausnitzii Firmicutes, Ruminococcus gnavus, 
Enterobacteriaceae, Clostridia species 
Proteobacteria phylum (Pseudomonas, 
Haemophilus, Burkholderia), Actinobacteria 
phylum

Human [107–111]

Lung cancer Bifidobacterium sp., Actinobacteria sp. Dialister, 
Enterobacter, Escherichia–Shigella, 
Fecalibacterium, and Kluyvera

Enterococcus sp. Veillonella, Bacteroides, 
Fusobacterium

Human [112,124]

Type of Disease/Infection Alteration of respiratory tract bacteria Subject Reference
Decreased Increased

Coronaviruses and Adenoviruses 
infection

M. catarrhalis Human [113]

COPD and Rhinovirus infection Proteobacteria phylum Human [130]
Rhinovirus infection H.parainfluenzae, Neisseria subflava, S. aureus Human [114]
Rhinovirus infection 

(in children)
S. pneumoniae Human [115]

COPD and hRV infection H. influenza Human [116]
hRV infection Haemophilus and Neisseria spp. Propionibacterium 

S. pneumonia 
H. influenza

Human [113,117]

Enteroviruses S. pneumoniae Human [113]
Influenza 

(in children)
S. aureus Prevotella, Streptobacillus, Porphyromonas, 

Granulicatella, Veillonella, Fusobacterium, 
Haemophilus.

Human [118]

Influenza A H1N1 infection Firmicutes (Staphylococcus and Streptococcus spp.), 
Proteobacteria (Pseudomonas amygdali, P. 
fluorescens, Pseudomonas sp. UK4, Acinetobacter 
baumanii and A. junii) Moraxella and Enterobacter 
spp.

Human [119]

Haemophilus influenza infection Neisseria Human [120]
Influenza, Parainfluenza, 

Rhinovirus, Respiratory Syncytial 
Virus (RSV), Coronavirus, 
Adenovirus, Metapneumovirus

Haemophilus 
and Moraxella

Human [120]

Pseudomonas aeruginosa infection Prevotella and Flavobacterium Human [120]
H7N9 virus infection Faecalibacterium Human [121]
Respiratory Syncytial Virus (RSV) H.influenzae Human [113]
Tuberculosis infection Roseburia, Faecalibacterium, Phascolarctobacterium, 

Eubacterium
Human [122]

Recurrent tuberculosis Bacteroidetes, Prevotella and Lachnospira Proteobacteria, Actinobacteria Human [123]
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aerofaciens and Morganella morganii spp. were higher than in 
fecal samples with low or no SARS-CoV-2 infectivity [138]. In a 
previous investigation, qRT-PCR revealed that 14 of the 15 
patients with COVID-19 (93%) tested positive for SARS-CoV-2 
in fecal samples. By contrast, stool viral RNA metagenomics 
revealed that seven (47%) of them were positive for SARS-CoV- 
2 [136]. Fecal viral RNA metagenomics only detected positive 
samples with an abundance of >3.2 × 104 copies per mL 
inoculum, as determined by qRT-PCR [138]. In COVID-19 
patients with moderate fever, Zhou et al. evaluated the corre
lation between gut microbiota dysbiosis and abnormal immu
nological responses. Patients with fever had a significant 
different gut microbiota composition than those who did not 
have a fever. Patients with fever had higher opportunistic 
infections, including Enterococcus faecalis and Saccharomyces 
cerevisiae [139]. In the cross-sectional study conducted by Gu 
et al., it was discovered that the microbiological profile of 
COVID-19 patients differed from that of patients with influenza 
A and healthy controls. They reported that COVID-19 patients 
had a lower microbial diversity, a higher concentration of 
opportunistic bacteria (Rothia, Streptococcus, Actinomyces, 
and Veillonella), and a lower proportion of beneficial microbes 
[140].COVID-19 severity is thought to be caused by a cytokine 
storm [36], which is linked to the gut bacterial population. 
Several immunomodulatory gut commensals, including 
Faecalibacterium prausnitzii, Eubacterium rectale, and bifidobac
teria were reduced in COVID-19 patients [141]. Moreover, 
butyrate-producing bacteria including Faecalibacterium praus
nitzii, Clostridium butyricum, Clostridium leptum, and 
Eubacterium were found to be in lower abundance [142]. 
Beneficial commensals including Eubacterium ventriosum, 
Faecalibacterium prausnitzii, Lachnospiraceae taxa, Roseburia, 
and Bacteriodes spp. like B. dorei, B. massiliensis, B. ovatus, 
and B. thetaiotaomicron, as well as Bacteriodes spp. like B. 
dorei, B. massiliensis, B. ovatus were diminished in COVID-19 
cases, which correlated with the severity of the disease [143]. 
The previous studies have indicated that microbiota-derived 
SCFAs play an important role in promoting beneficial IL-18 
and IL-22 secretion [144]. Moreover, Proteobacteria regulate 
the strong natural antiviral activity of IFN-α secretion [145]. 
The major phyla in the healthy gut and lungs are Bacteroidetes 
and Firmicutes. According to Yasui et al. feeding Lactobacillus 
casei to BALB/c mouse pups before inoculation with influenza 
virus decreases viral titers in the nasal lavage fluid and 
increases the activity of pulmonary natural killer (NK) cells. 
They demonstrated that the survival rate was nearly tripled 
under this type of regime [146]. Nasal administration of 
Lactobacillus rhamnosus also induced protection against 
respiratory syncytial virus infection in mice [147]. The SARS- 
CoV entry by TLRs (TLR3 or TLR7) results in airway inflamma
tion [76]. Similarly, oral administration of immunobiotic L. 
rhamnosus in BALB/c mice was found to modulate antiviral 
immunity in the respiratory system. Activation of TLR3 and NK 
cells stimulate DCs to produce IL-12 as a critical factor in the 
development of effector CD4 Th1 and cytotoxic TCD8 lympho
cyte responses [148,149].

Through the immediate response of the innate immune 
system to the coronavirus infection, macrophages and DCs 
regulate the virulence and disease outcomes. Furthermore, 

macrophages and DCs upregulate IFN-α production [76,150]. 
Some studies have shown that SARS-CoV inhibits the produc
tion of IFN-α and IFN-β [76]. Cinatl et al. showed that SARS- 
CoV could suppress the secretion of IFN-α, IFN-β, IL-18, and 
macrophage inhibitory factor (MIF), and downregulate the 
expression of antiviral genes (MIF). In addition, SARS-CoV 
could upregulate chemoattractant cytokines (CXC chemo
kines), IL-8, and oligoadenylate synthetase 2 (OAS2) in two 
intestinal cell lines, Caco2 and CL-14 [151]. In another study, 
it has been demonstrated that SARS-CoV infection downregu
lates the expression of IFN-α, IFN-β, as well as NFkβ, and also 
reduces the p56 level in Caco2 and 293 cell lines [152]. If the 
first line of immune response fails in eliminating the viral 
pathogens, the adaptive immune response is activated seven 
days following the SARS-CoV infection and this gap is a golden 
time for virus replication. The Angiotensin II converting 
enzyme (ACE2) is an essential receptor for infecting human 
cells by coronaviruses [153]. Fischer and colleagues have 
shown that gut microbiota and a healthy diet directly regulate 
the expression of ACE2 and the activation of the adaptive 
immune response following viral infection [154]. In this regard, 
the gut microbiota via its metabolite signals can regulate the 
immune response, reduce viral replication, and increase the 
survival rate during an epidemic and pandemic of viral infec
tion [124].

5. Probiotics and a diet, modulation of severe 
complications in COVID-19

Although the evidence suggests that the gut contains a 
remarkable number of immune cells [155], the gut micro
biome plays a crucial role in protecting the host against 
pathogens. Dysbiosis leads to break tolerance to harmless 
bacteria, inefficient immune response, and susceptibility to 
viral infections. Probiotics, known as beneficial live microor
ganisms, regulate dysbiosis and restore eubiosis [156]. Lactic 
acid bacteria (LAB) (Lactobacillus and Bifidobacterium spp) are 
the main probiotics species [157] that are well-known to the 
immune system and can regulate immune responses [158]. 
Lactobacillus spp acting via different pathways has antiviral 
features and could be considered a potent inducer of IFN-α 
and IFN-β production. Mullish et al. showed evidence for 
probiotics’ possible effect in reducing viral upper respiratory 
tract infections (URTI) and maybe COVID-19, especially in over
weight/obese adults. They discovered that probiotic supple
mentation could reduce URTI symptoms by 27%, with adults ≥ 
45 years old and/or with a BMI ≥ 30 kg/m2, obtaining the 
significant benefit of risk reduction [159]. In one early trial, 
probiotic supplementation to 28 hospitalized COVID-19 
patients resulted in an eightfold decreased rate of respiratory 
failure compared to 42 patients receiving only medical treat
ment [160]. Probiotics treatment (Bacillus subtilis, Enterococcus 
faecalis, and Lactobacillus rhamnosus GG) was also found to 
lower ventilator dependency in COVID-19 patients who were 
severely ill compared to placebo. The mechanisms of probio
tics’ antiviral effects are still unclear [98]. Prebiotics are sub
strates that host certain microorganisms and are used to 
provide a health benefit such as fructans, galactomannan, 
oligosaccharides, arabinooligosaccharides, lactosucrose, acid 
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lactobionic, and polyunsaturated fatty acids [161]. Prebiotics 
can modulate the composition and function of the human 
microbiota, inducing immune system activation and pathogen 
inhibition in the GIT. To date, however, there is no evidence 
that prebiotics are associated with COVID-19 infections in any 
way [162].

Fecal microbiota L. gasseri SBT2055 (LG2055) is resistant to 
bile acid and can be colonized in the human gut [163]. The 
most current data support the regulatory role of LG2055 in the 
IgA secretion, which inhibits the influenza A virus infection in 
mice [164–166]. Eguchi and colleagues showed the antiviral 
activity of L. gasseri SBT2055 in both in vivo and in vitro 
models. These bacteria reduced viral load in the lungs and 
suppressed pro-inflammatory cytokine production [167]. 
Recently, it has been demonstrated that the cell walls of L. 
acidophilus NCFM and live Lactobacillus spp enhanced the 
immune system’s response to viral respiratory infection. 
Heat-killed L. casei [168], L. pentosus [169], L. plantarum [170], 
L. reuteri [170], and L. rhamnosus CRL1505 [171] participated in 
the regulation of the immune response in the respiratory tract 
and reduced lung damage after influenza and respiratory 
syncytial virus infections (RSV). The direct competition in bind
ing to TLR3 between viral particles and local bacteria present 
in the lung resulted in decreased virus colonization in mice 
[172]. Bifidobacterium, the other group of LAB, regulates lung 
inflammation and infection. Supplementation with B. breve 
and B. longum (BL) improved the survival rate, restored lung 
injury, and eventually restored intestinal homeostasis [173– 
175]. Treatment with a Bifidobacterium probiotic can modulate 
pro-inflammatory cytokine levels and increase IL-10 and 
Foxp3+ Treg expression in the lungs. Animal studies have 
demonstrated that oral administration of B. longum BB536 
reduces the incidence of influenza and fever, and can also 
regulate proliferation of the influenza virus in the lungs [176].

In comparison with oral treatment, nasal administration of 
L. rhamnosus CRL1505 tends to be a more effective way to 
significantly activate the Th1 response and CD103+c DCs [177]. 
Likewise, the nasal administration of Lactobacillus leads to 
faster colonization on the respiratory epithelium than oral 
way. The nasal administration is highly effective in suppressing 
the virus-induced inflammation and also diminishes the 
expression of inflammatory cytokines and chemokines 
(CXCL10, CXCL1, CCL2, TNF, IL-6) that damage lung tissue 
[170]. The effects of probiotics on the regulation of the 
immune system in infectious respiratory diseases have been 
summarized in Table 2.

Absorptive trapping and the development of lipopolysac
charides, which binds to and destabilizes the viral structure, 
are two mechanisms by which gut commensal bacteria 
(including those often found in probiotics) suppress viruses 
that enter the host via the upper respiratory tract [186]. The 
gut-lymph hypothesis, which describes gut bacteria within the 
draining chyle from the lower GIT entering the lymphatic 
system, is also one possible route by which probiotic bacteria 
may translocate from the gut to the lung [187]. Additional 
indirect pathways include modulating interferon responses in 
the lung stromal cells [188], promotion of APCs migration, and 
T cell antiviral responses mediated by TLRs [129].

Modifying nutrient availability via diet may be another 
effective microbiome-modulating strategy. A healthy diet is 
even more critical due to its effect on the microbial metabo
lome and richness of the microbiota diversity [189]. Therefore, 
alteration of the gut microbiota can increase the production of 
SCFAs via diet modification. Interestingly, adding indigestible 
carbohydrates increased butyrate production, which is linked 
to improved lung function. Also, fiber-rich diets can modulate 
innate immunity and reduce the GI signs and mortality rate 
from respiratory diseases [190,191]. Collectively, probiotics and 

Table 2. The effects of probiotics on the immune system regulation in infectious respiratory diseases.

Probiotic Efficacy Subjects
Administration 

Rout Reference

L. acidophilus Induced secretion of IFN-α, IFN-β, and IL-12 from DCs via TLR2 and TLR-3 Mice Oral [146]
L. rhamnosus CRL1506 Production of IFN-α and IL-6 Mice Oral [51]
L. casei Shirota (LcS) Activated Th1 immunity, phagocytic activity, NK cells activity, and production 

of mucosal IgA
Mice/Elderly 

people
Oral/ Intranasal [178,179]

[168]
L.delbrueckii ssp. bulgaricus 

OLL1073R-1
Increased NK cells activity Elderly people Oral [180]

L. gasseri SBT2055 (LG2055) Induced IFN-α & IFN-β production Mice Oral [150]
Heat-killed Lactobacillus 

plantarum L-137
Increased phagocytic activity and NK cells activity, acquired immunity, 

proliferative response of T cells, and increased number of T cells
mice/ Healthy 

adults
Oral [181,182]

Heat-killed L. pentosus Modulation of Th1/Th2, enhanced NK cells activity, induced production of 
both IL-12 and IL-10

Mice Oral [169]

Heat-killed L. plantarum Stimulation of IFN-β and IL-10 production Mice Intranasal [170]
L. reuteri Stimulation of IFN-α production Mice Nasal [171]
L. rhamnosus CRL1505 Th1 response significantly activated CD103+c DCs Mice Oral [154]
L. Casei Shirota 

(LcS)
Activation of Th1 immunity Mice Intranasal [168]

L. fermentum Activation of macrophages Mice Intranasal [113]
L. pentosus S-PT84 Enhanced splenic NK cells, modulating the Th1/Th2 balance Mice Intranasal [183]
L. johnsonii Reduction in the total number and proportion of activated CD11c+/CD11b+ 

CD11c+/CD8+ cells, reduced expression of airway Th2 cytokine
Mice Intranasal [184]

B. breve YIT4064 Enhanced IgG against IFV Mice Oral [185]
B. longum BB536 Reduced the incidence of IFV and fever effect on host cellular immunity, 

enhanced production of Th1 cytokines, declined plasma IFN-Ƴ levels, 
enhanced NK cell activity and neutrophil bactericidal activity.

Mice Oral [171]

B. longum MM-2 Anti-viral effect, enhanced activity of NK cells in the lungs and spleen, 
Increased expression of IFN-α and Th1-related cytokines,

Mice/healthy 
adults

Oral [171]
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Mediterranean lifestyle are protective, increase survival rate, 
and protect lung tissue against the destructive effects of 
respiratory viruses (SARS-COV2, IFV, RSV, etc.) and could be 
considered an alternative therapy for improving immune 
response.

6. Fecal microbiota transplantation in COVID-19 
patients

Fecal microbiota transplantation (FMT) is a novel treatment 
that has shown to be helpful in the treatment of recurrent 
Clostridioides difficile infections (rCDI). FMT has the potential 
to help with a variety of dysbiosis-related disorders. It refers to 
transferring a healthy person’s distal gut microbia commu
nities to another patient’s intestinal tract. This treatment has 
been proven to restore a disrupted microbial diversity and 
related microbial functional networks, with a success rate of 
90% for rCDI patients [192]. According to Bradley et al., 
decreased intestinal microbiota following antibiotic adminis
tration could cause a shift in the interferon signature triggered 
by commensals in the lung epithelium, promoting early influ
enza virus proliferation in the respiratory tract [188]. By mon
itoring COVID-19 patients, Liu et al. revealed persistent 
alteration in the fecal microbiome composition after recovery 
and discharge from hospital [193]. They reported that 
Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria 
had relative abundances of 41.0%, 42.9%, 9.2%, and 4.0%, 
respectively, which differed from the general population. In 
healthy people, the dominant phyla are Firmicutes (60%) and 
Bacteroidetes (20%) [194]. Multiple research has shown that 
the FMT can promote immune function and consequently 
have an indirect protective effect against influenza virus infec
tion [188]. Tiffany et al., used FMT on rhesus monkeys infected 
with chronic SIV who were receiving antiretroviral medication. 
After antibiotic therapy, microbiota shift was observed, 
whereas Th17 and Th22 frequencies in peripheral blood 
increased and CD4 T cell activation in the intestinal tract 
reduced following FMT [195]. Liu et al. investigated the effects 
of FMT on GI symptoms, gut dysbiosis, and immune status in 
11 discharged COVID-19 patients. After FMT, the COVID-19’s 
peripheral lymphocyte subset was altered. The gut microbiota 
was restored, and GI disorders were relieved, suggesting that 
FMT could be used as a therapeutic and rehabilitative inter
vention [193]. Further research is needed to understand 
whether FMT could be a viable technique for altering the 
gut microbiome to improve COVID-19’s residual effect.

7. Conclusion

The link between human microbiota and COVID-19 is still 
unknown. This narrative review aimed to assess and summar
ize available evidence on the relationship between the micro
biome and COVID-19 in patients in the pandemic era. The 
current study uncovered several major issues that call for 
more investigation on microbiota in COVID-19 patients. 
There is a crucial cross-talk between the gut microbiota and 
the lungs through the GLA. The protection of the gut micro
biota hemostasis, especially in the absence of treatment for a 
viral respiratory infection, could be more practicable to 

regulate the immune system response and reduce the GI 
disorder after COVID-19 infection. Healthy gut microbiota 
might lead to asymptomatic or mild COVID-19 infection with
out any severe clinical complications. Probiotics have been 
shown to modulate the occurrence and severity of diseases, 
implying that they may be used to treat or prevent COVID-19. 
By preserving the human GI or lung, probiotics could help 
prevent COVID-19. More than ever, this pandemic has high
lighted the importance of the gut microbial–host-immune axis 
and the impact of the fecal metabolome on inflammation 
control and regulation of the immune system. To investigate 
the possible preventive and therapeutic effects of probiotics 
against SARS-CoV-2 infection, in vitro and clinical studies are 
necessary.

8. Expert opinion

During hospitalization, gut microbiota composition may influ
ence the immune response and change the severity and 
prognosis of COVID-19 [196]. Thus, a microbiome-oriented 
risk-assessment profile could be used to identify those at risk 
[197]. Additionally, since the human microbiome is adaptive 
and may be changed through dietary modifications [198], we 
believe that further research is urgently needed to assess the 
impact of microbiota and diet on COVID-19 [198]. However, 
the detection of enriched inflammatory-associated gut micro
organisms in COVID-19 is controversial. The question is if they 
enriched or this was happened due to the reduction of the 
other microorganisms. It seems that longer follow-up is 
needed for COVID-19 patients, such as three months to 1 
year after virus clearance. This will enable us to find a correla
tion of gut microbiota composition to long-term persisting 
symptoms. In addition, this can assess the possible alteration 
of the gut microbiota dysbiosis post-recovery. Also, it can help 
to determine whether enrichment or depletion of specific gut 
microorganisms can contribute to future health pro
blems [141].

On the other hand, the described gut dysbiosis may just be 
a response to patients’ health and defensive statuses rather 
than playing a central role in disease severity. Accordingly, it is 
not clear how much clinical practice during hospitalization can 
affect the gut microbiota composition in COVID-19 patients. 
Of note, it is anticipated that 50% to 75% of COVID-19 patients 
received antibiotics, while just about 7% of them displayed 
bacterial infections [199]. Moreover, according to Chinese stu
dies, antibiotics were given to 58.71% of COVID-19 patients, 
while 2–36% suffering from diarrhea. Even though probiotics 
have only a little efficacy in treating antibiotic-induced diar
rhea, the use of probiotics has been indicated to reduce 
susceptibility to recurrent infection [98]. Previously, it has 
been found that polypharmacy significantly impacts micro
biota composition and that more alterations could be 
observed if the number of co-administered drugs 
increases [200].

In conclusion, the implication of sufficient, safe, and cost- 
benefit pre- and probiotics can support the microbiota. Their 
prescription can be used as an adjuvant therapy to modulate 
COVID-19 progression or as a preventive strategy for non- 
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infected individuals who are at risk during the COVID-19 
pandemic.
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