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Abstract
The genitourinary tract can be affected by several pathologies which require 
repair or replacement to recover biological functions. Current therapeutic 
strategies are challenged by a growing shortage of adequate tissues. Therefore, 
new options must be considered for the treatment of patients, with the use of stem 
cells (SCs) being attractive. Two different strategies can be derived from stem cell 
use: Cell therapy and tissue therapy, mainly through tissue engineering. The 
recent advances using these approaches are described in this review, with a focus 
on stromal/mesenchymal cells found in adipose tissue. Indeed, the accessibility, 
high yield at harvest as well as anti-fibrotic, immunomodulatory and proan-
giogenic properties make adipose-derived stromal/SCs promising alternatives to 
the therapies currently offered to patients. Finally, an innovative technique 
allowing tissue reconstruction without exogenous material, the self-assembly 
approach, will be presented. Despite advances, more studies are needed to 
translate such approaches from the bench to clinics in urology. For the 21st 
century, cell and tissue therapies based on SCs are certainly the future of 
genitourinary regenerative medicine.

Key Words: Genitourinary tract; Cell therapy; Tissue engineering; Stem cells

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

https://www.f6publishing.com
https://dx.doi.org/10.4252/wjsc.v13.i10.1480
http://orcid.org/0000-0003-0811-0688
http://orcid.org/0000-0003-0811-0688
http://orcid.org/0000-0001-6264-2103
http://orcid.org/0000-0001-6264-2103
http://orcid.org/0000-0002-0389-667X
http://orcid.org/0000-0002-0389-667X
http://orcid.org/0000-0002-1851-5112
http://orcid.org/0000-0002-1851-5112
http://orcid.org/0000-0001-6680-5563
http://orcid.org/0000-0001-6680-5563
http://orcid.org/0000-0001-6680-5563
mailto:stephane.bolduc@fmed.ulaval.ca


Caneparo C et al. Stem cells for genitourinary regenerative medicine

WJSC https://www.wjgnet.com 1481 October 26, 2021 Volume 13 Issue 10

upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License
s/by-nc/4.0/

Manuscript source: Invited 
manuscript

Specialty type: Cell and tissue 
engineering

Country/Territory of origin: Canada

Peer-review report’s scientific 
quality classification
Grade A (Excellent): A 
Grade B (Very good): B 
Grade C (Good): C 
Grade D (Fair): 0 
Grade E (Poor): 0

Received: April 30, 2021 
Peer-review started: April 30, 2021 
First decision: June 16, 2021 
Revised: July 12, 2021 
Accepted: September 14, 2021 
Article in press: September 14, 2021 
Published online: October 26, 2021

P-Reviewer: Collart-Dutilleul PY, 
Montero-Vilchez T, Najman SJ 
S-Editor: Fan JR 
L-Editor: A 
P-Editor: Xing YX

Core Tip: Considering the lack of adequate tissue to perform repair or replacement of 
organ/tissue for urologic patients, new strategies must be developed, and stem cell-
based therapies and tissue engineering approaches seem promising therapeutic altern-
atives. A complete overview of stem cells used in urology will be presented with a 
focus on adipose-derived stem cells which have particularly drawn the attention of 
researchers. Finally, an innovative technique allowing tissue reconstruction without 
exogenous material, the self-assembly approach, will be presented.
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INTRODUCTION
From the kidneys to the extremity of the urethra, urological tissues can be affected by 
several pathologies. These pathologies can mainly be divided in two groups: 
Congenital and acquired anomalies. Due to the severity of the anomaly or its 
recurrence, patients may require surgical reconstruction to restore the genitourinary 
tract's normal function. The repair and reconstruction of these damaged/abnormal 
tissues are still a challenge nowadays. Using transplantation of autologous tissues to 
restore the urogenital function remains the gold-standard[1]. However, this technique 
is limited by the characteristics of the donor, the secondary donor site injuries, and the 
adequacy of the function of the grafted tissue[2]. Indeed, it is easy to conceive that the 
intestinal bowel, used for ureteral reconstruction, cannot provide the required 
impermeability function[3] since the leading role of the intestinal bowel is to absorb 
nutrients, while the role of the ureters is the opposite, acting as a barrier to protect 
other tissues from urine. On the other hand, allogeneic transplantation is limited by 
the risk of tissue rejection and the availability of these tissues. The demand for 
transplantable tissues is increasing with the ageing of the population and the 
increasing incidence of several anomalies (e.g., hypospadias), while the offer remains 
low. Due to the lack of available tissues for these genitourinary reconstructions, efforts 
are invested in thinking outside the box. In the last decades, the emergence of 
regenerative medicine has been recognized as a promising avenue for meeting these 
clinical needs. Regenerative medicine allows to regenerate or replace human cells, 
tissues or organs, to restore a normal function[4]. This highly collaborative scientific 
field brings together many disciplines such as electrical, mechanical and tissue 
engineering, biochemistry, biophysics, cellular and molecular biology.

Regenerative medicine strategies can rely on two distinct approaches to restore the 
tissue functions: (1) Cell therapy: Injection of autologous or allogeneic cells or their 
secretome/conditioned medium to allow the regeneration of the tissues; and (2) Tissue 
therapy: Implantation of a synthetic or natural biomaterial, seeded or not with cells 
and eventually including growth factors, to improve and guide the repair process. It 
appears that the presence of cells in the biomaterials before grafting, including stem 
cells (SCs), is particularly important to the success of the implantation[5].

This review will shortly present the genitourinary tract anatomy to better 
understand its pathologies and why current therapies need improvement. Second, we 
will provide an overview of the different sources of SCs available for genitourinary 
regenerative medicine. The description of works in this field using SCs will be done 
with a particular focus on mesenchymal stem/stromal cells isolated from adipose 
tissue (AT) since data is now available from an increasing number of studies. Finally, 
an innovative technique allowing tissue reconstruction without the use of exogenous 
material, the self-assembly approach, will be presented.
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ANATOMY, PATHOLOGIES AND CURRENT TREATMENTS
Kidneys 
The kidney is one of the most challenging organs of the genitourinary system 
(Figure 1) to repair/reconstruct in regenerative medicine as its structure and roles are 
complex. Kidneys can be affected by numerous malfunctions. Chronic kidney disease 
(CKD) is one of the top causes of death and affects 9%-14% of the United States adult 
population[6,7]. CKD is defined as a glomerular filtration rate inferior to 60 mL/min 
per 1.73 m² or presence of kidney damage markers for at least three months[8]. It is 
mainly caused by diabetes, glomerulonephritis, pyelonephritis or hypertension, with a 
variation of its prevalence by ethnicity[8]. Congenital autosomal dominant polycystic 
kidney disease can also be a cause, with a prevalence of 1/400 to 1/1000 birth[9]. The 
quality of life of the patients and socioeconomic status are reduced as CKD progresses.

Because nephrogenesis is limited to embryonic development, the intrinsic capacity 
to self-repair of adult kidneys is limited, causing a permanent loss of nephrons, which 
can lead to end-stage kidney disease[10,11]. Treatments at this stage are renal 
replacement or hemodialysis, but the mortality and morbidity remain high[12]. Non-
drug related therapies for CKD rely mainly on lifestyle changes: Enhancing hydration 
and maintaining a diet rich in vegetables and fruits, smoking cessation, exercising, 
limiting alcohol intake, maintaining body mass index within the normal range, and 
limiting sodium and protein intake[13]. Treatments to control hypertension and 
hyperglycemia can also be administered to the patients[13].

Bladder 
Bladder characteristics can be observed in Figure 1. Hormonal and metabolic factors 
contribute to the integrity and function of this organ. Its disturbance induces a 
dysfunction, which can lead from simple pain to even the need for the ablation of the 
bladder.

Regenerative medicine for bladder reconstruction or regeneration is necessary 
following various pathological conditions, such as cancer, trauma, congenital 
malformation, overactive bladder, interstitial cystitis, infectious cystitis (e.g., 
unresolved E. Coli-induced cystitis), ketamine-induced cystitis, inflammation, stress 
incontinence or voiding dysfunction. A loss of storage capacity or bladder compliance 
induces a frequent need to urinate. Chronic urinary tract infections, incontinence, and 
renal calculi, which can extend to renal failure, can affect these patients[14]. Despite 
side effects, bladder augmentation using bowel segments or “enterocystoplasty” often 
remains the proposed treatment to patients presenting these pathologies. This surgery 
is considered the "gold-standard" treatment[15]. However, short- and long-term 
complications often present since the leading role of the intestinal tissue is to absorb 
nutrients, whereas the role of the bladder is to protect against urine toxicity[16]. Thus, 
malignancies, metabolic complications such as reabsorption of acid, electrolyte 
disturbance and mucus retention, bladder calculi, bladder perforation, upper tract 
deterioration and chronic infections are commonly affecting patients that underwent 
enterocystoplasty[17,18].

Ureters and urethra
Ureters and urethra are the conduits of the urinary tract (Figure 1). These structures 
can be affected by both congenital and/or acquired anomalies. Due to their location, 
the most common causes of ureteral injuries are iatrogenic in 80% of the cases, while 
20% are due to external trauma[19]. Ureteral injury occurs most commonly during 
gynecologic surgeries, with an estimation of 52% to 82%[19]. Depending on the 
pathology stage and evolution, different operations may be performed, such as 
endoscopic surgery, partial ablation by segmental resection or total ablation of the 
injured ureter with or without radical nephroureterectomy. End-to-end anastomosis is 
applied for patients presenting short-length ureteral deficit due to the successful 
outcomes of this technique[20]. For the long-segment reconstruction, the use of 
autologous bowel is the gold-standard[3]. However, this kind of tissue presents many 
potential complications, including metabolic imbalance, malabsorption of vitamins, 
cholelithiasis, nephrolithiasis and infections[21]. It is not unusual that multiple surgical 
procedures are needed over time due to stenosis or strictures at the repair site, which 
may require nephrectomy[3].

On the other extremity of the urinary tract, the urethra is prone to congenital 
anomalies. With 1/250 newborn boys affected, hypospadias represents 73.3% of 
congenital penile anomalies[22,23] and its prevalence is increasing[24]. This anomaly is 
due to a defect of the tubularization and the fusion of the urethral plate. Hypospadias 
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Figure 1 Schematic of the anatomy of the urinary apparatus. Kidney: Kidneys are the blood filtration unit of the body, extracting toxins and metabolic 
waste to produce the urine purifying 180 L of blood every day. The nephron is the element which allows exchange between blood and urine through the renal tubules 
and the capillaries. Another role of the kidney is the regulation of the water balance when the body is sweating or in the presence of abundant/inadequate hydration 
by reabsorption of components during blood filtration. Kidneys also produce hormones essential for blood pressure regulation, such as renin, which will cause, via 
angiotensin II, stimulation of the secretion of aldosterone. Finally, 90% of the erythropoietin is secreted by this organ. This glycoprotein stimulates the proliferation and 
differentiation of erythrocyte precursors. Pathologies can impair these functions and endanger the patient’s life. Bladder: The central role of the bladder is to receive 
and dynamically store the urine produced by the kidneys through structural and regulatory mechanisms. The urine is brought to the bladder via the ureters. The 
bladder is also a complex organ composed of various layers. It is described from its outer surface to the lumen with the adventice (layer of fatty tissue), the detrusor 
muscle, the lamina propria (a connective tissue including a muscularis mucosae) and the epithelium, which is named the urothelium. The latter can be divided in three 
layers: basal, intermediate and superficial (umbrella). The impermeability is due to a thin asymmetric unitary membrane of uroplakin, expressed at the apical surface 
of mature urothelial cells called umbrella cells. Ureter and urethra: Ureters and urethra share a common primary role: to transport urine, allowing its excretion outside 
of the body. Anatomic organization of these organs are histologically related to the bladder due to their similar protective role against urine through the urothelial cell 
layers. From the inside to the outside, these two organs are composed of the transitional urothelial cell layer, a submucosa comprising fibroblasts and extracellular 
matrix, especially type I and III collagens, a muscular cell layer of smooth muscle cells, and an adventitia surrounding the organ. During the micturition, the star-
shaped configuration of the urethra allows to compensate the increase in pressure. The muscular layers also play a critical role in the maintenance of the tubular 
shape.

is characterized by the inadequate position of the urethral meatus under the glans 
penis. This meatus can be localized on the ventral face of the penis in a position more 
or less close to the normal opening. The opposite urethral anomaly, epispadias, is less 
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frequent with 1/10000 boys affected[25] and is characterized by a malposition of the 
urethral meatus from the dorsal side of the penis to the pubic symphysis. On the other 
side, acquired anomalies appears after birth, due to an external event (e.g., accident or 
a trauma). The most commonly acquired urethral anomaly is urethral stenosis (called 
stricture for anterior urethra), with an incidence of 0.6%, leading to more than 5000 
hospital visits per year in the United States[26]. Stenosis is characterized by a urethral 
lumen becoming impeded by surrounding fibrotic tissues leading to a narrowing or 
even a total obstruction of the conduit. Stenosis is most commonly caused by an 
injury/trauma (e.g., motorcycle or bicycle accident), but it can also be induced by 
infection, surgical complications, lichen sclerosus or cancer. Depending on the severity 
of the pathology, few tissues can be used to repair or replace the penile anomalies. 
Skin grafts, tunica vaginalis[27,28], lingual or buccal mucosa have all been evaluated
[29-36], but it appears that oral mucosa remains the gold standard[37]. However, these 
approaches are associated with many complications such as re-stenosis, numbness, 
submucosal scars, dry mouth, difficulty to open the mouth (contracture), neuro-
sensory defects, lesions, discomfort, pain, and risk of infection. In addition, 
considering that a limited amount of tissue can be harvested, this is problematic for 
longer urethral anomalies in need of correction[38-43].

Problems related to current treatments
The paucity of native tissues available for repair, the anatomical characteristics, and 
the side effects such as morbidity at the donor site are significant limitations of the 
current treatments for severe urologic cases[3]. Moreover, long-term complications are 
commonly found such as fibrosis, malignancies, metabolic troubles, stenoses and 
fistulas[44]. To improve the quality of life of urologic patients, new and innovative 
therapeutic strategies need to be developed to be more efficient with less debilitating 
side effects. Regenerative medicine strategies using SC transplantation or their use in 
tissue engineering have been proposed as solutions.

REGENERATIVE MEDICINE STRATEGIES USING SCs 
Stem cell sources for urologic regenerative medicine: A concise overview
SCs can be described as clonogenic self-renewing cells with the potential to differ-
entiate into one or more cell types. These cells are maintained in an undifferentiated 
state in very specific microenvironment called niches[45,46]. They are classified 
according to their differentiation potency. Pluripotent SCs [or embryonic SCs (ESC)] 
are derived from the inner cell mass of the embryo blastocyst and can produce cells of 
the three germ layers. The use of ESCs is controversial due to ethical issues but also to 
their high capacity to create teratomas after injection. Interestingly, adult SCs can be 
harvested from many tissues (Figure 2), such as the brain, bone marrow (BM), 
peripheral blood, blood vessels, skeletal muscle, skin, cornea, retina, tooth dental pulp, 
digestive system, liver and, pancreas[47]. They can be divided in two main categories. 
The first one, composed of multipotent SCs able to differentiate into many cell types, 
include, for example, neuronal SCs (derived from the ectoderm), mesenchymal SCs 
(MSCs) and hematopoietic SCs (both derived from the mesoderm). The other category 
contains the unipotent SCs, which have a reduced range of differentiation, such as 
epidermal SCs (of ectodermal origin), muscle SCs (of mesodermal origin) or urothelial 
SCs (of endodermal origin).

Since the discovery of adherent SCs in BM by Friedenstein et al[48] 50 years ago[48], 
the number of MSC family members has increased considerably. These cells can now 
be extracted from various tissues such as bone marrow (BM-MSC), AT (adipose-
derived SC or ASC), synovium (SMSC), dental pulp (DP-MSC), muscle, peripheral 
blood, yellow ligament, menstrual blood, endometrium, maternal milk, amniotic fluid, 
placenta (PDSC), umbilical cord blood (UCB-MSC), and umbilical cord Wharton’s jelly
[49,50] (Figure 2). MSCs are heterogeneous populations, which can be important in 
regard of their differentiation efficiency in the context of animal grafting[49].

Many types of SCs have been studied (Table 1), but due to greater accessibility[51], 
postnatal SCs used in urology are mainly MSCs, especially but not exclusively BM-
MSCs and ASCs. Indeed, through their secretome and multilineage potential of differ-
entiation, MSCs are the basic building blocks used in regenerative medicine, including 
in the field of urology. For example, MSCs can differentiate into different cell types 
presenting features of various lineages, such as endothelial cells, epithelial cells 
(including urothelial cells), myoblasts, smooth muscle cells (SMCs), fibroblasts or 
neurogenic cells[52]. Because MSCs also have a significant cell proliferation and differ-
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Table 1 In vivo studies for regenerative medicine of urologic tissues (excluding studies using adipose tissue-derived stem cells) (words 
used in the PubMed research engine (National Library of Medicine): “Urology” “regeneration” “reconstruction” “stem cells”)

Stem cell type Organ treated Pathology Animal model Ref.

AFSC Bladder OAB Rat [203,204]

AFSC Bladder DUA Rat [205]

AFSC Bladder PD Rat [206]

AFSC Bladder Stroke Rat [203]

BM-MSC Bladder OAB Rat [207,208]

BM-MSC Bladder pBOO Rat [209]

BM-MSC Bladder IC/BPS Rat [210]

BM-MSC Bladder PD Rat [206,211]

BM-MSC Bladder SCI Rat [212-214]

BM-MSC Bladder Partial cystectomy Rat [215]

BM-MSC Kidney Renal regeneration Mouse [216]

BM-MSC Kidney CKD Rat [69,70]

BM-MSC Kidney AKI Rat [7,71]

BM-MSC Kidney AKI Human [83]

BM-MSC Bladder Partial cystectomy Rat [90]

BM-MSC Urinary sphincter SUI Rat [91]

BM-MSC Bladder Hemicystectomy Dog [97]

BM-MSC Bladder Augmentation Rat [98]

BM-MSC Penis ED Rat [217,218]

BM-MSC Urethra Urethroplasty Rabbit [103]

DP-SC Bladder IC/BPS Rat [219]

ESC Kidney Reconstruction Rat/mouse [88]

ESC-MGE Bladder SCI Mouse [220]

ESC-MSC Bladder IC/BPS Rat [221-223]

MDC Bladder DUA Rat [224,225]

MDC Bladder DUA Mouse [225]

NPC Bladder SCI Rat [226-228]

OM-SC Bladder SCI Rat [229]

Sk-MSC Bladder DUA Rat [230]

Sk-MSC Urinary sphincter SUI Monkey [231]

Sk-MSC Urinary sphincter SUI Human [92-94]

Sk-MSC Urethra Urethral defect Rat [102]

UCB-MSC Bladder OAB Rat [232]

UCB-MSC Bladder IC/BPS Rat [233-235]

UCB-MSC Bladder Cerebral Ischemia Rat [232]

USC Bladder IC/BPS Rat [236]

USC Urethra Urethral defect Rabbit [237]

USC Penile Cavernous body ED Rat [238]

USC Kidney AKI Rat [84]

USC Bladder Augmentation Rat [101]
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AKI: Acute kidney injury; ASCs: Adipose-derived stromal/stem cells; BM-MSC: Bone marrow-mesenchymal stem cells; UCB-MSC: Umbilical cord blood-
mesenchymal stem cells; USC: Urine derived stem cells; DPSC: Dental pulp stem cells; OAB: Overactive bladder; DUA: Detrusor underactivity; PD: 
Peyronie’s disease; pBOO: Partial bladder outlet obstruction; IC/PBS: Interstitial cystitis/bladder pain syndrome; SCI: Spinal cord injury; SUI: Stress 
urinary incontinence.

Figure 2 Source of stem cells used for genitourinary regenerative medicine. After extraction from various tissues, stem cells are expanded and 
eventually differentiated, depending on their origin, before to be reinjected to the patients or used to reconstruct genitourinary engineered tissues. DP-MSC: Dental 
pulp-mesenchymal stem cells; BM-MSC: Bone marrow-mesenchymal stem cells; iPSC: Induced pluripotent stem cells; SVF: Stromal vascular fraction; ASC: Adipose-
derived stromal/stem cells; DFAT: Dedifferentiated fat; UCB-MSC: Umbilical cord blood-mesenchymal stem cells; WJ-MSC: Wharton Jelly-mesenchymal stem cells.

entiation potential, only one sample containing multipotent SCs could theoretically 
allow the reconstruction of an entire urological organ. For example, human dental 
pulp SCs (DP-SCs) are also of interest in the urological field. Indeed, Song et al[53] 
successfully differentiated DP-SCs into bladder SMCs using a conditioned medium. 
Studies have shown that somatic SCs can be obtained from testes throughout the male 
lifetime[54]. Other reports have shown that even endometrial SCs (EnSCs) could be 
differentiated into SMCs and urothelial cells for bladder engineering[55,56]. The less 
invasive way to obtain these cells is by collecting menstrual blood, but an endometrial 
biopsy can also be performed. Harvesting EnSCs does not necessitate anesthetic 
procedures compared to the protocols used for ASCs or BM-MSCs[57].

Of note, in 2008, Zhang et al[58] showed for the first time that SCs present in urine, 
urine derived SCs (USCs) could differentiate into urothelial, SMCs, endothelial and 
interstitial cells, allowing a non-invasive collection of SCs for genitourinary tissue 
engineering[58]. This promising method generates approximately 2 to 7 progenitor 
cells for 100 mL of urine, which can be extensively expanded in culture. Subsequently, 
the differentiation of these cells toward the meso-, endo- and ectodermal lineages have 
been shown by using appropriate induction media, further increasing their interest
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[59].
Finally, a new source of SCs was created by human hands in 2006, the induced 

pluripotent SCs (iPSCs). After collecting somatic cells, such as fibroblasts or white 
blood cells, the latter are transduced using viral vectors to express transcription factors 
associated with pluripotency[60]. These reprogrammed cells can then be redifferen-
tiated in vitro towards the cell type needed: e.g., into MSCs[61]. Because from one 
blood sample many differentiated cells can be obtained, but also because cells from 
patients suffering from various pathologies cannot be cultivated in vitro[62], iPSCs 
represent a promising SC source. However, their production appears much more 
technically challenging than for the previously described sources.

In the next sections, key examples of the use of SCs for genitourinary regenerative 
medicine will be presented before focusing on the most recent work using postnatal 
MSCs isolated from AT.

Regenerative medicine for kidney
The kidney function relies on complex vascular structures, and this organ is an 
ecosystem where 24 cell types synergize over the vascular, interstitial, glomerular and 
tubular compartments[63]. Reconstructing/regenerating this organ using regenerative 
medicine is a true challenge. Especially, the microvasculature of glomeruli and the 
complex tissue structure must be preserved. Even if progress has been made to 
support the renal function, the following section will only focus on studies using SCs 
as therapeutics. Two main strategies can be distinguished: (1) The repair and 
regeneration of the kidney using cell therapy; and (2) The reconstruction of the entire 
organ for transplant using tissue engineering.

Cell therapy for the kidney: BM-MSCs have been the most studied postnatal 
mesenchymal cell type, undoubtedly due to the demonstration of their safety in 
clinical trials (Table 1)[64]. Three hypotheses have been established concerning the 
effects of MSCs of various sources: (1) The regenerative potential of tissues is 
improved by the paracrine secretion of bioactive factors; (2) The regeneration of tissues 
is allowed by the differentiation of MSCs into resident cells to repopulate the tissue; or 
(3) The fusion of MSCs with resident cells[63]. Nevertheless, very few studies 
indicated that MSCs could fuse with resident cells[65] or transdifferentiate[66]. 
However, as low detectable differentiation of BM-MSCs into kidney epithelial cells to 
repopulate the tissue has been reported, a paracrine mechanism of action of MSCs to 
regenerate the kidney is suspected[67,68]. Beneficial effects were shown after 
exogenous administration of BM-MSCs in various models of acute and CKD. Direct 
injection of BM-MSCs in the kidney reduced or prevented renal dysfunction and 
renovascular hypertension in a CKD rat model[69,70]. Furthermore, in acute kidney 
injury (AKI) models and following BM-MSC injection, cellular proliferation was 
increased while the tubular dysfunction was reduced, including decreased apoptotic 
and necrotic cell death[71,72]. Supporting the paracrine hypothesis, studies have 
shown that most of the BM-MSC’s effects can be obtained using conditioned medium 
only[71,73,74]. Indeed, the immunomodulatory properties of MSCs are well-known, 
with an induction of anti-inflammatory factors such as interleukin (IL)-10 and a 
decrease in inflammatory factors (IL-1 and -6)[71,75,76]. On the other hand, the 
secretome of the MSCs is also characterized by growth factors such as hepatocyte 
growth factor (HGF), insulin-like growth factor-1, transforming growth factor (TGF)-α 
and -β, fibroblast growth factor (FGF) and vascular endothelial growth factors (VEGF), 
which can be enhanced by the preconditioning of the MSCs (e.g., hypoxic 
conditioning)[51,77,78]. MSCs can release these factors, also known to be produced by 
renal cells during kidney injury[63], either in a free-state or contained within 
exosomes, vesicles of 20-100 nm diameter originating from endosomes, or 
microvesicles, vesicles of 50-1000 nm originating from the plasma membrane[51]. 
These extracellular vesicles contain nucleic acids such as mRNAs and microRNAs, 
cytoplasmic and membrane proteins, and even bioactive lipids, all contributing to cell-
cell communication and signal transmission[79].

Depending on the culture conditions (e.g., 3D microspheres), BM-MSCs can 
modulate their secretome, overproducing factors found in low quantity when cells are 
grown as monolayers, such as antiapoptotic and anticancer factors including tumor 
necrosis factor (TNF)-stimulated gene 6 protein (TSG-6) and IL-24[80,81]. The 
mechanism of action of the paracrine effects of MSCs to regenerate the kidney can be 
advantageous for clinical use compared to transplantation. Indeed, the large-scale 
culture of MSCs and harvesting of their secretory products, or the production of a 
recombinant mixture of proteins, can be done in good manufacturing practice (GMP) 
facilities and presents lower risks than direct injection of SCs[63]. However, these cell-
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free therapies' therapeutic efficacy has been limited by the low stability and retention 
of these components[82]. Indeed, cells are continuously producing factors, whereas 
cell-free therapies would need repeated injections. Using new technologies as 
supramolecular nanofibers peptides could be an alternative to improving kidney 
repair, enhancing, and prolonging bioavailability of these factors[82]. A clinical study 
on 66 patients with postoperative AKI showed that intra-aortic infusion of allogenic 
BM-MSCs led to a worse prognosis in the postoperative period[83]. Further studies are 
therefore needed to expand the use of global MSCs in clinical routine.

Interestingly, Sun et al[84] showed that USCs used as a therapy in a rat AKI model 
significantly improved the renal function and histological damage[84]. Furthermore, it 
inhibited the inflammation and apoptosis processes in the kidney while promoting 
tubular epithelial proliferation.

Tissue engineering for kidney reconstruction: Whole organ production has also been 
evaluated using tissue engineering. First, acellular structures have been produced and 
studied from porcine, human and rat kidneys[85]. The main advantage is the preser-
vation of the architecture of the decellularized matrix. This architecture has been 
shown to impact cell morphology and differentiation[86]. Fully differentiated 
epithelial and endothelial renal cells can be seeded on the decellularized scaffold as 
done by Song et al[85] before perfusion in a whole-organ bioreactor[85]. When 
perfused through their intrinsic bed, the resulting substitute produced rudimentary 
urine in vitro. When grafted in vivo, grafts were perfused by the recipient’s circulation 
and produced urine through the ureteral conduit[85]. However, only a negligible 
excretion of urea and creatinine was measured. Similar results have been found by 
other teams[87]. In another study, rat kidneys were decellularized and seeded with 
pluripotent murine ESCs[88]. After the proliferation of the primitive precursor cells 
within the glomerular, vascular and tubular structures, cells were reported to express 
epithelial cell’s differentiation markers[88]. Despite promising preclinical outcomes 
obtained with animal models, such as the reduced acute and chronic kidney injuries
[64,89], clinical trials remain in the early phases, mainly investigating the safety and 
some efficacy of allogenic MSC infusion[64,89].

Regenerative medicine for bladder
The bladder is a highly elastic hollow organ surrounded by three muscular layers 
forming the Detrusor. These muscular cells are essential to maintain a fully functional 
bladder. Moreover, neural and vascular networks are required for a healthy, 
competent bladder and self-control of the micturition. As for the kidneys, the bladder 
architecture must be preserved to ensure that efficacy is preserved.

Cell therapy for the bladder: Several studies have described phenotypic and 
physiologic similarities between adult MSCs and bladder SMCs. Sharma et al[90] 
indicated that unstimulated BM-MSCs have a similar contractile protein profile as the 
bladder SMCs[90]. Furthermore, no significant difference of increased magnitude of 
intracellular Ca2+ release has been found between both groups when stimulated. 
Another study using adult nude rats to evaluate bladder augmentation found that the 
BM-MSCs seeded on the poly 1,8 octanediol-cocitrate scaffold maintained a high level 
of protein expression of smooth muscle markers, significantly increasing the muscle-
to-collagen ratios at ten weeks post augmentation[90]. Therefore, it has been of interest 
to evaluate the impact of MSC injection for patients affected by stress urinary 
incontinence (SUI). In an injured rat model, using serial vaginal dilatation, Dissaranan 
et al[91] showed that the leak point pressure (LPP) was significantly improved in 
animals receiving an injection of BM-MSCs compared to the controls[91]. These results 
suggest that factors secreted by MSCs, in general, can have therapeutic effects when 
injected. Local injection of autologous muscle-derived SCs has been evaluated in 
clinical trials and successfully improved patients' quality of life affected by SUI[92-94]. 
Since the main effects of MSCs have been attributed to their secretome, it will be 
interesting to evaluate the secretome-only injection as treatment or as prophylaxis for 
patients with SUI. Indeed, even without engraftment, the only use of MSC injection 
could result in the release of soluble factors and enhanced quality of life of patients
[64]. Therefore, MSCs and their secretome could offer a safe and effective treatment for 
bladder dysfunction, targeting the pathophysiology instead of only targeting 
symptoms. However, the current state of knowledge needs more data in the long term 
to ensure a safe large scale and efficient use of these cells. Indeed, more studies are 
needed to determine the method of delivery (systemic or local injection), the dose and 
the most secure and efficient cell origin (ASCs, BM-MSCs, etc.).
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Tissue engineering for bladder reconstruction: Reconstruction of a whole bladder to 
replace the affected one has been investigated by many teams. Tissue engineering for 
bladder reconstruction is based on the use of natural, synthetic or hybrid scaffolds. 
Decellularized scaffolds such as bladder acellular matrix (BAM) and small intestinal 
submucosa (SIS) have been studied for bladder reconstruction[2,95]. However, issues 
have been encountered. Indeed, the maximum distance allowing tissue regeneration 
by native cells using an acellular graft has been evaluated to 0.5 cm[5]. It is, therefore, 
necessary to seed cells on the scaffold before its implantation[5]. Nevertheless, 
autologous cells could not be used in patients with cancer[96] or benign end-stage 
bladder diseases[62]. In these cases, the use and differentiation of SCs could represent 
an alternative.

BM-MSCs have been evaluated as an alternative cell source. Zhang et al[97] used 
BM-MSCs on an SIS scaffold for bladder reconstruction in a hemicystectomy canine 
model[97]. They showed that BM-MSCs had a similar cell proliferation, histological 
appearance, and contractile phenotype as primary cultured bladder SMCs. Using an 
amniotic membrane, BM-MSC contributed to regenerate the detrusor and urothelium 
in a rat model of bladder augmentation[98]. However, proper urinary bladder function 
could not be achieved, and further studies are required.

Urine-derived SCs can also be considered an alternative source for bladder 
reconstruction as only a fresh -collected less than 24 h before- urine sample is 
necessary. To this end, studies showed that USCs could be differentiated in SMCs with 
contractile function comparable to native SMCs[99]. In another study, USCs have been 
differentiated in urothelial and SMCs that were then seeded on a bacterial cellulose 
scaffold[100]. They showed that a multilayered urothelium could be obtained with the 
colonization of the cells into the matrix, holding promises for urinary reconstruction 
using USCs. Lee et al[101] directly seeded undifferentiated USCs on a surface modified 
composite scaffold (polycaprolactone/pluronic bladder submucosa matrix) in a rat 
model to improve bladder capacity[101]. They showed a significant functional 
improvement of the bladder compliance compared to the control group and an 
increased regeneration of SMC tissues with a well-differentiated multilayered 
urothelium.

Regenerative medicine for the ureters and urethra
The primary function of ureters and the urethra are a strictly waterproof barrier 
preventing the toxic urine diffusion beneath the epithelium. The reconstruction of 
these structures must preserve this function otherwise fibrosis induction will occur. As 
these tubular organs are surrounded by a muscular layer allowing to compensate the 
increase of pressure during the micturition, elasticity and mechanical resistance have 
to be maintained in the reconstructed substitutes.

Cell therapy for ureters and urethra: Human skeletal muscle derived SCs were 
applied on the damaged urethral site in a rat model and improved penile functional 
recovery[102]. Indeed, six weeks after transplantation, a higher functional recovery 
was found in the transplanted group than controls (70.2% vs 39.1%). The authors 
indicated that transplanted human cells differentiated into skeletal muscle fibers, 
nerve-related Schwann cells, perineuriums, and vascular pericytes while active 
paracrine angiogenic cytokines were also detected.

Tissue engineering for ureter and urethra reconstruction: SCs have also been used for 
urethra and ureteral reconstruction. Yudintceva et al[103] seeded allogenic BM-MSCs 
on a bilayer poly-D,L-lactide/poly-ε-caprolactone scaffold for urethra reconstruction 
in a rabbit model in comparison with conventional urethroplasty, performed using an 
autologous buccal mucosa graft[103]. After a follow-up of 12 wk, the absence of 
complications, reduced fibrosis and inflammatory cell infiltration were observed in the 
experimental group compared to the group for which buccal mucosa was grafted.

In other studies, SCs have been first differentiated before being seeded on scaffolds. 
Urothelial and SMCs derived from USCs have been compared to native cells when 
seeded on a SIS scaffold[104]. The authors indicated that USCs expressed urothelial 
cell markers or SMC markers according to the differentiation protocol. Furthermore, 
the resulting tissues were similar to those formed when urothelial cells and SMCs 
derived from native ureters were used.

The optimization of the culture medium/media used to differentiate SCs is a 
challenge and must be different for each kind of SCs because their engagement status 
is different: ESCs is different from definitive endoderm SCs or urothelial cell 
progenitors. As an example of this kind of works, murine ESCs have been successfully 
differentiated into urothelial cells using chemically defined conditions. Such protocols 
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could facilitate the generation of epithelial cells for in vitro tissue production[105].

TOWARDS CLINICAL APPLICATIONS
AT as a source of therapeutic cells 
Beyond its metabolic and endocrine functions, white AT represents an important 
source of multipotent cells for regenerative medicine[106,107], with subcutaneous 
depots being most abundant and accessible in humans through lipoaspiration 
procedures. ASCs originate from the cultivation of cells extracted from the stromal 
vascular fraction (SVF) of AT. This classical way of extracting multipotent human 
ASCs has been mastered by Zuk et al[108,109] and reported in 2001 and 2002[108,109]. 
SVF corresponds to the fresh cellular pellet obtained after AT collagenase digestion 
and centrifugation[110] (Figure 3). SVF is heterogeneous, being composed of 
fibroblasts, endothelial cells, SMCs, macrophages, monocytes, preadipocytes and 
mesenchymal stromal/SCs[111,112]. This cell heterogeneity plays an important role 
conferring the SVF several important therapeutic characteristics such as pro-
angiogenic, anti-inflammatory and immunomodulating properties[113-115]. However, 
it is also associated with a high variability of the SVF’s therapeutic potential among 
individuals, making it more complicated to standardize SVF-based treatments[116]. 
The use of SVF as treatment of urogenital disorders has been widely investigated in 
recent years in particular for preclinical studies for erectile disfunction and for 
Peyronie’s disease[117-120]. Moreover, a small number of early clinical studies using 
injected SVF for urogenital system related pathologies, like urinary incontinence, 
erectile disfunction, and Peyronie’s disease, have been performed in the last years[121-
123]. Since treatments based on freshly extracted SVF cells have been recently 
reviewed[115,124], the following sections will focus on the use of cultured 
mesenchymal cells obtained from AT [ASCs and dedifferentiated (DFAT) cells] for 
regenerative medicine applied to the urologic system.

There are two approaches for obtaining stromal/SCs from AT (Figure 3). ASCs 
represent the more common source as they are obtained following culture of the fresh 
SVF. ASCs are described as relatively homogenous adherent cultures of cells 
possessing key functional properties: Important multilineage differentiation potential 
and relevant secretome-related therapeutic potential[109,125,126]. Since their 
discovery, cell therapies based on ASCs have been developed for many pathological 
conditions including wound healing, cardiovascular diseases, bone fractures and 
many other health problems, including urological-related pathologies[115,127-131]. 
The second and most recent method of obtaining progenitor cells from AT depots is by 
inducing the dedifferentiation of floating mature adipocytes obtained following 
collagenase digestion, leading to cell populations commonly named DFAT cells 
(Figure 3). In fact, as soon as 1986, Sugihara et al[132] developed a ceiling culture 
method that induced the dedifferentiation of mature rat adipocytes into fibroblast-like 
cells[132]. Later in 2004, Yagi et al[133] showed that isolated fibroblast-like cell 
populations obtained following the dedifferentiation of mature murine adipocytes 
exhibited long term viability in culture and adipogenic potential upon induction[133]. 
The seminal study by Matsumoto et al[134] in 2008 showed that human cells 
originating from dedifferentiated adipocytes extracted from subcutaneous depots 
exhibited critical features associated with ASCs and BM-MSCs, including cell surface 
markers such as CD13, CD29, CD44, CD90 and CD105, and multilineage differen-
tiation potential towards adipogenesis, osteogenesis, chondrogenesis[134]. More recent 
studies also indicate that DFAT cells could acquire myogenic and neural-like cells 
phenotype[135,136]. Importantly, as part of the secretome of these dedifferentiated 
cells, many growth factors with proangiogenic action have been quantified such as the 
VEGF-A, HGF, FGF and Angiopoietin-1 (Ang-1)[137]. DFAT cells, has been more 
widely studied in recent years for different fields of regenerative medicine. Some 
preclinical studies have shown DFAT cardiomyocyte differentiation and pro-
angiogenic potential in myocardial infarction and nerve regeneration using rat models
[136,138,139]. Despite the recent characterization of DFAT cells, some preclinical 
studies have already shown promising therapeutic potential for these cells. The 
following section details the recent studies that used ASCs and DFAT cells for the 
treatment of urogenital diseases.
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Figure 3 Stem cells from adipose tissue in regenerative medicine. A: Extraction of the stromal vascular fraction from adipose tissue and obtention of 
adipose-derived stromal/stem cells (ASCs) after cell culture. Ceiling culture of mature adipocytes and resulting populations of dedifferentiated fat (DFAT) cells; B: 
Potential uses of ASCs and/or DFAT cell-based therapies in genitourinary regenerative medicine. SVF: Stromal vascular fraction; ASC: Adipose-derived stromal/stem 
cells; DFAT: Dedifferentiated fat.

ASC-based therapies and tissue engineering approaches for treating urogenital-
related diseases/pathologies 
In the last five years (2016-2021), different ASC-based therapeutic approaches have 
been developed to treat genitourinary-related pathologies. Recent cell therapies based 
on ASCs injections for treating kidney, ureter, bladder and urethral related pathologies 
in different animal models are presented (Table 2), as well as the latest tissue 
engineering efforts using ASCs to reconstruct 3D urologic tissues (Table 3).

ASC-based therapies in renal diseases: Various ASC-based therapies have been 
developed in the last five years to treat different aspects of CKD due to their 
therapeutic properties. Fibrosis is a late manifestation of CKD that is often irreversible. 
Therefore, numerous teams are focusing their efforts on using ASCs for the treatment 
of Renal Interstitial Fibrosis (RIF) (Table 2). Among recent studies, Song et al[140] 
described the anti-inflammatory effects of rat ASCs in RIF rat models, where lower 
gene expression of TNF-α and IL-1 were observed in treated rats compared to control
[140]. Moreover, ASCs also mediated partial inhibition the TGF-β1 signaling axis, 
therefore significantly suppressing the epithelial-mesenchymal transition (EMT) of 
tubular epithelial cells involved in fibrosis[140]. Rivera-Valdes et al[141] also showed 
the potential of human ASCs in reducing RIF in rats[141]. Treated groups showed 
significantly reduced gene expression of COL1A1 and ACTA2, leading to 89% less 
collagen deposition and to a 40% reduction of fibrosis as assessed by a morphometric 
analysis of microphotographs of Masson trichrome and Sirius red stained tissues when 
compared to control groups[141].

Fibrosis typically results from chronic inflammation. The anti-inflammatory effects 
of MSCs have long been known as an important tool for treating fibrotic tissue 
phenotypes[142]. Recent research suggests that production of glial-derived 
neurotrophic factor (GDNF) by human ASCs can provide renoprotective effects in 
treated RIF mouse models[143]. Indeed, Wang et al[143] recently showed that 
compared to wild-type human ASC-based therapy, ASCs genetically modified to 
overexpress GDNF (GDNF-ASCs) enhanced tissue repair by increasing macrophage 
transition from an M1 inflammatory phenotype to an M2 reparative phenotype in mice
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Table 2 Adipose-derived stromal/stem cells-based preclinical studies for treating urogenital related diseases/pathologies (2016-2021)

Year Organ/tissue Disease/method Animal model Type of therapy (cell type/host 
anatomic site)

Cell/molecule 
concentration Outcomes Ref.

2021 Renal interstitial 
fibrosis/unilateral urethral 
obstruction

Nu/nu mice 6–8 
week-old males, n = 
40

Injection of genetically modified SC human 
GDNF-ASCs and non-modified 
ASCs/intravenous

5 × 105 cells in 150 μL of 
saline

Improvement of vascular rarefaction/Renal protection 
against microvascular injuries/Oxidative stress reduction

Li et al[144], 2021 

2020 Kidney injury/ischemia-
reperfusion

Wistar rats 100-200 g 
males, n = 28

Injection of SC rat ASCs/tail vein 2 × 106 cells in 1 mL of 
PBS

Reduction of total tissue damage and urine mineral 
concentration/ASC anti-inflammatory effects

Changizi-
Ashtiyani et al
[153], 2020

2020 Kidney injury/ischemia-
reperfusion

SD rats 8–12 week-
old males, n = N/S

Injection of epididymal rat ASCs/left 
kidney

2 × 106 cells in 100 μL of 
decellularized kidney 
ECMH

Epithelial differentiation of post transplanted 
ASCs/accelerated repair of renal tubular injury via ASC 
pro-angiogenic molecules

Zhou et al[152], 
2020

2020 Sepsis-induced AKI/cecal 
ligation and puncture

C57/BL6 mice 6–8 
week-old males, n = 
140

Injection of SC human ASCs-derived 
exosomes/tail vein injection

100 μg of exosomes in 200 
μL of vehicle solution

Exosome protective functions against AKI/apoptosis and 
inflammation reduction via Sirtuin-1 pathway regulation

Gao et al[149], 
2020

2019 Renal interstitial 
fibrosis/unilateral ureteral 
obstruction

Nude mice, n = 12 Injection of SC human GDNF-ASCs/tail 
vein

5 × 105 cells in 150 μL of 
vehicle solution

Macrophage transition from inflammatory (M1) to 
reparative (M2) phenotype/reduction of renal fibrosis and 
inflammation

Wang et al[143], 
2019

2019 Diabetic nephropathy/induced 
diabetes

C57BL/KsJ db/db 
mice 8 week-old 
males, n = 20

Injection of SC murine ASCs-derived 
exosomes/tail vein

N/S Attenuation of spontaneous diabetes and nephropathy by 
reduced proteins levels in the urine of treated mice

Jin et al[148], 2019

2017 Renal interstitial 
fibrosis/unilateral ureteral 
obstruction

Wistar rats 6 week-
old males, n = 45

Injection of epididymal rat ASCs/tail vein 5 × 106 cells in 1 mL of 
vehicle solution

Significantly reduced EMT and inflammatory response via 
TGF-β1 signaling pathway inhibition in treated rats

Song et al[140], 
2017

2017 Chronic kidney injury/adenine 
intoxication

Wistar rats 250 g 
males, n = 12

Injection of SC human ASCs/tail vein 2 × 106 cells in vehicle 
solution

Reduction of kidney fibrosis/improved creatine and urea in 
serum/significantly lower expression of profibrogenic 
genes in treated rats

Rivera-Valdes et 
al[141], 2017

2017 Acute kidney injury/ischemia-
reperfusion

SD rats 220-250 g 
males, n = 32

Injection of perinephric human ASCs or 
SVF/intra-parenchymal

2 × 106 cells in 100 μL of 
PBS

SVF and ASCs equally improved renal injury by promoting 
cell proliferation and decreasing tubular injury and cell 
apoptosis

Zhou et al[146], 
2017

2016 Acute kidney injury/ischemia-
reperfusion

SD rats 250-300 g 
males, n = 72

Injection of rat ASCs/tail vein 1 × 106 cells in vehicle 
solution

Significantly lower kidney injury scores at days 1 and 3 
post-treatment/not significant improvement at day 7 post-
treatment

Sheashaa et al
[145], 2016

2016 Acute kidney injury/IRI SD rats 320-350 g 
males, n = 40

Injection of epididymal rat ASCs and 
ASCs-derived exosomes/intravenous

1.2 × 106 cells + 100 μg of 
ASCs-derived exosomes

Combined ASCs and exosomes confer higher kidney 
protection towards IRI than either one alone

Lin et al[147], 
2016

2016

Kidney

Chronic kidney disease/already 
present

Cats (various sex, age 
and breeds), n = 8

Injection of allogenic cryopreserved feline 
ASCs/cephalic vein

2 × 106 cells per kg in 
vehicle solution

No significant improvement of renal functions between 
treated and control groups/not adverse side effects noticed 
using allogenic ASCs

Quimby et al
[150], 2016

Stress Urinary 
Incontinence/pudendal nerve 

2018 Urethra SD rats adult females, 
n = 48

Injection of exosomes derived from SC 
human ASCs/peripheral urethral

50 μg of exosomes in 50 
μL of saline

Increased bladder capacity and leak point pressure/higher 
muscle fiber and nerve fiber regeneration

Ni et al[171], 2018
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transection

2018 Stress Urinary 
Incontinence/pudendal nerve 
transaction

SD rats 6-7 week-old 
females, n = 144

Injection of inguinal rat 
ASCs/transurethral sphincter

1 × 106 cells in 400 μL of 
D-Hanks’s solution

ASCs in vivo viability 60 d post-implantation/higher 
content of striated muscle in the urethra/higher values of 
leak point pressure

Cui et al[170], 
2018 

2018 Urethral stricture/N/S SD rats, N/S Injection of miR-21 modified SC human 
ASCs/ urethral wall

1 × 106 cells in 100 μL of 
saline

miR-27 cells increased epithelium and smooth muscle layer 
formation compared to normal ASCs/improve the 
epithelial wound healing microenvironment

Feng et al[168], 
2018

2016 Urethral fibrosis/TGF-β1 induced 
model

SD rats 300 g males, n 
= 18

Injection of inguinal rat ASCs/urethra 2 × 105 cells in 50 μL of 
saline

Significantly decreased fibrosis evaluated by reduced 
collagen type I and III expression

Sangkum et al
[167], 2016

2016 Urethral stricture/induced by 
TGF-β1 and surgical incision

SD rats 300-350 g 
males, n = 36

Injection of SC human ASCs/urethral wall 1 × 106 cells in 100 μL of 
PBS

Increased bladder capacity (50%)/wider urethral 
lumen/decreased expression of fibrosis-related genes

Castiglione et al
[166], 2016

AKI: Acute kidney injury; ASCs: Adipose-derived stromal/stem cells; db/db: Spontaneous diabetes; ECMH: Extracellular matrix hydrogel; EMT: Epithelial mesenchymal transition; g: grams; GDNF: Glial-derived neurotrophic factor; IRI: 
ischemia-reperfusion injury; N/S: Not specified; PBS: Phosphate-buffered saline; SC: Subcutaneous; SD: Sprague-Dawley; SVF: Stromal vascular fraction; TGF-β1: Transforming growth factor-β1.

[143]. More recently, Li et al[144] showed in 2021 that interstitial fibrosis mice treated 
with GDNF-ASC exhibit reduced capillary rarefaction, significantly reducing oxidative 
stress, leading to renal protection to microvascular injuries (EMT inhibition via 
PI3K/AKT signaling pathway), and renal fibrosis in treated mice[144]. This suggests 
that GDNF upregulation could be a future candidate for improving CKD-related 
fibrosis.

In the last years, different teams have developed ASC-based treatments for 
Ischemia-Reperfusion-Injury (IRI) animal models of AKI. In 2016, Sheashaa et al[145] 
showed in a IRI rat model that rat ASC-based systemic therapy significantly reduced 
creatinine levels in serum by increasing creatinine clearance for seven days after 
treatment. In the first three days, lower injury scores were also observed in treated rats 
compared to controls[145]. However, this study stipulates that injury scores did not 
improve further after one week of therapy and creatinine levels were not followed 
beyond seven days of treatment.

A study by Zhou et al[146] showed that injection of human SVF and cultured ASCs 
significantly reduced proinflammatory and immunomodulatory cytokine production 
(TNF-α and IL-10) in treated IRI rats. In this study, treated animals showed increased 
densities of peritubular kidney capillaries, with similar improvements achieved by 
SVF and ASCs[146]. Using a different approach, Lin et al[147] tested a combination of 
rat ASCs and ASC-derived exosomes (Ex-ASC) in IRI rat models. Their results showed 
that rats treated with this combined therapy showed a significant improvement of AKI 
features compared to ASCs and exosome only treated groups[147]. Exosomes 
therapeutic mechanisms of action are still not well understood. However, recent 
studies involving a murine model of diabetic nephropathy suggest that miR-486, 
carried in murine ASC-derived exosomes, downregulated mTOR activation-mediated 
autophagy in podocytes of treated mice[148]. This translated into a decreased 
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Table 3 Preclinical studies of urogenital related pathologies/disease using adipose-derived stromal/stem cells in tissue engineering (2016-2020)

Year Organ/tissue Approach Animal model Substitute implantation (cell type and 
scaffold/host anatomic site)

Cell concentration per 
scaffold Outcomes Ref.

2020 Diabetic nephropathy/unilateral 
nephrectomy

SDT fatty rats 5-week-old 
males, n = 21

SC rat ASCs three-layer sheets/renal 
capsule transplantation

1 × 106 cells in 35-mm culture 
dish/sheet

14-d survival of transplanted sheets/significantly 
lower urinary TNF-α levels/maintained renal 
tubular structure in treated rats

Takemura et al
[155], 2020

2018

Kidney

Kidney reconstruction Wistar rats 6-8 week-old 
males

Inguinal rat ASCs seeded onto a rat 
decellularized kidney/no implantation

1 × 107 cells in 2 ml of culture 
medium per decellularized 
kidney

ASCs differentiated into endothelial and tubular 
cells after 5 d of culture/few cells attached to the 
scaffold after 10 d

Xue et al[154], 
2018

2016 Ureter Artificial ureter injury/surgical 
excision

New Zealand white 
rabbits3.5 kg females, n = 
20

Smooth muscle like-cells from SC rabbit 
ASCs seeded onto ventral 
aorta/decellularized matrix/graft placed 
over ureter defect

N/S Seeded ASCs showed urothelial and smooth 
muscle-like cells phenotype in the ureter substitute 
8 wk after implantation

Zhao et al[165], 
2016

2020 Complete bladder 
removal/surgical excision

SD rats 300 g adult 
females, n = 9

SFP human ASCs seeded onto a 
decellularized rat bladder matrix/bladder 
transplantation

1 × 106 cells in 500 μL of cells 
suspension/bladder scaffold

Acquisition of a smooth muscle-like phenotype of 
seeded ASCs seeded/ASC paracrine effect 
increased vascularization and innervation

Moreno-
Manzano et al
[163], 2020

2020 Sub-totally resected urinary 
bladder/upper two-thirds bladder 
excision

Athymic rats 200 g adult 
females, n = 9

Smooth muscle-like cells from SC human 
ASCs seeded onto 3-layer PLGA 
sheet/bladder graft anastomosis

1 × 106 cells mixed with 500 μL 
of human plasma/scaffold

Complete bladder regeneration and functionality 
restoration/fusion of smooth muscle-like cells in 
the regenerated muscular layer

Salem et al
[162], 2020

2019 Bladder injury/surgical incision(1 
cm)

SD rats 6-week-old 
females, n = 48

Inguinal rat ASCs cells and PGA 
combined sheets/bladder patch 
anastomose

1 × 105 cells/cm2 per sheet 
reconstruction

Patches promote urothelium, smooth muscle, 
neural and blood vessel regeneration/restored 
bladder function

Wang et al
[151], 2019

2018 Bladder augmentation/cystotomy 
incision (1 cm)

SD rats 8 week-old males, 
n = 34

Inguinal rat ASCs seeded onto PCL-
Chitosan scaffold/bladder substitute 
anastomose

15 × 107 cells/mL per scaffold Higher smooth-muscle regeneration from 
ASCs/larger bladder capacity/increased 
angiogenesis

Zhou et al[161], 
2018

2017 Bladder augmentation/surgical 
incision(1 cm)

SD rats 8 week-old 
females, n = 46

SC rat ASCs seeded onto an AM-SF 
scaffold/bladder substitute anastomose

10 × 107 cells/mL in 40 μL of 
saline per scaffold

Bladder capacity augmentation (30%)/relatively 
normal micturition pattern/ASC viability after 12 
wk of implantation

Wang et al
[157], 2017

2017 Bladder augmentation/surgical 
incision (1 cm)

SD rats 8 week-old males, 
n = 30

Inguinal rat ASCs seeded onto a BAMG-
SF scaffold/bladder substitute 
anastomosis

50 μL of cell suspension at 1 × 
108 cells/mL per scaffold

Higher bladder capacity (2.3-fold)/Enhanced 
VEGF angiogenic potential by ERK ½ 
phosphorylation

Xiao et al[160], 
2017

2017 Augmentation 
cystoplasty/surgical incision (1 
cm)

SD rats 8 week-old males, 
n = 30

Rat ASCs encapsulated in an ADA/GEL 
seeded onto a porcine BAMG/bladder 
substitute anastomosis

100 μL of encapsulated cells at 
a 1 × 106/mL concentration per 
scaffold

Morphological bladder restoration by enhanced 
scaffold degradation/enhanced VEGF-mediated 
angiogenesis and smooth muscle regeneration in 
treated rats

Xiao et al[210], 
2017

2016 Bladder augmentation/surgical 
incision (1 cm)

SD rats 
immunocompetent 36 
week-old males, n = 30

Inguinal rat ASCs seeded onto a porcine 
BAMG/Bladder substitute anastomosis

15 × 107/mL cell suspension 
per scaffold

Greater bladder capacity in experimental 
group/equal urothelial regeneration in the treated 
and non-treated groups at 4- and 14-wk post-
implantation

Zhe et al[156], 
2016

Partial cystectomy/half upper Beagle dogs 10-12 Kg Human ASCs seeded onto a whole 1 × 105 cells per cm2 of each Complete urothelial coverage of seeded and Hou et al[159], 2016

Bladder
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bladder transection males, n = 12 porcine BAMG/scaffold grafted onto 
bladders’ dome

scaffold unseeded bladder after 6 mo/higher capillary 
density and smooth muscle organization in treated 
dogs’ bladder

2016 

2020 Urethral injury/surgically induced New Zealand white 
rabbits 9-week-old males, 
n = 24

SC rabbit ASCs seeded onto a human 
DAM scaffold/urethral graft

1 × 106 cells per scaffold Higher number of urethras healed following 
seeding of ASCs onto DAM

Hariastawa et al
[172], 2020

2020

Urethra

Urethral injury/surgically induced 
(2 cm × 0.6 cm)

New Zealand white 
rabbits males, n = 15

Inguinal rabbit ASCs seeded in a 
nanofibrous scaffold/graft placed over 
urethral defect

1 × 107 cells per scaffold Hypoxia preconditioning of ASCs increased 
urethral lumen diameter/preserved 
morphology/enhanced angiogenesis

Wan et al[173], 
2020

ADA-GEL: Alginate dialdehyde-gelatin; AM-SF: Autologous myofibroblast-silk fibroin; ASCs: Adipose-derived stromal/stem cells; BAMG-SF: Bladder acellular matrix graft-silk fibroin; bFGF: Basic fibroblast growth factor; DAM: Dried 
amniotic membrane; g: gram; Kg: Kilogram; N/S: Not specified PCL: Polycaprolactone; PGA: Polyglycolic acid; PLGA: Poly(lactid-co-glycolic acid); SC: Subcutaneous; SD: Sprague-Dawley; SDT: Spontaneously diabetic Torii; SFP: 
Suprapatellar fat pad; TNF-α: Tumor necrosis factor-α; VEGF: Vascular endothelial growth factor.

podocyte autophagy disfunction-mediated injury, reducing tissue damage and 
improving renal function[148]. Findings in sepsis-derived AKI mice models also 
suggest that ASC-derived exosomes contribute to reduced renal damage by inhibiting 
apoptotic responses via Sirtuin-1 (SIRT1) pathway activation, reducing the inflam-
matory reaction[149]. However, similar to most studies available, rather short-term 
effects of ASC treatments have been described, and further investigations are needed 
to better understand and establish if long-term therapeutic outcomes can be achieved.

The study by Quimby et al[150] in 2016 evaluated longer term effects of ASCs in a 
CKD feline model by performing three allogenic injections of cat ASCs at two, four, 
and six weeks. Although this study highlighted the safety of repeated allogenic ASC 
injections, treated cats showed no improvement compared to controls (n = 4 per group)
[150]. However, important parameters must be taken into consideration, such as the 
cat’s sex, age, and breed, which were considerably different between the experimental 
groups. In addition, the cells used for each of the three injections were obtained from 
different cat donors. These conditions complicate the analyses and conclusions that 
can be drawn.

ASC’s delivery vehicle is an essential component of the SCs therapies since it can act 
on cell viability and therapeutic potential by improving cell retention and reducing cell 
stress[151]. Embedding cells into an acellular matrix can have such protective effects. 
Indeed, the use of a decellularized matrix hydrogel (DMH) was shown to improve 
ASC local delivery and survival in a IRI rat model. After 30 d of ASC-DMH injection 
into the kidney, tubular epithelial-like cells differentiation and viability of ASCs were 
observed in the kidney of treated mice[152]. This suggests that the use of decellu-
larized matrix may induced ASC differentiation into an epithelial-like phenotype, 
promotes growth factor secretion and improved ASCs long term viability in treated 
rats after IRI. In 2020, Changizi-Ashtiyani et al[153], showed the impact of rat ASCs 
injected before inducing IRI induced CKD. Results revealed the renoprotective effects 
of ASC-based therapy in a IRI rat model. Compared to non-treated animals, treated 
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rats showed 2.5 times lower urea levels in the blood, higher urine osmolarity, 
significantly reduced oxidative stress levels and higher protection of kidney tissue 48 h 
after treatment[153].

As mentioned before, organ transplantation is one of the most common therapeutic 
approaches for advanced CKD. Therefore, many researchers, in addition to developing 
ASC-related cell therapies, have also undertaken the development of tissue 
engineering approaches using ASCs as the primary therapeutic component. Selected 
studies are described in Table 3. For example, Xue et al[154] recently developed a 
reconstructed rat kidney model by seeding rat ASCs in a decellularized rat whole 
kidney. The authors concluded that ASCs underwent differentiation towards 
endothelial-like and tubular cells with high cellular adherence to the scaffold induced 
by the action of stromal cell-derived factor 1 (SDF-1) and the cell-scaffold interactions
[154]. Therefore, even if in vivo implantation was not performed in this study, it 
suggests ASCs can be beneficial when used in recellularization approaches for future 
clinical applications[154]. Although complete kidney reconstruction seems like an 
ideal goal, research is still far from the development of an entire functional kidney to 
be used in clinical trials. However, different tissue engineering approaches could still 
contribute to kidney disease improvement. Takemura et al[155] recently showed that 
grafting reconstructed sheets produced from rat ASCs significantly lowered the 
secretion of proinflammatory molecules, reduced renal tubules atrophy, and 
contributed to the maintenance of typical renal tubular structures in diabetic 
nephropathy treated mice[155]. However, ASC survival was only followed and 
observed for 14 d after implantation of the cell sheets in treated mice. Additional 
follow-up studies showing are thus needed to understand better the therapeutic 
potential of ASCs reconstructed sheets.

ASC-based tissue engineering approaches targeting bladder disorders: Many studies 
aim to achieve bladder reconstruction as a clinical alternative for treating different 
bladder-related diseases. Either complete or partial bladder reconstruction with MSCs 
have been suggested as promising approaches using bladder augmentation different 
animal models[52]. Among those studies, selected research from last five years using 
ASC-based tissue engineering approaches are shown in Table 3.

Zhe et al[156] used a porcine BAM scaffold seeded with undifferentiated rat ASCs, 
using an incubation period in the peritoneal cavity in a rat bladder augmentation 
model. This study showed that 14 wk postoperatively, treated rats displayed 
significant signs of improved regeneration of bladder SMCs, nerve cells, as well as 
increased bladder capacity compared to the BAM only controls[156]. Of note, seeded 
ASCs were not detected in the graft after 14 wk post-implantation. Increasing ASCs 
long-term viability and maintenance still represent a challenge for bladder 
engineering.

BAM graft is commonly used as a scaffold for achieving bladder tissue 
reconstruction, but new scaffolds have been tested lately. For example, Wang et al[157] 
in 2017 showed a novel autologous myofibroblast (AM)-silk fibroin (SF) scaffold 
obtained by incubating pig BAM treated with a SF solution[157]. This scaffold was 
implanted subcutaneously in the back of female SD rats. Their results showed that 
using an AM-SF scaffold contributed to bladder augmentation in rats with ASC 
viability still detected 12 wk after implantation[157]. Similar results were also obtained 
by this team using a pig BAMG-SF for bladder reconstruction in rats[158].

A recent preclinical study in larger animals, namely a dog model (n = 13) evaluated 
the therapeutic properties of human ASCs for bladder reconstruction when seeded in a 
pig BAM scaffold[159]. This study showed significantly increased bladder volume and 
compliance, in addition to an increased bladder regeneration by smooth muscle differ-
entiation and improved vascularization in treated dogs six months after implantation 
compared to BAM only controls[159]. Different biomaterials and seeding methods 
have been developed in recent years, such as encapsulation of rat ASCs in an alginate 
dialdehyde gelatin (ADA/Gel) hydrogel[160] or polycaprolactone/chitosan scaffolds
[161] promoting bladder regeneration in rats with a contribution of ASCs cells to 
differentiation into smooth muscle-like cells in vivo, as shown in previous studies.

The more recent work of Salem et al[162] highlighted the potential of human ASCs 
when the latter were predifferentiated into SMCs and seeded in a triple layered 
poly(lactid-co-glycolic acid) (PLGA) sheet for bladder reconstruction[162]. This study 
showed that short-term results (two weeks) of the implanted grafts in athymic rats 
were similar among ASC-PLGA and PLGA only treated groups. However, in the 
follow-up analyses after 12 wk, only the ASC-PLGA treated group showed 
regeneration within the main bladder layers (mucosal, stratified urothelium, 
submucosal and muscular layer) with a significantly restoration of bladder functions
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[162]. The study by Moreno-Manzano et al[163] showed similar results of bladder 
regeneration in a model of partial cystectomy in rats after treatment with a BAM 
seeded with undifferentiated human ASCs[163]. Taken together, these studies support 
a promising use of ASCs, warranting further research on their mechanisms of action, 
before future clinical trials are designed.

ASC-based cellular therapies and tissue engineering for ureteral and urethral 
diseases: The ureters and the urethra are fibromuscular tubes that can be affected by 
physiological defects such as ureteral and urethral fibrosis, urethral stricture (US), 
among others, that can compromise these organs' optimal function, justifying the need 
for new therapeutic strategies[164].

To our knowledge, cell therapy by ASC injection has not been performed yet for 
ureters. However, tissue reconstruction has been achieved (Table 3). For example, in 
2016, Zhao et al[165] showed that rabbit ASCs seeded onto decellularized matrix 
obtained from rabbit ventral aorta and cultured in vitro for six weeks produced a well-
structured ureter eight weeks post-transplantation in a rabbit[165]. This study 
suggested a five-step strategy for ureteral tissue engineering such as ASCs culture, 
urothelium and smooth muscle phenotype induction, sandwich co-culture of the 
vessel extracellular matrix scaffold and the differentiated cells followed by ureteral 
maturation within the omentum before transplantation[165].

For urethral therapies, ASCs have been used to treat US and fibrosis in the last years 
(Table 2). First, in 2016 Castiglione et al[166] showed that the injection of human ASCs 
directly in the urethral wall of stricture in rats resulted in an increased bladder 
capacity (50%) with a wider urethral lumen in addition to decreased expression of 
fibrosis-related genes compared to the non-treated control[166]. In the same year, 
Sangkum et al[167] showed in a rat model of urethral fibrosis that injection of rat ASCs 
directly onto the urethra of treated animals significantly decreased submucosal fibrosis 
and collagen type I and III protein production[167]. Taken together, these studies 
suggest that ASCs injection could represent a potential treatment for preventing scar 
formation in US disease. Recent studies aimed at increasing the therapeutic potential 
of ASCs. For example, Feng et al[168] used genetically modified miR-21 human ASCs 
for treating US in rat models[168]. This study showed that miR-21-ASCs significantly 
increased proangiogenic gene expression, such as hypoxia inducible factor-α, VEGF, 
bFGF, HGF-1, stem cell factor and SDF-1. Furthermore, miR-21-ASCs therapy also 
improved the epithelial wound healing microenvironment, smooth muscle layer 
formation and enhanced SC survival compared to normal ASC-treated rats[168]. This 
work thus suggests a new approach for enhancing urethral repair for future urethro-
plasty interventions.

Urinary incontinence is also a common medical condition and is related to a 
lowered basal LPP below 60 cm H2O or a maximal urethral closure pressure below 20 
cm H2O[169]. Recent studies using ASC injections have been developed using a 
urinary incontinence rat model to better understand the therapeutic effects of ASCs. 
First in 2018, Cui et al[170] showed that injection of rat ASCs was associated with 
higher content of striated muscle in the urethra and higher values of LPP compared to 
non-treated rats[170]. ASCs survival was also detected 60 d post-implantation. Later 
that same year, Ni et al[171], using a different approach, studied the therapeutic 
potential of human ASC-derived exosomes[171]. Their study showed an enhanced 
proliferation of skeletal muscle and Schwann cell lines in vitro upon exosome 
exposure. When injected in vivo, a higher bladder capacity and LPP were observed, 
associated with enhanced muscle fibers and peripheral nerve fibers regeneration in the 
urethra of the exosome-treated rats, eight weeks after injection. These results suggest 
that local injection of exosomes derived from human ASCs can improve functional and 
histological recovery of the urethra of incontinent rats[171].

Finally, ASC-based tissue engineering approaches have also been developed for 
urethral reconstruction (Table 3). Hariastawa et al[172] study showed that rabbit ASCs 
seeded onto a human dried amniotic membrane (DAM) increased urethral healing in a 
surgically induced urethral injury rabbit[172]. This study showed that 28 d after 
implantation, rabbits treated with ASC-DAM exhibited less features of fibrosis with 
decreased fistula presence in the healed tissue compared to DAM only treated and 
untreated groups, suggesting this novel ASC-DAM seeded scaffold as a potential graft 
for urethral reconstruction. Also in 2020, Wan et al[173] tested a nanofibrous blend 
scaffold (PLLA/PCL/PLGA) seeded with rat ASCs preconditioned by hypoxia for 
urethral reconstruction in an induced urethral injury rabbit model[173].

This study showed that hypoxia preconditioning of ASCs, combined with the 
nanofibrous scaffold, led to larger urethral lumen diameter, preserved urethral 
morphology, and increased angiogenesis by enhanced VEGF secretion compared to 
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the normoxia ASCs treated group. This study showed that hypoxia preconditioning of 
ASCs mediated an upregulation of angiogenesis in comparison to the use of non-
preconditioned ASCs seeded into the scaffold.

DFAT cells for treatment of urogenital diseases 
An increasing number of studies have characterized DFAT cell properties to gain 
insights into the biology of this unique cell population[174]. Since their discovery, only 
a few preclinical studies have been performed using DFAT cells as therapeutics, with a 
handful having investigated their use for urogenital-related conditions (Table 4).

In 2009, Sakuma et al[175] reported a study based on the use of murine DFAT cells 
to promote smooth muscle-like differentiation in a mouse bladder injury model[175]. 
Their work showed a significant contribution of DFAT cells to bladder tissue 
regeneration, as assessed 30 d after cell transplantation. Treated mice had almost twice 
higher levels of α-smooth muscle actin (α-SMA) expressing cells in the injured areas 
compared to untreated controls, indicating favorable wound healing by reducing scar 
tissue with smooth muscle like cells[175]. Then in 2011, a study performed by Obinata 
et al[176] showed the contribution of undifferentiated rat DFAT cells for the treatment 
of urethral sphincter atrophy caused by vaginal distention[176]. The study showed 
two groups of Sprague-Dawley rats that underwent vaginal distention causing 
urethral injury with reduced LPP of the urethral sphincter. DFAT cell transplantation 
resulted in a significant improvement of LPP (DFAT group: 37.3 ± 6.4 vs control group: 
21.7 ± 5.7 mmHg, P < 0.01). Immunohistochemistry quantification revealed that the 
striated muscle thickness as well as α-SMA positive areas were significantly increased 
in the DFAT injected group than in the control group[176]. Therefore, this study 
suggests that undifferentiated DFAT cells can differentiate in vivo after injection to 
help rebuild damaged smooth muscle tissue. DFAT cell therapy was then evaluated in 
2015 for its potential to improve glomerulonephritis related disease in Wistar rats with 
immunological and non-immunological induced renal injury[177]. This study showed 
that systemic tail vein injection of rat DFAT cells generally led to high numbers of cells 
trapped in the lungs, DFAT cells significantly reduced proteinuria (P < 0.01), as well as 
interstitial fibrosis, in association with decreased expression of kidney-injury molecule 
1 in the non-immunological renal injury model. However, DFAT cell-based therapy 
did not show significant renal improvement in the non-immunological induced renal 
injury model[177]. The authors suggested that DFAT cells trapped in the lungs might 
secrete anti-inflammatory and/or immunosuppressive substances that contribute to 
the renal injury healing process.

Finally, DFAT cells were used by Ikado et al[178] in 2016 in their study investigating 
vesicoureteral reflux in rats that underwent urethral clamping and placement of 
cystostomy followed by intravesical pressurization[178]. In this study, undifferentiated 
rat DFAT cells were transplanted in treated rats, resulting in significantly lower 
vesicoureteral reflux grade and reduced hydronephrosis leading to lower renal scaring 
during the healing process[178]. This work suggested that DFAT cells expression of 
TGF-β1 and tissue inhibitors of metalloproteinases, contributed to extracellular matrix 
production and stabilization in the scar tissue. Interesting advantages have been 
observed so far using DFAT cell-based therapy for treating urogenital-related 
pathologies. However, more extensive studies are needed to evaluate DFAT cell’s 
mechanisms of action and long-term outcomes.

THE SELF-ASSEMBLY APPROACH FOR GENITOURINARY TISSUE 
ENGINEERING
As we have seen, tissue engineering strategies rely on scaffolds such as synthetic or 
natural biomaterials, including decellularized tissues[179]. Studies indicate that 
cellularized structures have better potential than acellular ones[44]. Furthermore, 
obtention of a better long-term outcome highly depends on preserving the pool of SCs
[180,181]. As they naturally reside in privileged locations called niches[182], SC conser-
vation depends on the biomaterial's capacity to recreate this unique SC-type specific 
structure. Twenty years ago, Dr. François A. Auger and his team at the LOEX research 
center developed a unique and innovative strategy used since then to reconstruct a 
wide variety of tissues, including urologic tissues. This technique is called the "self-
assembly" approach using tissue engineering[183]. It relies on mesenchymal cells' 
ability to secrete and assemble their own ECM when cultivated long-term in the 
presence of serum and ascorbate, a cofactor of lysyl- and prolyl-hydroxylase, enzymes 
involved in the process of maturation of collagen fibers[184,185]. Because cells produce 
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Table 4 Preclinical studies for treatment of urogenital related diseases using dedifferentiated fat cells

Year Disease/injury Animal model Type of therapy (cell type/injection 
site) Cell concentration Outcomes Ref.

2016 VUR SD rats 8 week-old 
females weighing 200 
g, n = 10

Injection of undifferentiated rat DFAT 
cells/bilateral vesicoureteral junction

1 × 106 cells in 30 μL of 
saline

Significant amelioration of VUR in treated rats/nephroprotective effects in 
rats

Ikado et al
[178], 2016

2015 Immunologically induced 
glomerulonephritis and adriamycin 
induced nephropathy

Wistar rats, males 
weighing 250 g, n = 
64

Injection of undifferentiated rat DFAT 
cells/RA or TV

1 × 106 cells in 20 μL of 
saline

TV DFAT cell injection showed lower proteinuria and renal degeneration 
than direct cell implantation/DFAT immunosuppressive effects 
significantly reduced glomerulonephritis in treated rats

Maruyama et al
[177], 2015

2011 Urethral sphincter injury by VD SD rats 8 week-old 
females, n = 16

Injection of undifferentiated rat DFAT 
cells/paraurethral connective tissue at 
mid-urethra

1 × 106 cells in 20 μL of 
saline

Sphincter muscle regeneration by DFAT cell therapy/improvement of 
“lowered leak point” 

Obinata et al
[176], 2011

2009 Cryo-injured bladder wall (2 mm 
diameter)

C57BL/6 mice 8-9 
week-old males, n = 
10

Injection of smooth muscle-like cells 
differentiated from human DFAT 
cells/bladder wall

1 × 106 cells in 20 μL of 
Hanks’ balanced solution

DFAT differentiation potential into smooth muscle-like cells/approximately 
2-fold higher αSMA expressing cells in scar tissue 30 d post-injection in 
treated mice

Sakuma et al
[175], 2009 

αSMA: alpha smooth muscle actin; DFAT: Dedifferentiated fat; RA: Renal artery; SD: Sprague-Dawley; TV: Tail vein; VD: Vaginal distension; VUR: Vesicoureteral reflux.

their own microenvironment, the physicochemical conditions allowing SCs to be 
preserved are thus recreated. This technique was used in the clinic to produce 
reconstructed skin for patients with severe burns[186] and those suffering from 
chronic ulcers[187]. In this context, preservation of epithelial SCs was demonstrated 
for this organ undergoing monthly cell renewal[188].

The self-assembly approach has then been similarly applied to urologic tissues. 
Porcine, then human urethra substitutes have been produced[189], matured[190] then 
grafted subcutaneously into mice[191]. Bladder substitutes have also been 
reconstructed[192,193] and further matured using bioreactors[194]. The need for 
organ-specific stroma has been demonstrated in this model by obtaining a better 
epithelial differentiation after replacing skin fibroblasts with bladder mesenchymal 
cells[195]. In these substitutes, the urothelium presented characteristics close to native 
tissue as evidenced by functional tests (permeability of urea using Franz's diffusion 
cells).

Furthermore, electron microscopy indicated the maturation of uroplakin plaques 
and the presence of discoid and fusiform vesicles near the plasma membranes, and 
immunostaining of uroplakins, tight junction proteins, and various markers such as 
keratins. These reconstructed tissues were used as models to study several pathologies 
such as bladder cancer[196], ketamine-induced cystitis[197] or the effect of metallic 
stent use[198]. Soon after, the preservation of epithelial SCs (i.e. urothelial cell 
progenitors) was studied, not only during the expansion of cells before reconstruction 
but during the engineering phase itself, and showed significant improvement under 
hypoxic conditions[199].
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The use of ASCs for urological tissue reconstruction was also evaluated to further 
improve the substitutes reconstructed by the self-assembly technique. This was 
performed with the final goal of increasing the potential of graft take through 
enhanced angiogenesis and limiting surgery-induced inflammation. In this study, 
different combinations of reconstructed stroma were evaluated[200]. The use of skin 
fibroblast and ASC sheets gave compelling results with improved mechanical 
properties, mainly required for surgical manipulation. These features need to be 
confirmed by performing in vivo experiments. Also, the combination of bladder 
mesenchymal cells and ASC remains to be evaluated. Self-assembly protocols based on 
ASCs also lead to the production of tubular structures[201], supporting their future 
use for urethra or ureter engineering using this approach. The self-assembly approach 
is thus very promising based on these results showing that reconstructed tissues 
feature structural and functional properties closely resembling those of native tissues 
and support long-term preservation of SC pool required for positive graft outcomes.

CONSIDERATIONS ON THE USE OF SC FROM VARIOUS ORIGINS
As detailed above, promising studies have been performed using SCs to provide 
therapeutic solutions to urologists, with the goal of reducing side effects for the 
patients. It is expected that improvements in the knowledge and use of SCs to treat 
kidney, bladder or ureters/urethra pathologies will continue to be increasingly 
evaluated and published soon. The risks associated with SC-based therapies, however, 
should not be minimized. Most preclinical studies have been performed at a 
laboratory scale, with few animals and SCs extracted and amplified under conditions 
that will have to be adjusted to cGMP guidelines to respect safety and regulatory 
issues. Translating the preclinical findings to routine use in urology, with thousands or 
even millions of patients over the years, will necessitate collaborative efforts in 
designing the most appropriate clinical trials based on reliable and trusted SC sources. 
Indeed, depending on their source and their degree of potency, SCs use can be 
associated to various degrees of risk. Researchers and clinicians must keep in mind 
that SCs can share properties associated with cancer cells, such as an enhanced ability 
to proliferate. This is best illustrated by the formation of teratomas after injection of 
ESCs or iPSCs into animals, for example, during tumorigenicity assays. It is essential 
to devise strict protocols and safety assays to ensure a tight regulation of SC fate after 
induction of differentiation towards the desired cell type and the elimination of 
residual pluripotent undifferentiated cells. The use of defined culture media and the 
engineering of a microenvironment (e.g., ECM, cytokines) inducing the proper target 
cell differentiation will likely contribute to the success of increased cell safety and 
efficacy. However, in the near future, iPSCs could represent a great alternative as the 
potential of urothelial cells extracted from diseased bladders has been shown to be 
impacted[62].

When using postnatal SCs such as MSCs, their reduced multilineage potency is 
associated with an advantageous safety profile. However, many parameters must be 
taken into considerations including the choice of the culture media used for expansion, 
the number of cell passages required to obtain enough cells per patient, the method of 
implantation (systemic or local injection, tissue engineering strategies) that can all 
affect their therapeutic properties and secretory profile. Therefore, more regulated 
clinical trials need to be initiated, ideally as multicenter studies, to determine not only 
the safety but also the efficacy of a specific SC-based treatment for a specific indication. 
The notion that a single SC type, prepared and implanted is a specific fashion could 
treat a wide variety of unrelated diseases can lead to hasty conclusions on SCs 
potential and to unsafe clinical practices, such as stem cell tourism[202].

CONCLUSION
With the rapid progress of knowledge, technical breakthroughs, and reliable SC 
manufacturing, we can hope that the present century will be one of regenerative 
medicine and that SCs will play an essential role in the development of safe and 
efficient therapies available to a greater number of patients. There is no doubt that 
therapies using SCs necessitate close patient’s follow-up with competent personnel. 
These new medications could allow prescription of treatment which better meet the 
patient’s need with less side-effects.
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