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Abstract

While SARS-CoV-2 infection has pleiotropic and systemic effects in some patients1−3, many 

others experience milder symptoms. We sought a holistic understanding of the severe/mild 

distinction in COVID-19 pathology, and its origins. We performed a whole-blood preserving 

single-cell analysis protocol to integrate contributions from all major cell types including 

neutrophils, monocytes, platelets, lymphocytes and the contents of serum. Patients with mild 

COVID-19 disease display a coordinated pattern of interferon-stimulated gene (ISG) expression3 

across every cell population and these cells are systemically absent in patients with severe disease. 

Severe COVID-19 patients also paradoxically produce very high anti-SARS-CoV-2 antibody titers 

and have lower viral load as compared to mild disease. Examination of the serum from severe 

patients demonstrates that they uniquely produce antibodies that functionally block the production 

of the mild disease-associated ISG-expressing cells, by engaging conserved signaling circuits that 

dampen cellular responses to interferons. Overzealous antibody responses pit the immune system 

against itself in many COVID-19 patients and perhaps in other viral infections and this study 

defines targets for immunotherapies in severe patients to re-engage viral defense.

One Sentence Summary:

In severe COVID-19 patients, the immune system fails to generate cells that define mild disease; 

antibodies in their serum actively prevents the successful production of those cells.

Global Loss of Interferon Signatures in Severe COVID-19

To understand immune biology amongst COVID-19 patients, we compared them to patients 

presenting with similar respiratory symptoms but who were not infected with the SARS

CoV-2 virus. We enrolled 21 SARS-CoV-2 positive inpatients, 11 inpatients with similar 

clinical presentations consistent with acute lung injury (ALI) or acute respiratory distress 

syndrome (ARDS), who were SARS-CoV-2 negative—those caused by other infections or 
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of unknown origin—and 14 control individuals. We further categorized these individuals 

as ‘mild/moderate’ (M/M: short stays in hospital with no need for mechanical ventilation 

and intensive care) or ‘severe’ (requiring intubation and intensive care) according to 

the full clinical course of their disease (Fig 1a/ED1a and Table S1). Hence, our study 

includes patients with mild/moderate (n=11) or severe (n=10) COVID-19 and patients with 

mild/moderate (n=6) or severe (n=5) non-COVID-19 ALI/ARDS. With the exception of 

one individual, all our patients who presented with mild/moderate disease remained mild/

moderate during hospitalization (ED1a), suggesting that mild/moderate and severe are more 

stable states rather than transient phases of disease in this cohort.

Since the majority of COVID-19 mortality is among patients with ARDS—characterized by 

an exuberant immune response with prominent contributions from neutrophils, monocytes, 

platelets—we focused upon collecting these cells along with other major populations. 

We thus performed single-cell RNA sequencing (scRNA-seq) on RBC-depleted blood 

samples from all individuals. After merging, batch-correction and doublet-removal, our data 

comprised 116,517 cells (Fig 1b/ED1b) among which we identified neutrophils, platelets, 

mononuclear phagocytes, T/NK cells, B cells, plasma cells and eosinophils (Fig 1b/ED1c). 

We confirmed a positive association between neutrophil frequency and disease severity 

and an inverse correlation for lymphoid populations (Fig 1b/ED1d) (1–3). At this level of 

resolution, findings were similar between SARS-CoV-2 negative and positive individuals 

(ED1f–e.)

Within the neutrophils, we identified seven subtypes (Fig 1c/ED2a), consistent with previous 

studies (2, 4). One population, harboring a strong interferon-stimulated gene (ISG) signature 

and henceforth termed ISG neutrophils, was highly enriched in SARS-CoV-2 positive 

patients but not in those whose disease was severe (Fig 1d–e/ED2b). Separate pseudotime 

analysis (ED2d–g) placed the ISG subtype as a late-stage of differentiation and was the only 

such state found significantly altered between mild/moderate and severe patients (ED2e) and 

specifically within the SARS-CoV-2 positive individuals (Fig 1f/ED2c). ISG signature genes 

include master anti-viral regulators such as ISG15 and IFITM3 which restricts viral entry 

into the cytosol (5).

We also analyzed differentially expressed genes (DEG) from SARS-CoV-2 positive versus 

negative patients, and from mild/moderate versus severe patients across all neutrophils. ISG 

signature genes were expressed differentially higher in all neutrophil subsets, specifically in 

SARS-CoV-2 positive mild/moderate patients, as compared to SARS-CoV-2 positive severe 

patients (Fig 1g/ED2h–n). In contrast, a separate neutrophil degranulation gene program is 

upregulated in neutrophils from mild/moderate patients as compared to severe regardless of 

COVID status (ED2o–p). This suggests a shared program of degranulation enhancement in 

all respiratory infections regardless of causative pathogen, and a global induction of the ISG 

program in all neutrophils in mild/moderate SARS-CoV-2 positive patients that is absent in 

severe ones (3).

Assessing the mononuclear phagocytes—monocytes, macrophages, dendritic cells and 

plasmacytoid dendritic cells (pDC)—yielded 7 clusters of transcriptionally distinct cells 

subsets, evenly distributed across our cohort (ED3a–f). We identified an ISG expressing 
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classical monocytes cluster as being enriched in SARS-CoV-2 positive patients, and 

particularly those having mild/moderate disease, similarly to neutrophils (Fig 2a/ED4a–c). 

ISG monocytes also expressed genes associated with glycolysis, compared to a S100A12

expressing subset that were enriched for genes associated with oxidative phosphorylation, 

consistent with previous reports in bacterial sepsis (6) (ED4d). DEG analysis demonstrated 

that ISGs were the dominant genes associated with mild/moderate phenotypes when the 

entire mononuclear phagocyte pool was assessed (ED4e).

ISG monocytes and ISG neutrophils frequencies were strongly correlated with one another 

in mild/moderate SARS-CoV-2 positive individuals (Fig 2b/ED4f). A comprehensive 

analysis of T cell and B cell frequencies (ED5) demonstrated that both cell types were also 

significantly enriched in ISG signatures, specifically in mild/moderate COVID-19 patients 

(Fig 2c). The frequencies of ISG+ cells in one compartment correlated with the frequency of 

ISG expressing cells in another, for example ISG+ T cells and ISG+ neutrophils, uniquely 

in mild/moderate patients (ED4g). Spearman correlation analysis across multiple cell types 

in all patients thus showed a collection of correlated ISG+ populations and a second anti

correlated block of other cell populations, notably those expressing S100A12 (Fig 2d).

Our scRNA-seq whole blood dataset also allowed us to identify platelets and subset them 

based on established platelet signature genes (Fig 1a/ED1d). Analysis of these found six 

clusters, including three (“H3F3B”, “HIST1H2AC”, and “RGS18”) still carrying transcripts 

acquired from parental cells, megakaryocytes (ED6a–b) (7). “HIST1H2AC” subset was only 

modestly depleted in severe COVID-19 patients suggesting a skewing away from ‘younger’ 

cells (ED6c). This was supported when overlaying the expression of BCL2L1 onto our 

dataset, which has been identified as a ‘molecular clock’ for platelet lifetime (8). This 

identified a histone-rich H3F3B cluster as representing ‘young’ platelets (ED6d), a result 

supported by a second signature of transcripts in young, reticulated platelets (9) (ED6e). 

Pseudotime analysis rooted at this H3F3B (ED6f–g) suggested again that platelets from 

all patients with disease were broadly overrepresented at the end of the trajectory (ED6h). 

While we did not identify a distinct ISG+ cluster (ED6i), akin to myeloid and lymphoid 

cells, ISG signature scores in platelets from mild/moderate patients was increased relative to 

severe patients, particularly for SARS-CoV-2 infected patients (Fig 2e).

Platelet scRNA-seq also permitted the identification of heterotypic aggregates between 

platelets and non-platelets by using a ‘Platelet First’ approach (ED7a–c). This approach 

revealed the presence of platelet transcripts associated with cells that also bore signatures 

of other major blood cell types (ED7a–c). We found no profound differences in frequencies 

of cell types in this ‘Platelet First’ object compared to the original data set (ED7e). This 

suggests that, at least in circulating blood, platelets form aggregates indiscriminately with 

varying other cell types without favoring one or the other.

Holistic Assessment of Severe COVID-19

After observing that ISG expression profiles were elevated in every cell type among patients 

with mild/moderate disease but globally reduced with severe illness, we turned to a holistic 

view of disease states. Phenotypic earth mover’s distance (PhEMD) (10) embedding of 
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patients based on their subtype frequencies revealed eight distinct groups of patients (Fig 

2f/ED7f) wherein progression from A through H represent patients with generally increasing 

relative frequency of neutrophils. Intermediates C, D, G and H include patients with relative 

enrichment in monocytes and E represents patients with an enrichment of ISG neutrophils 

and mostly consists of SARS-CoV-2 positive patients with mild/moderate disease (Fig 2g–

h). In contrast, Group G, which is an alternative and ‘severe’ fate for patients is highly 

enriched for neutrophils and has a dominance of S100A12 versus ISG neutrophils (ED7f).

Examination of serum IFNα levels could not explain this loss of ISG+ cell populations 

in severe patients since severe patients were found with substantial IFNα production (Fig 

3a). However, ISG populations were strongly correlated with low severity of COVID-19 

illness, with serum IFNα concentration and lower plasma levels of SP-D (indicative of 

alveolar epithelial injury) (ED8a). When compared to a high-dimensional panel of plasma 

protein levels (ED8c), most ISG subtypes clustered together and correlated with factors 

indicative of a strong ISG and Th1 response (CXCL1/6/10/11, TNFB, IL-12B, MCP-2/4). 

An unexpected anticorrelate of the ISG state was the concentration of serum antibodies 

against the SARS-CoV-2 Spike and Nucleocapsid proteins (Fig 3b/ED8a).

This anticorrelation was profound and not strongly mirrored in higher total levels of IgG 

antibodies or immune complexes in severe patient sera (ED8d–f). We considered it a 

paradox that severe patients have higher levels of potentially neutralizing antibodies. This 

is in apparent contradiction with a previous report showing that viral load is associated 

with severity and mortality in COVID-19 (11, 12), a difference which could be explained 

by the fact that these studies compare amongst patients with high mortality, which was 

a very rare event in our cohort (Sup Table S1). At day of admission, both antibody 

specificities were anticorrelated with the viral load as assessed from nasal swabs (Fig 3c/

ED8b) consistent with though not definitive for being neutralizing. As increased antibody 

titers and decreased viral load have been reported to be a feature of later disease stage 

(13), we considered the hypothesis that our observed mild/moderate disease simply preceded 

severe disease. However, antibody titers in severe patients are consistently higher compared 

to mild/moderate patients over time, even two weeks beyond symptom onset (Fig 3d/ED8e), 

and only one of our 19 mild/moderate patients would go on to exhibit a severe disease 

(ED1b). Finally, we observed no statistical correlation between days of onset and the 

presence of ISG+ cell populations (ED8a). These elements would seem to argue against 

a simple temporal relationship between mild/moderate and severe states and led us to 

investigate a systemic etiology for this split in states in serum.

COVID-19 Serum Antibodies Antagonize Interferon Responses

Considering this enhancement of antibodies, we first asked whether serum from severe 

patients also contained antibodies against ISG-expressing cells by directly applying serum 

to peripheral blood mononuclear cells (PBMCs from heathy individuals) cultured with and 

without IFNα (ED9a–d). We observed serum IgG binding from 2 mild/moderate and 2 

severe COVID-19 patients (ED9a). However, staining was highly variable on different cell 

types (ED9b–c), both with and without prior IFNα stimulation, suggesting that patients may 

each have unique combinations of specificities. For instance, examining patient 1050 whose 
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serum did not stain ISG-differentiated cells directly, we found evidence of antibodies to 

IFNα (right inset Fig 3e), consistent with a very recent study (14) that also found these in 

approximately 12% of COVID patients. This patient was unique in our cohort and IFNα 
reactivity further does not explain the majority of severe patients lacking ISG cells.

We separately tested whether factors in the serum of severe patients affect the induction 

of the ISG signature gene pattern, using IFITM3 as a marker, in response to culture with 

IFNα. We thus mixed patient serum at 5% into an IFNα stimulation of healthy PBMCs 

and found that, whereas control serum or serum from mild/moderate patients had no effect 

on differentiation as measured by either IFITM3 level or the frequencies of CD14+CD16+ 

intermediate monocytes produced, all severe patient serum tested had profound effects, 

varying from complete block to partial inhibition. (Fig 3e/g and S9d–e).

To test if antibodies in severe patient serum were responsible for this inhibition of IFNα 
response, we pre-adsorbed patients’ sera with Protein A/G beads to deplete them. This 

relieved the block in both IFITM3 induction and the total yield of interferon-stimulated 

monocytes (Fig 3f–g). A similar block and release through antibody-absorbtion was 

observed for IFNα-dependent ISG signature generation in other populations including 

lymphocytes (Fig 3h/ED9f). We consider it likely, since profound IFN responses are 

dependent on a positive feedback loop from initial Interferon α Receptor (IFNAR) signaling 

(15), that IFN response in lymphocytes benefits from IFNAR signaling amplification in 

monocytes. We also confirmed an inhibition of ISG cell population generation by severe 

serum in a second validation cohort composed of 8 M/M and 6 severe patients (ED10a, table 

S2).

Severe COVID-19 Patients Antagonize IFNAR Signaling Through FCγRIIb

Probing the mechanism for this result, we found that blocking antibodies to Fc Receptors 

(CD16/CD64/CD32) during culture with IFNα and patient serum restored IFITM3 induction 

in cells cultured with serum from severe patient both in discovery (Fig 4a/e left) and 

validation (ED10b) cohorts. Fc receptor blocking restored not only IFITM3 induction but 

other ISG’s, such as IFI27, ISG15 and MX1 (ED10c). These results and the absence of 

augmented cell death in PBMC cultured with serum from severe patient (ED10d) suggested 

that antibodies present in serum from severe patients trigger Fc receptor signaling, which 

inhibits transcriptional responses following IFNAR engagement.

We considered that such a mechanism might represent a fundamental way for antibody 

generation to downregulate an interferon cascade and therefore we tested whether Fc 

receptor activation via cross linking antagonized IFITM3 induction by IFNα. PBMC 

subjected to individual crosslinking of CD32, but not CD16 or CD64, demonstrated 

dramatically less IFITM3 induction (Fig 4b–c/ED10e) while crosslinking of all FcR together 

induced pro-inflammatory cytokine production (ED10f).

Returning to severe COVID-19 serum effects, we found that blocking CD32 alone restored 

IFITM3 induction in PBMC’s cultured with IFNα in the presence of severe serum (Fig 4d–e 

right). Previous studies demonstrated that FcγRIIb (CD32b) blockade could lead to IFN-like 

Combes et al. Page 6

Nature. Author manuscript; available in PMC 2021 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



responses in dendritic cells and monocytes (16) while binding of the activating Fc receptor 

FcγRIIa (CD32a) elicit viral immunity (17). Consistent with those previous studies, we 

found that blocking of FCγRIIb, but not FCγRIIa, rescued IFITM3 induction in monocytes 

cultured with serum from severe patients (ED10g).

Taken together, inhibition of a phenotype of ISG-expressing immune populations in severe 

patients correspond to antagonism of IFNAR signaling via FCγRIIb receptor signaling by 

their antibodies. In our cohort, this general antibody-mediated effect manifests in almost all 

severe patients, whereas antibodies against the cytokine IFNα itself were seen only in one 

of seven patients, and those antibodies blocked ISG function but not via FcRs (Fig 4a). With 

regard to specificity, it is notable that very recent works have highlighted autoantibodies in 

COVID-19 binding to targets as diverse as phospholipids (18) and endothelial proteins (19) 

but that not all patients had developed each specificity. Our work likewise found antibody 

binding to mixtures of immune cells themselves and it is possible that, in the course of 

an infection, incomplete tolerance in the B cell compartment may include recognition of 

a great many host proteins including those on immune cells. While it will be important 

to study the likely diverse nature of antibody specificities in COVID-19, afucosylation of 

antibodies, which modifies selectivity for FcR subtypes, as well as differential IgG subclass 

selectivity is also emerging as a distinguishing feature (20) and we speculate that variable 

levels of these IgG subclasses in sera combined with varying affinities for different Fc 

receptors could result in stronger signaling through inhibitory FCγRIIb. Further work will 

be necessary to characterize the relative contributions of these IgG subclasses and their 

specificities. Regardless, our study suggests that this global targeting of ISG archetypes 

might be addressable with drugs such as rituximab to reduce B cell responses (21) perhaps 

in the presence of convalescent serum, through introduction of IVIG to compete with serum 

antibodies for FcR engagement (22), or with rapid development of antibodies that clinically 

block FCγRIIb.

Material and Methods

Patients, participants, severity score, and clinical data collection:

Patients admitted to the Hospital of the University of California with known or presumptive 

COVID-19 were screened within 3 days of hospitalization. Patients, or a designated 

surrogate, provided informed consent to participate in the study. This study includes a 

subset of patient enrolled between April 8 and May 1 in the COMET (COVID-19 Multi

immunophenotyping projects for Effective Therapies; https://www.comet-study.org/) study 

at UCSF. COMET is a prospective study that aims to describe the relationship between 

specific immunologic assessments and the clinical courses of COVID-19 in hospitalized 

patients. Healthy donors (Ctrl) were adults with no prior diagnosis of or recent symptoms 

consistent with COVID-19. This analysis includes samples from participants who provided 

informed consent directly, via a surrogate, or otherwise in accordance with protocols 

approved by the regional ethical research boards and the Declaration of Helsinki. For 

inpatients, clinical data were abstracted from the electronic medical record into standardized 

case report forms. We used both a severity score at the time of sampling and at the end 

of hospitalization (ED1a). In both cases, severity assessment was based on three main 

Combes et al. Page 7

Nature. Author manuscript; available in PMC 2021 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.comet-study.org/


parameters: level of care, need for mechanical ventilation, and time under mechanical 

ventilation. Mild/moderate patients are floor/ICU patients who did not require mechanical 

ventilation during their time of hospitalization and spent no more than 1 day in ICU. Severe 

patients are patients who required intensive care and mechanical ventilation (typically 5 days 

or more). Therefore, our validation cohort is composed of 21 COVID-19 positive patients 

(11 mild/moderate and 10 severe), 11 COVID-19 negative patient (6 mild/moderate and 5 

severe), and 14 Healthy participants. We also collected and used serum from a validation 

cohort composed of 14 SARS-CoV-2 positives. Samples were collected and severity was 

assessed as previously described for initial cohort. This discovery cohort is composed of 

8 mild/moderate and 6 severe patients. Information on age, sex, type of infection, days of 

on onset, viral load, and CBC count are listed in Table S1. The study is approved by the 

Institutional Review board: IRB# 20–30497.

Isolation of blood cells and processing for scRNA-seq:

ScRNA-seq was performed on fresh whole blood in order to preserve granulocytes. 

Briefly, peripheral blood was collected into EDTA tubes (BD, catalog no. 366643). Whole 

blood was prepared by treatment of 500μL of peripheral blood with RBC lysis buffer 

(Roche, 11–814-389–001) according to manufacturer’s procedures. Cells were then counted 

and 15.000 cells per individual were directly loaded in the Chromium™ Controller for 

partitioning single cells into nanoliter-scale Gel Bead-In-Emulsions (GEMs) following 

manufacturer’s procedures (10x genomics). Some samples were pooled together (at 15,000 

cells/ sample) prior to GEM partitioning. Single Cell 5’ reagent kit v5.1 was used for reverse 

transcription, cDNA amplification and library construction of the gene expression libraries 

(10x Genomics) following the detailed protocol provided by 10x Genomics. Libraries were 

sequenced on an Illumina NovaSeq6000 using 28 cycles for R1 and 98 cycles for R2. All 

samples were encapsulated, and cDNA was generated within 6 hours after blood draw.

PBMC co-culture experiment with patient serum and flow cytometry analysis:

PBMCs were isolated from EDTA-anticoagulated whole blood from healthy donors using 

Polymorphprep (Alere Technologies), and resuspended in culture medium (RPMI 1640 + 

10% FBS). For detection of neutralization of interferon stimulation, autologous serum or 

clinical study participant sera (10 μl) were plated with IFNα (Stemcell IFN alpha-2A; 

final concentration of 1 pg/ul) in a total volume of 200μl before addition of 2.5×105 

PBMCs. After incubation for 24 hours, PBMCs were assayed for IFNα-induced IFITM3 

upregulation and CD14/CD16 levels and fractions by flow cytometry. After surface staining 

and addition of fixable live/dead violet dye (ThermoFisher; #L34955), intracellular detection 

of IFITM3 was done using the eBioscience Foxp3 / Transcription Factor Staining Buffer 

Set (ThermoFisher; #00–5523-00) and following the manufacturer’s instructions. For, FcR 

blocking experiments, Fc receptors were blocked with unconjugated anti-CD16 (clone 3G8; 

BioLegend; #302002), anti-CD32 (clone FUN-2; BioLegend; #303202),anti-CD64 (clone 

10.1; BioLegend; #305002), anti-CD32a(Clone IV.4,BioXcell) and anti-CD32b/c (clone 

S18005H Biolegend) with 0.5 ug of each antibody. After incubation for 24 hours with IFNα 
(1pg/ul), PBMCs were assayed for IFNα-induced IFITM3 upregulation and CD14/CD16 

levels and fractions by flow cytometry. For serum staining assays, PBMCs were cultured 

with media or 1–100 pg/ml IFNα for 38–46 hours. Samples were harvested and Fc receptors 
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were blocked with unconjugated anti-CD16 (clone 3G8; BioLegend; #302002), anti-CD32 

(clone FUN-2; BioLegend; #303202), and anti-CD64 (clone 10.1; BioLegend; #305002) 

antibodies for 20 min on ice. Following one washing step with fluorescence-activated cell 

sorting (FACS) buffer (2% fetal bovine serum, 1 mM EDTA, PBS), non-specific binding 

of the detection antibody was blocked by incubating with unconjugated AffiniPure Donkey 

anti-human IgG (Jackson Immunoresearch; #709–005-149) for 15 min at room temperature. 

After washing with FACS buffer, PBMCs were then stained for surface markers 30 min on 

ice. After staining incubation, cells were washed 3x times with FACS buffer (1500 rpm, 5 

min, 4°C) and incubated with 5μl autologous or clinical study participant sera for 30 min on 

ice. After washing the cells with FACS buffer, cell-bound antibodies were detected using an 

AffiniPure Donkey anti-human IgG-Alexa Fluor 647 antibody (Jackson Immunoresearch; 

#709–605-149), which was incubated with the cells for 30 min on ice. Cells were 

washed again and resuspended in 1 μg/ml DAPI solution for live/dead discrimination. The 

following antibodies were used for flow cytometric analysis: anti-human CD3-BB700 (clone 

SK7; BD Biosciences; #566575), anti-human CD14-BV711 (clone MSE2; BioLegend; 

#301838), anti-human CD15-BV786 (clone W6D3; BD Biosciences; #741013), anti-human 

CD16-BV605 (clone 3G8; BioLegend; #302040), anti-human CD19-BV785 (clone HIB19; 

BioLegend; #302240), anti-human CD45-APCeFluor780 (clone HI30; ThermoFisher; 47–

0459-42), anti-human IFITM3-AlexaFluor 647 (clone EPR5242; Abcam; ab198573).

PBMC Fc receptor crosslinking experiment:

96 well flat bottom polystyrene plates were coated overnight at 4C with either 10 or 5 ug/mL 

of combinations of anti-CD16 (clone 3G8; BioLegend; #302002), anti-CD32 (clone FUN-2; 

BioLegend; #303202), and anti-CD64 (clone 10.1; BioLegend; #305002) diluted in PBS. 

Plates were washed 3x with PBS prior to PBMC plating which were prepared as detailed 

above. 250k PBMC’s per well were spun down briefly and incubated at 37C for 15 minutes 

to allow for coated antibody engagement. IFNα was then added into the well and cells 

incubated for 24 hours at 37C prior to flow cytometry as described above.

Statistical Analysis and Data visualization:

Statistical analyses were performed using GraphPad prism or the R software package. Null 

hypotheses between two groups were tested using the non-parametric Mann-Whitney test to 

account for non-normal distribution of the data. Likewise, for multiple groups, comparisons 

were made by two-way ANOVA or non-parametric Kruskal–Wallis test followed by multiple 

comparisons. The specific statistical tests and their resultant significance levels are also 

noted in each figure legend. The R packages Seurat, ggplot2 (version 3.1.0) (Wickham, 

2016) GraphPad Prism and Adobe Illustrator were used to generate figures.

Data and Code Availability Statement

The data reported in this manuscript are in the main paper and in the supplementary 

materials. Cellranger-processed raw feature-barcode matrices are available at GEO using 

accession GSE163668 and raw fastq files for all 10X libraries are deposited in SRA. Scripts 

used to process all data along with relevant clinical information for each patient are available 

at https://github.com/UCSF-DSCOLAB/combes_et_al_COVID_2020.
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Extended Data

Extended Data 1: Immune phenotyping of patients admitted with respiratory symptoms using 
whole blood single-cell RNA sequencing.
a. Patient symptoms plot: symptom at day of sampling (first day of admission to 

the hospital) is represented in black, while symptom based on the entire course of 

hospitalization is in green. In the rest of the manuscript, we categorized patient into 

mild/moderate or severe cases based on all the entire course of hospitalization (green). 

b. Quantification of the batch effect using neighbor diversity score in the global object 

UMAP before (left) and after (middle) batch correction, along with the neutrophil (right) 

UMAP plot, as in Fig1b and Fig1c, using the diversity in neighborhood method. c. Dotplot 

representation of landmark genes expressed by global populations in Fig1b. d. Spearman’s 

correlation comparison between disease severity and population frequencies calculated from 

10X scRNAseq analyses (10X) or complete blood cell counts (CBC). Patients for which 

CBC counts were unavailable were excluded. Significance was calculated using Spearman’s 

method. * p value<0.05; ** p value <0.05; *** p value<0.005 (n=29) e. Frequency of the 

global populations in Fig1b among all cells across SARS-CoV-2 status (control, n=14; NEG, 

n=11; POS, n=21).
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Extended Data 2: Patients with severe COVID-19 lack IFN response in neutrophils.
a. Dotplot representation of top differentially-expressed-genes (DEG) between neutrophil 

subsets. b. Frequencies of neutrophil subsets among all neutrophils across control (n=14), 

SARS-CoV-2 negative (n=11) and SARS-CoV-2 positive (n=21) individuals. c. Frequency of 

the LCN2, S100A12, RIBO., NEAT1, G0S2 and SLPI neutrophils among all neutrophils 

across SARS-CoV-2 status and disease severity (NEG M/M, n=6; NEG severe, n=5; 

POS M/M, n=11, POS severe n=10). d. Pseudotime trajectory of neutrophil subsets. e. 
Frequencies of the neutrophil subsets among all neutrophils at later stages of pseudotime 

trajectories across control (n=14), mild/moderate (n=17) and severe (n=15) individuals. f 
and g. Frequencies of the neutrophil subsets among all neutrophils across control (n=14), 

mild/moderate (M/M, n=17) and severe (n=15) individuals at the overall start/late states of 

the trajectories (f) or at specific early stages of the pseudotime (g). h to k. Volcano plots 

showing DEG (h and j) and bar plots showing GO term enrichment from these DEG (i and 

k) between all neutrophils from either SARS-CoV-2 positive vs negative patients (h and i) 

or mild/moderate vs severe patients (j and k). l to p. Scores of ISG signature (l to n) and 

neutrophil degranulation (o and p) in either all neutrophils across control, mild/moderate 

an severe patients (I and o), all neutrophils across SARS-CoV-2 status and disease severity 

(m and p) or specific neutrophil subtypes across severity in either all patients (m) or only 
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SARS-CoV-2 negative patients (n). Statistical significance was assessed using a two-way 

ANOVA test with multiple comparisons for panels c, e and g, and using a two-tailed 

Wilcoxon test for panel l. * p.value < 0.05; ** p.value < 0.01; *** p.value < 0.001; **** 

p.value < 0.0001. Boxplot center, median; box limits, 25th and 75th percentile; whiskers, 

min. and max. data point.

Extended Data 3. Characterization of peripheral blood mononuclear phagocytes subsets in our 
cohort.
a. Dotplot representation of the top differentially-expressed-genes (DEG) between clusters 

identified in blood mononuclear phagocytic cell (MPC) subsets. b. UMAP visualization of 

the 19,289 MPC isolated from the entire dataset (left) and split by SARS-CoV-2 status 

(right). c. Quantification of the batch effect before and after batch correction using neighbor 

diversity score in the mononuclear phagocytic cells (MPC) object from UMAP plot in (b), 

using the diversity in neighborhood method. d. Violin plot of number of unique genes 

(bottom) and number of unique molecules (top) detected from Single cell sequencing 

for each cluster identified in the MPC dataset. e. Overlay of previously described blood 

mononuclear phagocytic cell signature from healthy individual (38) on MPC from UMAP 

plot in (b). f. Violin plots of canonical genes previously described as expressed by blood 

MPC for each for each cluster identified in the MPC dataset.
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Extended Data 4: Severe COVID-19 is defined by the lack of a concerted IFN response across 
multiple cell types.
a. Frequencies of the MPC subsets among all MPC across control (n=14), SARS-CoV-2 

negative (n=11) and SARS-CoV-2 positive (n=21) individuals. b. UMAP visualization of 

the 19,289 MPC colored (left) and split by (right) by disease severity. c. Frequencies 

of the classical monocytes, cycling monocytes, non-classical monocytes and C1Q+ non 

classical monocytes among all MPC across SARS-CoV-2 negative (M/M, n=6; severe, 

n=5) and SARS-CoV-2 positive (M/M, n=11; severe, n=10) individuals split it by disease 

severity. d. Overlay of previously described (39) glycolytic and oxidative phosphorylation 
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gene signature on mononuclear phagocytic cells (MPC) from UMAP plot in FigS3b. e. 
Volcano plot showing results of differential gene expression (DGE) analysis performed on 

all MPC between mild/moderate (right) and severe (left) patients. f. Correlation matrix 

using Spearman Rank Correlation between the frequency of all neutrophils and monocytes 

subtypes in all SARS-CoV-2 negative (n=11) and SARS-CoV-2 positive patients (n=21). 

g. Scatter plot between neutrophil and CD4 T cell ISG positive subsets patient by patient 

(M/M, n=11; severe, n=10; COVID-, n=11). Statistical significance was assessed using a 

two-way ANOVA test with multiple comparisons. * p.value < 0.05; ** p.value < 0.01; *** 

p.value < 0.001; **** p.value < 0.0001. Boxplot center, median; box limits, 25th and 75th 

percentile; whiskers, min. and max. data point.

Extended Data 5: Characterization of the peripheral blood T and B lymphocytes subsets in our 
cohort.
a. Dotplot representation of the top DEG between clusters identified in the T and NK cell 

subset. b. UMAP visualization of 16,708 T and NK cells in the entire dataset showing 

various subsets, colored distinctly by their identity. c. Overlay of the above UMAP of all 

T and NK cells, colored by disease severity underlining the lack of batch effects while 

merging the datasets from all patients. d. Abundance of the Interferon-stimulated-gene 

(ISG)+ subset among all T and NK cells in healthy donors (n=13), SARS-CoV-2 negative 
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(n=9) and SARS-CoV-2 positive (n=15) patients (top) and in healthy donors and patients 

with mild/moderate (M/M, n=14) and severe disease (bottom, n=9). e. ISG signature score 

between healthy controls, SARS-CoV-2 negative and SARS-CoV-2 positive patients. f. 
Dotplot representation of the top DEG between clusters identified in the B and plasma cell 

subset. g. UMAP visualization of 4,380 B and plasma cells isolated from the entire dataset 

showing various subsets, colored distinctly by their identity. h. Violin plots of canonical 

genes previously described as expressed by B and plasma cells for each identified cluster. i. 
Frequencies of the identified clusters among all B and plasma cells in healthy donors (n=14) 

and patients with M/M (n=17) and severe disease (n=15). Differences in d. and e. were 

calculated using Kruskal-Wallis test. * p <0.05 and **** p< 0.001. Differences in i. were 

calculated using a two-way ANOVA test with multiple comparisons. * p.value < 0.05 and 

**** p.value < 0.0001. ns, non-significant. Boxplot center, median; box limits, 25th and 75th 

percentile; whiskers, min. and max. data point.
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Extended Data 6: Characterization of the peripheral blood platelets subsets in our cohort.
a. Dotplot representation of the top DEG between clusters identified in the platelet subset. 

b. UMAP visualization of 16,903 platelets isolated from the entire dataset showing various 

subsets, colored distinctly by their identity. c. Frequencies of the identified clusters among 

all platelets in controls (n=14) and all patients with mild/moderate (M/M, n=17) and 

severe disease (n=15). d. UMAP visualization of all platelets colored by BCL2L1 (top) 

and violin plot of BCL2L1 expression level across all identified platelet subsets. e. Violin 

plots of genes identifying young, reticulated platelets (9) in the platelet dataset. f. UMAP 

visualization of all platelets with overlay of Pseudotime trajectory. g. Violin plots of the 

relative pseudotime of each platelet cell subset present in Figure 3b h. Violin plot of 

the relative Pseudotime of all platelets split by healthy donors, mild/moderate and severe 

patients. i. UMAP visualization of all platelets colored by ISG score. Differences in c. 

were calculated using a two-way ANOVA test with multiple comparisons. *p.value < 0.05; 

**p.value < 0.01; ***p.value <0.001; ****p.value < 0.0001; ns: non-significant. Boxplot 

center, median; box limits, 25th and 75th percentile; whiskers, min. and max. data point.

Extended Data 7: Leveraging single-cell RNA sequencing to assess platelets aggregates and 
define immune states in COVID-19 patients.
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a. Outline of ‘Platelet First’ assessment to identify platelet aggregates in entire whole blood 

scRNA-seq data set. UMAP visualization of the 52,757 putative platelet aggregates with 

specific populations overlaid. b. Dotplot representation of the top DEG between clusters 

identified in the ‘Platelet First’ object. In this object no doublet removal filtering step 

was applied to include all heterotypic cell-cell aggregates (Step 1). This was followed 

by retaining all cells with >1 platelet-specific transcripts PF4 or PPBP (Step 2). Step 2 

guaranteed analysis of cell events and aggregates containing platelets. Identically to our 

original data set in Figure 1b, integration of data was done using Harmony (Step 3), and 

the ‘Platelet First’ object was then analyzed using the Seurat v3 pipeline (Step 4). c. Violin 

plots of the percentage of mitochondrial and ribosomal genes within clusters identified in the 

‘Platelet First’ object. d. Inter-sample doublet rates in inferred platelet-involved heterotypic 

doublets show that platelet aggregates occur in vivo. DBL, doublet, n=5 libraries. SNG, 

singlet, n=5 libraries. e. Bottom: Scatter plot of cell type frequency within merged object of 

entire cohort shown in Figure 1b (x-axis) versus same cell type frequency within ‘Platelet 

First’ object (y-axis). The identity line x=y is drawn as a reference. Each dot represents 

a control (n=14) or SARS-CoV-2 positive patient sample and are color-coded by disease 

severity (M/M, n=11; severe, n=10). Pearson r correlation coefficient and two-tailed p 

value are shown for each cell type. Top: Box plots of y/x-ratio for each healthy control 

or patient sample, separated by disease severity. f. Cell fraction histograms representing 

bin-wise mean of relative frequency (i.e., cell fraction) of each immune cell subtype for all 

patients in a given group, colored as described in Fig2f. Differences in d. were calculated 

using a one-sided Student’s t test * p.value < 0.05 and ** p.value < 0.01. Differences in e. 

were calculated using a two-way ANOVA test with multiple comparisons. *p.value < 0.05; 

**p.value < 0.01; ***p.value <0.001; ****p.value < 0.0001; ns: non-significant. Boxplot 

center, median; box limits, 25th and 75th percentile; whiskers, min. and max. data point.
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Extended Data 8: Holistic assessment of COVID-19 peripheral blood profile combining single
cell RNA sequencing, clinical blood counts and cytokines plasma levels.
a. Matrix of Spearman correlation coefficients between all subtype frequencies (out of 

major cell types, e.g. Neut ISG out of all Neutrophils) obtained from scRNA-Seq versus 

patient metadata, viral load, Ab titers, and serum analyte levels on a patient-by-patient 

basis excluding healthy controls. Patients for which data were unavailable were excluded 

from correlation analysis for each comparison. Variables on both axes were ordered via 

hierarchical clustering with the computed dendrogram displayed for subtype frequencies. 

This dendrogram was divided into 6 groupings with the one containing ISG+ subtypes 

highlighted in brown. Clinical variables generally correlated with severity highlighted in 

red and anti-correlated in brown. (n for correlation comparisons ranged from n=14–32 

individuals) * p<0.05, ** p<0.005, *** p<0.0005. b. Scatter plots showing viral load versus 

levels of antibody binding SARS-CoV-2 Nucleocapsid protein for patients in the cohort 

with severity overlaid. Antibody levels are shown as arbitrary units of MFI from Luminex 

assay while viral load is represented by an inverse CT number from QRT-PCR with 

target amplification of the SARS-CoV2 Nucleocapsid sequence. Correlation coefficient and 

significance calculated using Spearman’s method. Patients for which data was unavailable 

were excluded (M/M, n=9; severe, n=7 patients). c. Matrix of Spearman correlation 

coefficients between all subtype frequencies (out of major celltypes e.g. Neut ISG represents 
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% out of all Neutrophils) obtained from scRNA-Seq versus protein analyte abundance 

in plasma as measured using Olink assay on a patient-by-patient basis excluding healthy 

controls. Patients for which data were unavailable were excluded from correlation analysis 

for each comparison. Variables on both axes were ordered via hierarchical clustering. ISG 

subtypes and protein levels strongly correlated with their frequency highlighted in brown. 

Subtypes and proteins strongly anti-correlated with ISG+ subtypes highlighted in red. 

(n=31 for all comparisons). * p<0.05, ** p<0.005, *** p<0.0005. d. Computed total IgG 

levels in patient sera from ELISA absorbance readings. (n=4/19/16 for HC/MM/Severe) e. 
Longitudinal measurements of anti-Spike and Nucleocapsid antibody levels in patient sera at 

the indicated days post-enrollment in study. Connected points represent tracking of a single 

individual. (n=11/8/7/8/6/7/3/7/1/5/0/3 for MM vs. Severe for D0,4,7,14,21,27 respectively) 

f. Levels of circulating immune complexes (CIC) in patient sera as measured by ELISA 

with human C1Q used to capture CIC’s and an anti-hIgG secondary. Levels shown as heat 

aggregated human gamma globulin equivalents per mL or (Eq/mL). (n=3/11/9 for HC/MM/

Severe respectively). Boxplots represent 25/50/75 percentiles. Statistical testing performed 

using two-sided Wilcoxon rank-sum test. Boxplot center, median; box limits, 25th and 75th 

percentile; whiskers, min. and max. data point.
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Extended Data 9: Staining and Neutralization assay on IFN-stimulated heathy PBMC using 
COVID-19 patients’ serum.
a. Contour plots and histograms of CD14+ monocytes from healthy donor blood cultured 

with IFNa to induce expression of ISGs and stained with serum from heathy donor, 

mild/moderate (M/M) or severe SARS-CoV-2 positive patients with secondary staining 

with anti-human IgG. b. Geometric MFI of serum staining on CD14+ monocytes treated 

with IFNa, quantifying data in Figure S7A. Ctrl, n=4; M/M, n=9; severe, n=7. Boxplot 

center, median; box limits, 25th and 75th percentile; whiskers, min. and max. data point. 

c. Summary table of serum staining experiment. Fold change (FC) of anti-Human IgG 

AlexaFluor647 GeoMFI relative to allogeneic healthy donor serum on non-stimulated and 

IFNa-stimulated healthy PBMCs is listed for each analyzed cell type. Table data cells are 
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color-coded based on degree of FC; green, FC>2; yellow, 2>FC>1.2; red, FC<1.2., d. Gating 

strategy for PBMCs to identify different subpopulations. e. Modulation of intermediate to 

classical CD14 monocytes transition by mild/moderate (orange) and severe (red) patient 

serum. Each plot represents a single serum sample. Representative experiment from three 

independent trials and two different healthy PBMC donors. f. Histograms of IFITM3 

expression by CD3+ CD19+ lymphocytes from healthy donor cultured with IFNa and 

serum from heathy donor (blue), mild/moderate (orange) and severe (red) SARS-CoV-2 

positive patients. Mild/Moderate (light yellow) or Severe (pink) sera were pre-treated with 

protein G/A before incubation with PBMC. Each plot represents a single serum sample. 

Representative experiment from two independent trials and two different healthy PBMC 

donors. For a, b, c, e, f, data from one of two representative experiments is shown. ns, 

non-significant.
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Extended Data 10: Antibodies present in severe COVID-19 patients antagonize IFNAR Signaling 
through FCγRIIb.
a. Test of ISG neutralization by M/M or severe serum as presented in Figure 3e, here using 

sera from a validation cohort of patients. b. Test of ISG neutralization by M/M or severe 

serum in presence of anti-CD16/CD32/CD64 antibodies to block Fc receptors as presented 

in Figure 4a, here using sera from a validation cohort of patients. c. qPCR analysis of 

IFI27, ISG15 and MX1 gene expression in healthy donor PBMCs treated with IFNa with 

the addition of M/M or severe patient sera with or without Fc receptor blocking (Figure 4a). 

Fold changes are relative to untreated healthy donor PBMCs. n=3/group. Data is plotted as 
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mean±SEM. d. Absolute counts of CD14+ monocytes from experiments presented in Figure 

4a (n=16/group). e and f. Contour plots and histograms of CD14 and IFITM3 expression by 

monocytes (e) and quantification by Luminex of IL-6, IL-8 in the supernatant (f) from the 

experiment presented in Figure 4b and c. g. Boxplots showing fold changes of percentage 

of IFITM3 positive CD14+ monocytes upon IFNa stimulation normalized to non-treated 

cells (1 experiment on 2 different pbmc donors: n=8/group). Differences in c and g were 

calculated using a two-way ANOVA corrected for multiple comparison. * p.value < 0.05; 

** p.value < 0.01; *** p.value <0.001; **** p.value < 0.0001; ns non-significant. Boxplot 

center, median; box limits, 25th and 75th percentile; whiskers, min. and max. data point.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Severe COVID-19 disease is characterized by the lack of IFN-responsive neutrophils.
a. Gender, SARS-CoV-2 status and disease severity in patients and control individuals (left) 

and description of study design (right) b. UMAP visualization of 116,517 cells merged 

from the entire cohort with specific populations overlaid (left), and frequencies of these 

populations across control, mild/moderate (M/M) and severe individuals (right). c. UMAP 

visualization of neutrophil subsets. d. and e. Overlay of SARS-CoV-2 status and disease 

severity, respectively, on the neutrophil UMAP. f. Frequency of ISG neutrophils among 

all neutrophils across SARS-CoV-2 status and disease severity (CTRL, n=14; NEG M/M, 

n=6; NEG severe, n=5; POS M/M, n=11, POS severe n=10). g. Score of ISG signature 

across neutrophil subtypes and disease severity in SARS-CoV-2 positive patients. Statistical 

significance was assessed using a two-way ANOVA test with multiple comparisons for panel 

a and e, and using a two-sided Wilcoxon test for panel f. * p-value < 0.05; ** p-value < 0.01; 

*** p-value < 0.001; **** p-value < 0.0001. Boxplot center, median; box limits, 25th and 

75th percentile; whiskers, min. and max. data point.
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Figure 2: Severe COVID-19 disease is defined by the lack of a concerted IFN-response across 
peripheral blood immune cells.
a. Frequencies of MPC subsets among all MPC across mild/moderate (M/M, n=6 NEG, 

n=11 POS) and severe (n=5 NEG, n=10 POS) individuals b. Scatter plot between neutrophil 

and monocyte ISG positive subsets patient by patient (M/M, n=11; severe, n=10; COVID-, 

n=11). c. Violin plot of ISG signature on all T cells (top) and all B/Plasma cells (bottom) 

across SARS-CoV-2 status and disease severity. Statistical significance was assessed using a 

two-sided Wilcoxon test. d. Correlation matrix using Spearman rank correlation between the 

most and the least correlated cell subsets to the Neutrophils ISG positive cells (data include 

all SARS-CoV-2 negative and positive patients). e. ISG signature score in all platelets across 

SARS-CoV-2 status and disease severity. f-h. 3D PhEMD embedding of all patients, colored 

by f de novo patient clusters A-H, g. SARS-CoV-2 status, and h. disease severity. Statistical 

significance was assessed using two-tailed Spearman’s rank correlation (b) and Kruskal 

Wallis test with multiple comparisons (a), and two-sided Wilcoxon rank sum test for panels 

c and e. * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001; **** p-value < 0.0001. 

Boxplot center, median; box limits, 25th and 75th percentile; whiskers, min. and max. data 

point.
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Figure 3: Neutralization of ISG induction by Antibodies from Severe COVID-19 Patients.
a. Measurement of serum IFNα concentration from SARS-CoV-2 negative and positive 

M/M (n=17) or severe (n=15) patients by ELISA. Patients 1055 and 1060 are highlighted 

in red and their Monocytes ISG frequency from Fig 2C is noted as well as the median 

for mild COVID-19 mild/moderate patients. Boxplot center, median; box limits, 25th and 

75th percentile; whiskers, 1.5x interquartile range (IQR). b. Measurement of anti-SARS

CoV-2 antibody levels in serum from patients by Luminex assay (M/M: Mild/Moderate). 

Boxplot center, median; box limits, 25th and 75th percentile; whiskers, min. and max. data 

point. c. Scatter plots showing viral load versus levels of antibody binding SARS-CoV-2 

Nucleocapsid for patients in the cohort with severity overlaid. Antibody levels are shown 

as arbitrary units of MFI from Luminex assay while viral load is represented by an inverse 

CT number from QRT-PCR with target amplification of the SARS-CoV2 Nucleocapsid 

sequence. Correlation coefficient and significance calculated using Spearman’s method. 

Patients for which data was unavailable were excluded (M/M, n=9; severe, n=7 patients) d. 
Scatterplot for SARS-CoV2 Full Spike protein antibody titers relative to days post symptom 

onset. Patients for which data was unavailable were excluded (M/M, n=14; severe, n=8 

patients). e. Contour plots and histograms of CD14 and IFITM3 expression by monocytes 

from healthy PBMC cultured with IFNα and serum from either heathy donor, mild/moderate 
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or severe SARS-CoV-2 positive patient. f. Contour plots and histograms of CD14 and 

IFITM3 expression by monocytes after pre-treating Mild/Moderate (light yellow) or Severe 

(pink) sera with protein A/G prior to incubation with PBMC to deplete IgG. g. Boxplots 

of IFITM3 induction in CD14 monocytes (left; ctrl, n=5; M/M, n=21; severe, n=14; M/M 

depleted, n=11; severe depleted, n=10) and classical to intermediate monocytes ratio (right; 

ctrl, n=4; M/M, n=24; severe, n=7; M/M depleted, n=11; severe depleted, n=7) from 2 

different experiment and 2 different healthy donors. h. Left: Contour plots and histograms of 

IFITM3 expression by pooled CD3+/CD19+ lymphocytes from healthy PBMC cultured with 

IFNα and serum from heathy donor, mild/moderate or severe SARS-CoV-2 positive patients. 

Light yellow and pink indicate respectively Mild/moderate and Severe sera pre-treated with 

protein A/G. Right: Box plot of IFITM3 induction in lymphocytes. Differences in g. and h. 

were calculated using a two-way ANOVA test with multiple comparisons. *p.value < 0.05; 

**p.value < 0.01; ***p.value <0.001; ****p.value < 0.0001; ns: non-significant. For b/g/h 

boxplot center, median; box limits, 25th and 75th percentile; whiskers, min. and max. data 

point.
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Figure 4: IgG-mediated neutralization of ISG induction by Severe COVID-19 Patients sera 
occurs through binding of their Fc to CD32.
a. Contour plots and histograms of CD14 and IFITM3 expression by monocytes from 

healthy PBMC cultured with IFNα and serum from either heathy donor, mild/moderate 

or severe SARS-CoV-2 positive patient, in the presence or not of anti-CD16/CD32/CD64 

antibodies to block Fc receptors. b and c. CD14/IFITM3 contour plot and histograms (b) 

and boxplots presenting fold changes of IFITM3 expression (c) on CD14 monocytes after 

culturing healthy PBMCs +/− IFNα (1 pg/μl) +/− 5 or 10 μg/ml of plate-coated isotype 

control, anti-CD16, anti-CD32 or anti-CD64 antibodies alone or in combination to cross

link and activate Fc receptors. Panel c presents the results of 2 independent experiments 

and 2 different cell donors, including two antibody quantities for one of the donors (n=3 

experiments). Data is plotted as mean±SD. d. Neutralization assay as presented in panel a, 

with the sole addition of anti-CD32 blocking antibodies. e. Boxplots showing fold changes 

of IFITM3 expression for experiments presented in panel a (left graph, 5 independent 

experiments on 3 different cell donors) and panel d (right graph, 1 experiment on 2 different 

cell donors). Differences in c and e were calculated using a two-way ANOVA test with 

multiple comparisons. * p.value < 0.05; ** p.value < 0.01; **** p.value < 0.0001. Boxplot 

center, median; box limits, 25th and 75th percentile; whiskers, min. and max. data point. * 

p.value < 0.05; ** p.value < 0.01; *** p.value <0.001; **** p.value < 0.0001.
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